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Abstract

Most school choice and other matching mechanisms are based on deferred acceptance
(DA) for its incentive properties. However, non-strategyproof mechanisms can dominate
DA in welfare because manipulation in preference rankings can re�ect the intensities of
underlying cardinal preferences. In this work, we use the parallel mechanism of Chen and
Kesten, which interpolates between Boston mechanism and DA, to quantify this tradeo�.
While it is previously known that mechanisms that are closer to Boston mechanism are more
manipulable, we show that they are also more e�cient in student welfare if school priorities
are weak. Our theoretical results show the ine�ciency-manipulability tradeo� in the worst
case, while our simulation results show the same tradeo� in the typical case.

1 Introduction
Most school choice and other matching mechanisms are based on the student-proposing deferred
acceptance (DA) algorithm (Gale and Shapley, 1962; Abdulkadiroğlu and Sönmez, 2003). �ese
mechanisms are adopted because they have two a�ractive properties on incentives and welfare.
First, on incentives, it is strategyproof for students, which makes it simple for students to rank
schools. �is good incentive property of DA motivated the Boston Public School System to adopt
DA in place of Boston (Immediate Acceptance) Mechanism. Second, on welfare, the resulting
matching is stable with respect to to student preferences and school priorities; this means that
if a student prefers some school to her assigned school, she must have a lower priority than
every student assigned to that school. It follows that the student-proposing DA is Pareto e�cient,
but this e�ciency guarantee only holds if schools have strict priorities over students, and this
assumption almost never holds. Rather, schools o�en have a few broad criteria to rank students,
such as sibling a�endance and walk zones, and break ties randomly within the same priority
class to produce strict priorities required by DA. When schools have weak priorities, DA still has
guarantees on incentives, but not on e�ciency.

In this paper, we show that between Boston mechanism and DA, there is a quantitative tradeo�
between ine�ciency (which is a welfare property) and manipulability (which is an incentives
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property). More manipulable mechanisms are more e�cient in student welfare. We assume that each
student has a �xed cardinal preference over each school, but she is only allowed to report her ordinal
preferences to the mechanism. To show this tradeo�, we analyze a family of matching mechanisms
called the parallel mechanism formalized by Chen and Kesten (Chen and Kesten, 2017).1 �is
family of mechanisms has one parameter d and interpolates between Boston mechanism (d = 1)
and DA (d = number of schools).2 Moreover, Chen and Kesten (2017) showed that if d < d′,
then the d-parallel mechanism was “more manipulable” than the d′-parallel mechanism in the
sense of Pathak and Sönmez (2013). Earlier works qualitatively compared the non-strategyproof
Boston mechanism with the strategyproof DA (Abdulkadiroğlu et al., 2011, 2015), which were two
extreme mechanisms of this entire family. Our analysis of the parallel mechanism gives a more
�ne-grained handle on e�ciency. We quantify the ine�ciency of the mechanism with respect to
d and show that the mechanism with lower d (hence more manipulable) is also more e�cient.

We focus on the parallel mechanism for three reasons. First, every mechanism in the parallel
mechanism family is comparable in terms of manipulability, and the ranking is neatly captured
in terms of the parameter d . Lower d means more manipulability. E�ciency guarantees for the
parallel mechanism that are stronger for lower d can then be interpreted that higher manipulability
and higher e�ciency go hand in hand (with lower d). Since the comparison of manipulability is
qualitative,3 we cannot illustrate the ine�ciency-manipulability tradeo� for any pair of mech-
anisms because they are generally not comparable. �e choice of parallel mechanism allows
us to sidestep this issue. Second, the parallel mechanism elegantly interpolates between two
well-known and widely used mechanisms, Deferred Acceptance (DA) mechanism and Boston
(Immediate Acceptance) Mechanism by combining the deferred acceptance and the immediate
acceptance features. �e analysis of the parallel mechanism therefore sheds light on the e�ects
of deferred versus immediate acceptance features, which are central to market and mechanism
design problems in other contexts. �ird, the parallel mechanism itself is used in practical se�ings,
most notably in university admissions in China. Despite its common use in practice, only Chen
and Kesten (2017) has analyzed this mechanism. Our work can be viewed as a theoretical and
empirical welfare analysis of this understudied mechanism in its own right.

Since all mechanisms in the parallel mechanism family except DA are not strategyproof,
students can misreport their preferences to the mechanism. We are interested in evaluating student
welfare assuming that students play a Nash equilibrium of the induced preference revelation game.
�is is in contrast with some previous works in economics that analyze the resulting matching
assuming truthful play even in non-strategyproof mechanisms.4 Empirical evidence suggests that

1Note that it is not true in general that more manipulability corresponds to more e�ciency. For example, our
results do not imply that the student-proposing DA mechanism is more e�cient than the school-proposing DA, and
we could construct an arbitrarily bad but manipulable mechanism that have poor e�ciency properties. However, we
believe that the tradeo� holds for reasonable “averages” of Boston and DA that are used in practice. For example, an
interested reader can check that the proof of the theoretical guarantees in Section 3 still holds if the school assignment
a�er the �rst round (of d schools) is arbitrary. So the exact form of the parallel mechanism is not that important. We
commit to a speci�c form of the parallel mechanism described in Subsection 2.7.3 for expositional simplicity.

2If the number of schools is not known, DA corresponds to d = ∞. Chen and Kesten (2017) called this parameter
“permanency-execution period” and denoted it by e , but we changed it to d to avoid confusion with the constant
e ≈ 2.718.

3We formally discuss how we compare manipulability across mechanisms in subsection 2.8.
4For example, Chen and Kesten (2017) compares stability of matching in the parallel mechanism relative to

reported preferences, not true preferences.
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students do behave strategically and misreport their preferences in non-strategyproof mechanisms
(Abdulkadiroğlu and Sönmez, 2003; He, 2017; Calsamigliay et al., 2017), so analyzing welfare at
Nash equilibrium is more justi�ed than analyzing welfare assuming truthful reports.

�e following argument shows the intuition behind our ine�ciency-manipulability tradeo�
result. DA does not have good welfare properties when school priorities are weak because the
best each student can do is to truthfully report ordinal preferences and the mechanism has
no way to respond to intensities of underlying cardinal preferences. Strategyproofness of DA
therefore directly contributes to its ine�ciency. When money cannot be used to calibrate students’
valuations, observing how students make tradeo�s between choices is an alternative. For example,
if a student is willing to give up a high probability opportunity of ge�ing school A for a low
probability opportunity of ge�ing school B, we can infer that this student values school B a lot
more than school A, and vice versa. When students misreport their preferences, they compare
various possible choices of rankings under the random draws of school priorities. �e result of
this manipulation transmits some cardinal information to the mechanism in equilibrium even
when students only report ordinal rankings. �e more manipulable a mechanism, the more
opportunities there are of transmi�ing cardinal preference information in this way. In contrast,
under a strategyproof mechanism such as DA, the mechanism has no way of knowing and
responding to such cardinal information. In this example, a student will only report that she
prefers B over A, but the mechanism does not know how much.

Our preferred notion of e�ciency is approximate Pareto e�ciency, proposed by Immorlica,
Lucier, Weyl and Mollner (Immorlica et al., 2017). A mechanism is γ -approximately e�cient
(γ ≥ 1) if for any allocation of the mechanism, there is no alternative allocation such that every
student is at least γ times be�er o�. �is notion of e�ciency is appropriate in our se�ing because
(1) in the spirit of nontransferable utility se�ing, it does not compare utilities across students,
and (2) it is “fair” in a Rawlsian veil-of-ignorance sense in that an improvement only counts if it
helps everyone including the least fortunate members of society. Note that even though student
preferences are assumed to be �xed and known, so the students play a complete information
game, weak priorities mean that student assignment is random because it depends on the random
draws of school priorities. �e relevant welfare metric is not the ex post welfare with respect to
strict priorities, as implicitly assumed in earlier work, but ex ante welfare, averaging over random
draws. Henceforth, whenever we talk about student welfare, we always mean ex ante welfare in
this sense. For more discussion about this notion of e�ciency, see subsection 2.5.

We assume that schools have weak priorities. �is crucial assumption drives our results, so
we discuss it here. We assume that students have explicit cardinal preferences over schools and
are strategic, while schools have weak priorities and are non-strategic. �is re�ects the reality of
school assignment systems in most places, where school priorities are determined by regulations
and are known to all. It also implicitly prioritizes student welfare over school welfare, because
weak priorities mean schools “do not care as much” about which students they accept. Our
approximate Pareto e�ciency welfare metric re�ects this: it only concerns about each student’s
welfare and school welfare is not even de�ned in our model. In our theoretical results, we assume
that schools have no priorities. �is might seem like an overly restrictive assumption, but it is
theoretically reasonable considering our approximate Pareto e�ciency welfare metric only cares
about student welfare, so schools should not have intrinsic priorities or else school welfare needs
to be accounted for as well. �is reasoning underlies a technical reason for assuming no priorities:
because we have to. Approximate Pareto e�ciency does not hold in general with weak priorities.
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More detailed discussions can be found in subsection 2.6.
In the theoretical results section, we prove that when students are a continuum and schools

have no priorities, the d-parallel mechanism is (d + 1)-approximately Pareto e�cient. We also
show an example that the factor has to be at least d/2, so linear dependence on d is necessary.
When students are discrete, an analogous proof gives a slightly weaker 2d + 1 bound. �e main
idea of the proof is to formalize how students trade o� a probabilistic claim on one school versus
another as outlined in the introduction.

In the simulations section, we give an algorithm to compute the Nash equilibrium of the
parallel mechanism given student preferences and school priorities. We also show how to compute
the Pareto welfare loss of a given equilibrium. We �nd that e�ciency loss increases with d .

�e rest of the paper proceeds as follows. �e next subsection discusses related work. Section
2 describes our model. Section 3 presents theoretical results. Section 4 presents simulation results.
Section 5 concludes.

1.1 Related Work
A�er Abdulkadiroğlu and Sönmez (2003) formulated school choice as a mechanism design problem,
most works analyzed variants of Boston mechanism and DA under complete information and
strict priorities. Abdulkadiroğlu et al. (2009); Kesten and Ünver (2010); Kesten and Kurino (2017)
investigated relationships between e�ciency and strategyproofness. Ergin and Sönmez (2006);
Kojima (2008) analyzed structural properties of the Nash equilibria of Boston mechanism and
argued that DA has be�er welfare than Boston mechanism. Miralles (2009); Erdil and Ergin (2008);
Abdulkadiroğlu et al. (2011, 2015); Kesten and Ünver (2015) showed that the previous conclusion
depends critically on strict priorities assumption which is o�en violated; under weak priorities,
DA incurs substantial cost in student welfare. Harless (2014) proposed a slight variant of the
Boston mechanism to improve its incentives property, while Abdulkadiroğlu et al. (2015) proposed
a slight variant of DA to improve its e�ciency. Both mechanisms do not generate a family of
interpolating mechanisms, so they are not suitable for our exercise.

We focus primarily on welfare only on one side of the market (student welfare), and in the
theoretical results assume that schools have no priorities. �ese are standard implicit assumptions
in the substantial literature on one-sided matching or object allocation without money (Bhalgat
et al., 2011; Filos-Ratsikas et al., 2014; Adamczyk et al., 2014; Christodoulou et al., 2016; Aziz et al.,
2016). Similar to present work, Christodoulou et al. (2016) studied the equilibrium behavior of
non-truthful mechanisms, but with respect to the utilitarian welfare objective. Other standard
mechanisms for object allocation are the top trading cycles (TTC) algorithm (proposed by Shapley
and Scarf (1974) and extended to school choice se�ings by Abdulkadiroğlu and Sönmez (2003);
Pycia and Ünver (2017)), random serial dictatorship (RSD), and probabilistic serial algorithm
(proposed by Bogomolnaia and Moulin (2001) and shown to be equivalent to DA and RSD in the
continuum model with no priorities by Che and Kojima (2010)).

We compare manipulability across mechanisms using the notion from Pathak and Sönmez
(2013). Mennle and Seuken (2018) proposed another relaxation of strategyproofness, where a
mechanism is partially strategyproof if truthful reporting is a dominant strategy for agents whose
preference intensities di�er su�ciently between any two objects. �is de�nition is less appropriate
in our se�ing because we want our welfare guarantee to hold for every student preference pro�le.

Even though students have cardinal preferences, we focus on ordinal mechanisms that elicit
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only ordinal preferences from students. In contrast, cardinal mechanisms elicit cardinal prefer-
ences. �e most well-known such mechanism is the pseudo-market mechanism of Hylland and
Zeckhauser (1979), which was extended to se�ings with priorities by He et al. (2018). However, in
se�ings without money, eliciting cardinal preferences is o�en di�cult, impractical, and not robust
(Carroll, 2018; Huesmann and Wambach, 2016; Ehlers et al., 2016), so this work focuses on ordinal
mechanisms.

Mennle and Seuken (2017) also studied the tradeo� between strategyproofness and e�ciency
in assignment problems. Unlike our work, they used ordinal dominance under truthful reports to
capture e�ciency. �ey interpolated between two mechanisms by a convex combination, viewing
each mechanism as a lo�ery; they called this a hybrid mechanism. Analyzing hybrid mechanisms
in our framework (approximate Pareto e�ciency under Nash equilibrium play) is an interesting
research question, but is beyond the scope of this paper.

2 Model

2.1 Students and Schools
�ere is a (�nite or in�nite) set of students, denoted by S, and a �nite set of schools, denoted by
C = {1, 2, . . . ,n}. �ere are n schools. For each school j ∈ C, let cj ∈ N be the capacity of j (the
number of seats at school j).

Each student i ∈ S has a type θ that speci�es her valuevij for a single seat at school j . Students
are unit-demand, that is, student i’s value for a subset C ⊆ C is maxj∈C vij . We assume that all
values are nonnegative: vij ∈ [0,∞). Write Θ = [0,∞)n for the space of types. Students are strategic
and can misreport their preferences. Schools are non-strategic and the way school priorities are
formed is common knowledge. �roughout this work, we assume that priorities are weak, and if
the matching mechanism demands strict priorities, ties are broken randomly within tiers.

When all students are di�erent, every student has her own type. �e notion of types is most
useful in the continuum model when a mass of students is identical, and only the assignment
probability of that type ma�ers.

While we use the language of students and schools, our se�ing applies more broadly to the
problem of allocating indivisible heterogeneous goods without money. Example domains include
allocating a�ordable apartments to tenants and allocating kidneys to patients. Apartments have
“priorities” over tenants as determined by law, and kidneys have “priorities” over patients as
determined by medical compatibility. In these domains, social good is the main objective, and the
use of money is repugnant.

2.2 Lottery
A randomized assignment, or lo�ery, is a randomized mapping σ : S → ∆(C) from students to
schools, where ∆(C) denotes probability distributions over the elements of C. Given a lo�ery σ ,
we denote by σ i

j the probability that student i is matched to school j. A lo�ery σ is feasible if it
respects capacities, i.e. for each school j ,

∑
i∈S σ

i
j ≤ cj . �e value enjoyed by student i in a feasible

lo�ery σ , wri�en vi(σ ), is her expected value from the assigned school: vi(σ ) =
∑

j∈C v
i
jσ

i
j .
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2.3 Continuum Model
We now describe a continuum of students, which can be viewed as the large market limit in the
sense of Azevedo and Leshno (2016).

In the continuum model, the capacity of school j, cj , can take any non-negative real value
(not just integers). �e set of students S is described by a measure ρ over the set of types Θ. We
assume that ρ is atomless and Lebesgue integrable.

A lo�ery can now be described as a mapping from types to distributions over goods σ : Θ→
∆(C). We write σθj for the probability that a student of type θ is matched to school j, and we
sometime abuse notation and write σ i

j to mean σθj where θ is the type of student i . A lo�ery is
feasible if it respects capacities with respect to the measure ρ over types:

∫
θ∈Θ

σθj dρ ≤ cj for all
j ∈ C.

2.4 Nash Equilibrium
We assume that agents play a complete-information Nash Equilibrium. �e game is a complete
information game because we assume that every student’s cardinal preferences for schools are
�xed and known to everyone. A Nash equilibrium is a set of reported preferences from all students
such that each student’s report is optimal given all the other students’ reports. More formally, let
xi be student i’s report, x be all students’ reports, and x−i be the reports of all students except i . Let
vi(·) be student i’s expected payo� given the reported preferences. �en, x is a Nash equilibrium
if and only if for all students i , vi(xi , x−i) ≥ vi(x̂i , x−i) for any report x̂i .

2.5 Approximate Pareto E�ciency
We use following notion of approximate Pareto e�ciency to quantify the ine�ciency of di�er-
ent mechanisms. �is de�nition is central to both our theoretical analysis (section 3) and our
simulations (section 4).

De�nition 1 (Immorlica et al. (2017)). For γ ≥ 1, a feasible lo�ery σ is γ -approximately Pareto
e�cient if there is no other feasible lo�ery σ ′ such that vi(σ ′) ≥ γvi(σ ) for all students i ∈ C, with
strict inequality for a positive measure of students.

�ere is a long tradition in mechanism design with money to use utilitarian welfare to represent
social welfare. However, utilitarian welfare entails comparing utilities across people, which can be
inappropriate in se�ings where there is no money as numeraire such as ours. Welfare comparisons
should be made on each student separately, and this is necessarily a multi-objective problem.
Immorlica et al. (2017) proposed the above de�nition to capture comparisons within all students
in a single number in a maximin sense. Given that many matching markets are motivated by
social good applications, this maximin notion is fair in that an improvement must make everyone
be�er o�; an alternative lo�ery that makes only some students much be�er o� does not count as
an improvement.5 Moreover, we can check that γ -approximate e�ciency in utilitarian welfare
implies γ -Pareto e�ciency, but no worst-case utilitarian e�ciency guarantee is possible because

5Maximin is not the only notion of fairness in money-free se�ings. Another notion that has received a�ention in
the algorithmic game theory community is Nash Social Welfare (the product of utilities).

6



we can always scale any student�s utility up arbitrarily and make that student the only important
student. Our simulation similar to that of Section 4 shows that utilitarian e�ciency loss also
generally decreases with d .

�e notion of approximate Pareto e�ciency extends the notion of Pareto e�ciency, and reduces
to it when γ = 1. Our approximation result holds for any equilibrium of the parallel mechanism.
In this sense it is a price of anarchy result, in which our approximation factor holds in the worst
case over student preference pro�les and equilibrium selection.

2.6 Weak Priorities and No Priorities
As discussed in the introduction, we assume that schools have weak priorities, and this crucial
assumption drives the ine�ciency-manipulability tradeo� result. If school priorities are strict,
then student-proposing DA is strategyproof for students and produces a student-optimal stable
matching, so it performs well both on e�ciency and incentives.

School priorities are typically very weak. For example, Boston Public Schools (BPS) prioritize
students based only on a small number of coarse features such as sibling a�endance and “walk
zone” (favoring students whose residences are close to the school), and many students are in the
same priority class (Abdulkadiroğlu et al., 2011). Most other public school systems, including New
York City (Abdulkadiroğlu et al., 2009), Amsterdam, Chile (Ashlagi and Nikzad, 2017), Chicago
and England (Pathak and Sönmez, 2013), also have weak priorities, and ties are broken randomly
by lo�ery. Much of the prior theory in matching assume that both parties have strict preferences,
mainly because ties are viewed as a knife-edge phenomenon in economic applications like labor
markets. In contrast, weak priorities in school choice are an institutional reality, with important
incentives and welfare consequences.

In our theoretical results, we assume that schools have no priorities; that is, schools break ties
randomly among students and do not prefer any student in particular. �e no priorities assumption
is more than just for theoretical tractability; it links our work to the substantial literature on
one-sided matching (object assignment) and it is the most theoretically coherent choice. If schools
have priorities, even weak ones, then the welfare metric should capture both student welfare and
school welfare and how to trade o� one against another. But the approximate Pareto e�ciency
welfare metric only cares about student welfare, so it makes sense to assume that schools do not
prefer one student over another so we do not have to worry about school welfare. If schools
have priorities, the tradeo� between student welfare and school welfare necessarily involves
interpersonal welfare comparison and is context-speci�c, so we do not propose such a metric in
our general model.

�e discussion about student versus school welfare is not merely theoretical. Approximate
Pareto e�ciency fails to hold under weak priorities precisely for that reason, so the no priorities
assumption cannot be relaxed in the worst case. Consider the following example. Let ϵ be a small
number. �ere is a continuum of students indexed by [0, 1] and there are 2 schools, school 1 and
school 2, each with capacity 1/2. Students in [0, 1/2] have value 1 for school 1, and ϵ for school
2. Students in [1/2, 1] have value ϵ for school 1 and 1 for school 2. School 1 has two priority
classes, [1/2, 1] before [0, 1/2] and considers the second class unacceptable. School 1 has two
priority classes, [1/2, 1] before [0, 1/2] and considers the second class unacceptable. School 2 has
two priority classes, [0, 1/2] before [1/2, 1] and considers the second class unacceptable. �en
under any parallel mechanism (or really any matching that respects school priorities), Students in
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[0, 1/2] get school 2 with value ϵ and students in [1/2, 1] get school 1 with value ϵ , but a 1/ϵ-Pareto
improvement is possible by assigning students in [0, 1/2] to school 1 and students in [1/2, 1] to
school 2. (�e Pareto improvement in our de�nition is not required to respect school priorities,
only capacities.) Since 1/ϵ can be arbitrarily large, there does not exists γ such that the mechanism
is γ -approximately Pareto e�cient even when the priorities are intuitively as weak as it can be
– two equally-sized big priority classes.6 Intuitively, in our example all the welfare gains go to
schools, but school welfare does not count in our welfare metric, so we can improve student
welfare by a very large factor transferring welfare from schools to students.

Even though it is too much to expect that the ine�ciency-manipulability tradeo� holds always,
as argued in the previous paragraph, it is still possible that the tradeo� holds for “typical” student
preference pro�les and “typical” weak school priorities. Our simulations in Section 4 suggest that
this is indeed the case.

2.7 Mechanisms
2.7.1 Boston (Immediate Acceptance) Mechanism

In the Boston mechanism, each student submits a strict preference ranking over schools, and
schools have strict priorities over students. Initially all students are unassigned.

Round t ≥ 1: Consider the remaining unassigned students. For each school j with qtj remaining
available seats, consider only those students who have listed it as their t-th choice. �ose qtj
students among them with the highest j-priority are assigned to school j.

2.7.2 Deferred Acceptance (DA) Mechanism

In student-proposing Deferred Acceptance mechanism, each student submits a strict preference
ranking over schools, and schools have strict priorities over students. Initially all students are
unassigned.

Round 1: Each student applies to the top school on her preference list. For each school j, up to
cj applicants who have the highest j-priority are tentatively assigned to school j. �e remaining
applicants are rejected.

Round t ≥ 2: Each student rejected from a school at step t − 1 applies to the top school on
her preference list that has yet to reject her. For each school j, up to cj students who have the
highest j-priority among the new applicants and those tentatively on hold from an earlier step,
are tentatively assigned to school j. �e remaining applicants are rejected.

6While Abdulkadiroğlu et al. (2011) showed that Boston mechanism dominates DA in ex ante welfare with no
priorities, Troyan (2012) showed that the domination result failed when schools have weak priorities. Both papers
are not technically related to this work, but they suggest a similar conceptual idea that weak priorities can destroy
worst-case welfare comparisons that exist with no priorities.
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2.7.3 Parallel Mechanism

Now we discuss in detail the parallel mechanism in Chen and Kesten (2017), the central mechanism
of our paper. Intuitively, the parallel mechanism does immediate acceptance in blocks of d schools,
and deferred acceptance within each block. �e block in round t consists of school lists of (td + 1)
to (td + d) choice of each unassigned student. d = 1 is Boston mechanism, and d = n is DA.
Formally, the d-parallel mechanism, denoted Pd , proceeds as follows.

Initially, all students are unassigned. In round t ≥ 0:

(1) Each unassigned student from the previous round applies to her (td+1)-st choice school. Each
school j considers its applicants. �ose students with the highest j-priority are tentatively
assigned to school j up to its capacity. �e rest of the applicants are rejected.

(2) Each rejected student, who is yet to apply to her (td + d)-choice school, applies to her next
choice. If a student has been rejected from all her �rst (td + d) choices, then she remains
unassigned in this round and does not make any applications until the next round. Each
school j considers its applicants. �ose students with the highest j-priority are tentatively
assigned to school j up to its capacity. �e rest of the applicants are rejected.

(3) �e round terminates whenever each student is either assigned to a school or is unassigned
in this round, i.e., she has been rejected by all her �rst (td + d) choice schools. At this point,
all tentative assignments become �nal and the remaining capacity of each school is reduced
by the number of students permanently assigned to it.

Apart from its theoretical signi�cance, the parallel mechanism is also used in the centralized
Chinese college admissions. For example, Shanghai uses d = 2; Jiangsu uses d = 3; Hainan uses
d = 6; Tibet uses d = 10 (Chen and Kesten, 2017).

2.8 Comparing Manipulability Across Mechanisms
Pathak and Sönmez (2013) gave a de�nition that allows us to compare manipulability across
mechanisms. Intuitively, a mechanismψ is at least as manipulable as another mechanism φ if for
any preference pro�le, if students are not truthful under φ, then students are also not truthful
underψ .

De�nition 2 (Pathak and Sönmez (2013)). A pro�le (set of reported preferences) t is vulnerable
under mechanism φ if there exists a student i that strictly prefers to report t ′i , ti over ti if all other
players’ reports follow the pro�le t−i .

A mechanismψ is at least as manipulable as mechanism φ if any pro�le that is vulnerable under
φ is also vulnerable underψ .

A mechanismψ is more manipulable than mechanism φ ifψ is at least as manipulable as φ, and
there is a set of students, allocations, and a pro�le t where t is vulnerable underψ but not under φ.

In a sense, this is the only de�nition of comparing manipulability that does not require us
to specify which preference pro�le “counts more” in the de�nition than another. If we want to
compare two mechanisms ψ and φ that are not comparable under De�nition 2, then there is a
pro�le p that is vulnerable under ψ but not φ, and there is a pro�le p′ that is vulnerable under
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φ but notψ . So an alternative de�nition needs to judge whether p counts more than p′ when it
comes to comparing sets of pro�les for manipulability comparison. Since we take preferences as
given and �xed in our model, we do not think that type of judgement is justi�ed, and De�nition 2
is su�cient for our purposes.

�is de�nition is qualitative; some pairs of mechanisms are not comparable, and we cannot say
that a mechanism is “a lot more” manipulable than another. Nevertheless, Chen and Kesten (2017)
shows that within the parallel mechanism family, every pair of mechanisms can be compared:
those with lower d (that are closer to Boston mechanism and further away from DA) are more
manipulable.

Proposition 1 (Chen and Kesten (2017)). If d′ > d , then Pd is more manipulable than Pd ′ .

In sections 3 and 4, we will show that the mechanisms with lower d are also more e�cient in
ex ante welfare, establishing the key claim that more manipulable mechanisms are more e�cient
within this family.

3 �eoretical Results
�roughout this section, we assume that schools have no priorities. �is assumption is necessary;
approximate e�ciency does not hold for all preference pro�les when priorities are merely weak.
For a detailed discussion of this assumption, see subsection 2.6.

�eorem 1 is our main theoretical result, establishing approximate e�ciency guarantee for the
parallel mechanism that degrades linearly with d . �eorem 2 shows that this linear dependence is
optimal.

�eorem 1. Assume that schools have no priorities. Under any student preference pro�le and Nash
equilibrium play, if students are a continuum, thed-parallel mechanism is (d+1)-approximately Pareto
e�cient; if there are a �nite number of students, the d-parallel mechanism is (2d + 1)-approximately
Pareto e�cient.

Proof. We �rst consider the continuum case and prove the (d + 1) bound. Later in the proof, we
will see that we can adapt the proof to get a (2d + 1) bound for the discrete case.

Consider an equilibrium of the mechanism, and write xij1...jd for the indicator variable that
student i lists schools j1, . . . , jd in that order as her �rst d schools. We focus on this set of indicator
variables because, as it turns out, we only need to focus on the �rst round. �e e�ciency guarantee
holds if the allocation a�er the �rst round is arbitrary. Let σ be the lo�ery generated by the
mechanism. We use the notation σ i

j to be the probability that student i gets school j . Let A ⊆ C be
the set of schools that are fully allocated by the mechanism.

We will �rst show that if A = C then σ is d-approximately Pareto e�cient. Note that in the
�rst round, the algorithm proceeds like deferred acceptance, and students do not lose priorities on
schools as long as they list those schools within the �rst d schools. �e continuum of students
allows us to write qj for the probability that if a student proposes to school j, she will get in. We
can view qj as a “unit” of school j that any student can get by applying.

Note that if a student lists schools j1, . . . , jd in that order, then the probability of this student
ge�ing into school jr , 1 ≤ r ≤ d , is (1 − qj1) · · · (1 − qjr−1)qjr because she must propose to schools
j1, . . . , jr−1, is rejected from all of them, proposes to school jr and is accepted.
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First, we prove that
∑

j σ
i
j /qj ≤ d . It follows from the following calculation.

σ i
j =

d∑
r=1

∑
a1,...,ad−1

xia1...ar−1jar ...ad−1
qj

r−1∏
k=1
(1 − qak )

≤

d∑
r=1

∑
a1,...,ad−1

xia1...ar−1jar ...ad−1
qj .

�erefore, ∑
j

σ i
j

qj
≤

d∑
r=1

∑
a1,...,ad−1,j

xia1...ar−1jar ...ad−1
≤

d∑
r=1

1 = d

We claim that σ is d-approximately Pareto e�cient. Suppose for the contradiction that there
exists a lo�ery µ such that vi(µ) ≥ dvi(σ ) and the inequality is strict for a positive measure of
students. De�ne yi =

∑
j µ

i
j/qj be the total number of units obtained by student i in µ. Note that

if yi < d , then µi is dominated by a convex combination of outcomes that student i could have
obtained in di�erent strategies. �e equilibrium condition therefore implies that vi(µ) < dvi(σ ),
but this contradicts d-approximate Pareto dominance. We conclude that yi ≥ d for all i , and yi > d
for some positive measure of students. However,∫

i
yidρ =

∫
i

(∑
j

µij

qj

)
dρ =

∑
j

1
qj

∫
i
µijdρ ≤

∑
j

1
qj

∫
i
σ i
j dρ =

∫
i

(∑
j

σ i
j

qj

)
dρ ≤

∫
i
ddρ

where the �rst inequality comes from the fact that each school is fully allocated under σ and the
second inequality is a previously proved claim. But this contradicts the fact that yi ≥ d for all i ,
andyi > d for some positive measure of students. We therefore conclude that σ is d-approximately
Pareto e�cient.

We now consider the case A , C. Let µ be any lo�ery and assume vi(µ) ≥ (d + 1)vi(σ ) for all
i and that this inequality is strict for a positive measure of students. Note that

vi(µ) =
∑
j∈A

µijv
i
j +

∑
j<A

µijv
i
j

For the second summation term, note that∑
j<A

µijv
i
j ≤ max

j<A
vij ≤ v

i(σ )

where the �rst inequality comes from vij ≤ maxj<Avij and
∑

j µ
i
j ≤ 1 and the second inequality

comes from the equilibrium condition since student i can select school arg maxj<Avij and get
accepted with certainty. �erefore,

dvi(σ ) ≤
∑
j∈A

µijv
i
j
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Write vi∗ for the value obtained by student i conditional on being rejected from her top d choices
and thus unassigned in the �rst round. If student i lists j1, . . . , jd , then

vi(σ ) =
d∑
r=1

σ i
jr
vijr +

(
1 −

d∑
r=1

σ i
jr

)
vi∗ =

d∑
r=1

σ i
jr
(vijr −v

i
∗) +v

i
∗

�e payo�s of a student who listed schools in A (among top d choices) are therefore a linear
shi� of her payo� in a modi�ed economy where the set of schools is A and the value of student
i for school j is vij − vi∗, which is necessarily non-negative. �e allocation continues to be an
equilibrium in this modi�ed game, and by de�nition ofA, all schools are fully allocated. �e earlier
analysis therefore implies that σ is d-approximately Pareto e�cient in this modi�ed market. On
the other hand,∑

j∈A

µij(v
i
j −v

i
∗) ≥

(∑
j∈A

µijv
i
j

)
−vi∗ ≥ dvi(σ ) −vi∗ ≥ d

∑
j∈A

σ i
j

(
vij −v

i
∗

)
for all i that lists schools in A, and the inequality must be strict for a positive measure of students,
which is a contradiction.

Consider now the case of a �nite number of students. �e proof proceeds similarly to the
continuum case. We �rst claim that if A = C, that is, all schools are fully allocated, then σ
is 2d-approximately Pareto e�cient. If a student lists schools j1, . . . , jd in that order, then the
probability of this student ge�ing into school jr , 1 ≤ r ≤ d is still at most qjr , which is su�cient
to prove that

∑
j σ

i
j /qj ≤ d as in the continuum case. Now we de�ne yi =

∑
j µ

i
j/qj as in the

continuum case. We use continuity in the above proof to argue that any student i receives the full
qj unit of school j. In the discrete se�ing, student i can get at least half a unit of school j, qj/2, by
applying school j in the �rst round. �is is because we assume that school j is allocated, so at least
one student must have applied to school j in the �rst round. When student i deviates to apply to
school j in the �rst round as well, the number of students who apply to school j in the �rst round
at most doubles. We therefore derive the contradiction analogously if we assume that there is a
lo�ery µ such that vi(µ) ≥ 2dvi(σ ) and the inequality is strict for some student i . �e argument
that extends the 2d-approximate Pareto e�ciency in the case A = C to (2d + 1)-approximate
Pareto e�ciency in the case A , C is completely analogous. �

�eorem 2. �ere exists an instance of the d-parallel mechanism that is not d/2-approximately
Pareto e�cient.

Proof. We exhibit an explicit example, adapted from Immorlica et al. (2017). �ere are d schools,
and school j has 2j−1 seats, 1 ≤ j ≤ d . �ere are d types of students, and type i has value
vij = 1 + (n − j + 1)ϵ for schools 1 ≤ j ≤ i and vij = (n − j + 1)ϵ for j > i , where ϵ is negligibly
small. Every student has value zero for being unassigned. In other words, student preferences
are completely aligned (lower-numbered schools are preferred) and type i has value around 1 for
schools number i and below, and 0 otherwise. Schools have no priorities. �e parallel mechanism
reduces to DA in this case because the number of schools is equal to d . Since schools have no
priorities and student preferences are aligned, DA reduces to Random Serial Dictatorship. Each
student of type i gets value 1 if she gets some schools j ≤ i which has

∑i
j=1 2j−1 = 2i − 1 total

number of seats, and there are d2d students, each of whom is equally likely to get it. so each
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student of type i gets an ex ante value (2i − 1)/d2d from the mechanism. An alternative allocation
that randomly assigns school i to students of type i gives type i an ex ante value of 2i−1/2d , which
is a factor of bigger than d/2 improvement.

�

Recall the intuition that immediate acceptance increases e�ciency and deferred acceptance
decreases it. It is no surprise that the bad example in �eorem 2 maximizes the deferred acceptance
feature by se�ing n = d and reducing it to DA.

We note here that the proofs of both theorems depend only on the �rst round of the parallel
mechanism. �erefore, we still get the ine�ciency bound betweend/2 andd+1 for any mechanism
that permanently assigns students to schools using deferred acceptance on the �rst d schools in
the preference list of each student and assigns remaining students arbitrarily therea�er.

Let γd be the largest number such that the d-parallel mechanism is γd−approximately Pareto
e�cient with a continuum of students and no priorities. �eorem 1 and 2 together show that
d/2 ≤ γd ≤ d + 1, so the ine�ciency factor γd grows linearly in d . �e following questions are
open. First, can we calculate γd exactly, or give tighter bounds for γd? Second, is γd increasing in
d?

4 Simulations
In this section, we use numerical simulations to illustrate the performance of the parallel mecha-
nism with di�erent parameters across a selection of environments. �e main takeaway is that
e�ciency degrades with d in a wide range of environments.

4.1 Settings
Reported simulation results in this section are from the se�ing used by Abdulkadiroğlu et al.
(2015). �ere are 5 schools, each with capacity of 20 seats, and 100 students. �e welfare metric of
interest is approximate Pareto e�ciency. We consider two cases, no priorities and weak priorities,
and the results are reported in Table 1 and 2, respectively.

We construct students’ preferences for schools as follows. First, we draw the unnormalized
preference values. �e unnormalized value of student i for school j is given by ṽij = αuj + (1−α)uij ,
where α ∈ [0, 1] is a �xed parameter of the given se�ing. uj is a common value component, and
uij is a private value component. For each i and j, uj and uij are drawn independently from the
uniform distribution on [0, 1]. Second, we normalize the preference values: the normalized value
of student i for school j is given by

vij =
ṽij −minj ′ ṽ

i
j ′

maxj ′ ṽij ′ −minj ′ ṽ
i
j ′
.

Under this normalization, each student has value zero and one for the least preferred and most
preferred schools, respectively. �is normalization is sometimes referred to as “unit-range” in the
literature (Filos-Ratsikas et al., 2014; Adamczyk et al., 2014). Subsequent results are invariant to
a�ne transformations of the unnormalized preference values.

13



�e parameter α determines the strength of the common value relative to the private value
component in a given se�ing. �e case α = 1 is the pure common value case, and every student
shares the same cardinal preferences. �e case α = 0 is the pure private value case, and students
have independent preferences.

For each α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, we construct 100 preference draws as above. For each
such preference draw, we compute an equilibrium of the parallel mechanism with parameter
d ∈ {1, 2, 3, 4, 5} using modi�ed best-response dynamics outlined in the next subsection. d = 1
corresponds to Boston mechanism, and d = 5 corresponds to DA.

Lastly, we construct school priorities. In Table 1 no priorities, every school has one priority
class and ties are broken randomly within each class. In Table 2 weak priorities, each school has 2
priority classes. Schools 1, 2, 3 rank students {1, 2, . . . , 50} before {51, 52, . . . , 100}, and schools
4, 5 rank students {51, 52, . . . , 100} before {1, 2, . . . , 50}.7

4.2 Equilibrium Computation
Each set of preference draw and mechanism (i.e. each d) induces a complete information game,
and the action space of each student consists of all 5! = 120 permutations of the 5 schools. We
compute a Nash equilibrium using the process described below.

(1) We initialize each student’s play to her truthful ordinal report. At any time step, keep track
of the current play x.

(2) Pick a student i uniformly at random. Each student has 120 possible reports; we estimate
student i’s ex ante utility under all such reports. For each possible report x̃i of i , estimate
the ex ante utility of student i �xing everyone else’s report at the current play. We estimate
the ex ante utility by drawing 2000 random priorities for the schools. For each set of priority
draw, we feed the school priorities and students’ reported preferences (x̃i , x−i) into the
mechanism. �e mechanism gives an allocation, and we can compute each student’s utility
from that allocation. We then take the average over all priority draws to get an estimate
and the standard error of each student’s ex ante utility. We change the report of student i to
the report that has the highest estimated ex ante utility, that improves the ex ante utility of
the original report by at least 0.01 with non-overlapping con�dence intervals.

(3) If the last 500 previous iterations of step (2) have an average utility improvement of less
than 0.01, return x and terminate. Else, repeat step (2).

For DA, we can stop at step (1) and estimate the ex ante utilities directly.

4.3 Pareto E�ciency Welfare Loss
For each set of preference draw and d , subsection 4.2 gives us an equilibrium x. We ask the
following question. What is the largest γ ≥ 1 such that there exists a randomized allocation y
such that every student is at least γ times be�er o� under y than under x.

7�ere are many ways to specify weak priorities and this speci�cation is not special; it is meant to be an illustration
that the welfare loss generally increases with d even with weak priorities.
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d = 1 d = 2 d = 3 d = 4 d = 5
α = 0.1 0.0 0.0 0.0 0.0 0.0
α = 0.3 0.0 0.0 0.0 0.0 0.0
α = 0.5 0.1 0.2 0.4 2.0 2.2
α = 0.7 2.5 4.7 7.7 8.7 8.8
α = 0.9 3.2 4.8 5.5 6.2 6.3

Table 1: Pareto Welfare Loss (%), No Priorities

d = 1 d = 2 d = 3 d = 4 d = 5
α = 0.1 0.0 0.0 0.0 0.0 0.0
α = 0.3 0.0 0.0 0.0 0.0 0.2
α = 0.5 0.1 0.2 0.4 1.0 1.3
α = 0.7 2.3 4.7 6.9 8.1 10.0
α = 0.9 3.3 4.1 4.5 5.7 5.8

Table 2: Pareto Welfare Loss (%), Weak Priorities

We �rst describes how to implement a subroutine that, given γ , checks whether such a y
exists. �is subroutine can be implemented as a feasibility test of a linear program, which can
be e�ciently solved. �e variables of the linear program are yij , the probability that student i is
allocated school j under y. �e constraints are

0 ≤ yij ≤ 1 ∀i, j;
∑
j

yij ≤ 1 ∀i;
∑
i

yij ≤ 20 ∀j;
∑
j

yijv
i
j ≥ γ

∑
j

xijv
i
j ∀i

We can then use this subroutine to approximate the optimal γ with a modi�ed binary search.
We report (1 − 1/γ ) × 100 as the percent welfare loss. For each �xed (α ,d), we generate 100
preference draws based on α , and we can compute the optimal γ for each such draw. Averaging
over all preference draws gives an average Pareto welfare loss in percent for each (α ,d).

4.4 Discussion
Table 1 and 2 show Pareto welfare loss in percent with no and weak priorities respectively, for
each se�ing parameter α , across di�erent mechanisms d ∈ {1, 2, 3, 4, 5}. We can see that in each
se�ing, Pareto welfare loss goes up as d goes up from 1 to 5. �at is, as the mechanism shi�s closer
to DA than Boston mechanism, it becomes more ine�cient even as it becomes less manipulable.

While not the focus of this paper, we also note that α has a major impact on the e�ciency of
mechanisms across the range of d . When α is small (0.1 and 0.3 in our example), the allocation is
nearly Pareto e�cient. Intuitively, when α is small, student preferences are mostly uncorrelated.
A Pareto improvement must improve on all these mostly uncorrelated frontiers, which is hard.
In contrast, when α is large and preferences are mostly correlated, improvement in only one
dimension can make every student be�er o�.

We interpret the simulation result as the ine�ciency-manipulability tradeo� in typical se�ings,
that is, when student preferences arise in a natural and interpretable way. �is result, therefore,
complements the theoretical results that show the tradeo� in the worst-case se�ing, when prefer-
ences can be adversarially chosen to maximize the ine�ciency of a given mechanism. Note that
the behaviors of mechanisms in the typical case and in the worst case are di�erent phenomena
and one does not follow from the other. While we show that e�ciency loss increase with d for
both cases, the magnitudes are not comparable. For example, with d = 5, the lower bound d/2 and
the upper bound (d + 1) worst case guarantees correspond to Pareto loss of 60% and 83.3% when
our typical case shows the largest loss at 8.8%. Importantly, the gap between theoretical results
and simulations is not because the bound is not tight, but rather that worst-case instances are not
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“typical.”8

Our system – 100 students and 5 schools – is relatively small compared to most school choice
systems. We use this system for three reasons. First, this system is a benchmark used before
by previous papers that compute equilibria of non-strategyproof school choice mechanisms
(Abdulkadiroğlu et al., 2015; Immorlica et al., 2017). Our simulation results can therefore be
directly compared with theirs. Second, equilibrium computation is very computationally intensive.
For n schools, the strategy space of each student has size n!, one for each possible ordering of the
schools in her reported preference list. �e modi�ed best response dynamics also takes time that
grow with the dimension of the strategy space n!, which is super-exponential in n. �ese issues
make computing Nash equilbrium for even moderate values of n computationally di�cult. �ird,
we �nd in the theoretical section that bounds for a continuum of students are tighter than that for
discrete students. Even though those bounds are for worst-case instances, they suggest that larger
systems are “be�er-behaved,” so if the tradeo� holds for small systems, we might expect it to hold
in larger systems as well.

5 Conclusion
We show that the worst case ine�ciency guarantee of the d-parallel mechanism degrades linearly
with d : between d/2 and d + 1. �is result suggests that mechanisms that are closer to Boston
mechanism than DA (lower d , hence more manipulable) are also more e�cient in ex ante welfare.
We corroborate this insight in typical se�ings by simulations.

We can interpret our result as a recommendation that policy makers should consider whether
the parallel mechanism with intermediate d might be be�er than existing mechanisms at achieving
desired goals. Historically, most places that abandoned the Boston mechanism adopted DA in
place; such moves swapped one extreme end of the spectrum (most e�cient, most manipulable)
with the other extreme (least e�cient, least manipulable). Depending on context, a parallel
mechanism with intermediate d might improve e�ciency while still being “good enough” in terms
of incentives. While this paper shows general properties of the parallel mechanism, a decision
whether to implement one requires more detailed modeling such as Shi (2016) that takes into
account local institutional features and a be�er understanding of preferences of a�ected families
and schools. Furthermore, the ine�ciency-manipulability tradeo� identi�ed in this paper should
be considered as one factor among many in school choice design. Practical policy decisions depend
also on strategic simplicity, “fairness” broadly de�ned, e�ects on non-strategic students, accurate
data collection and policy analysis, and even how easy it is to describe the mechanism to di�erent
stakeholders and gain their support. Apart from possible policy relevance, our takeaway message
is twofold.

First, our work presents the �rst theoretical and empirical analysis of the e�ciency of the
parallel mechanism, despite its common use in practice. Even for the Boston mechanism, the
most well-known non-strategyproof mechanism in this family, existing works focus on structural
properties of Nash equilibria rather than quantifying ine�ciencies of equilibria. Our work can
thus be viewed as a contribution to this understudied area in its own right.

8�is issue is rather common in algorithm design. For exmaple, the simplex algorithm is very fast in practice but
has worst-case exponential time. Beyond worst-case analysis is interesting but much more challenging.
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Second, our work is the �rst to show that the amount of manipulability, and not just the
possibility of it, a�ects the e�ciency of the mechanism. �e parallel mechanism can then be
viewed more as a technical tool to interpolate between Boston mechanism and DA, an illustration
to show how e�ciency smoothly degrades from the Boston mechanism end of the family to the
DA end. �e parallel mechanism is only one possible choice. Nevertheless, there is no canonical
way to interpolate between mechanisms, and the parallel mechanism is a natural choice for two
reasons: (1) it does immediate acceptance in each round like Boston mechanism, but within each
round it does deferred acceptance, (2) every two parallel mechanisms can be compared in terms of
manipulability.

Our work suggests several directions for future research. �e most immediate questions are to
close the gap between the lower and the upper bound of the worst case bound, and to analyze the
e�ciency loss with real school choice data. Further a�eld, our work shows a connection between
manipulability and e�ciency via the parameter d and existing manipulability comparisons. A
natural connection that directly translates manipulability to e�ciency would be ideal. Moreover, if
we hope to use manipulability to improve e�ciency, students must actually know how to correctly
manipulate and reach some sort of equilibrium. Learning that might be possible in a repeated game,
but most students only have one chance to play. �e preferred mechanism should therefore be
“strategically simple” (perhaps in the sense of Börgers and Li (2018)) even if it is not strategyproof.
Further theory, empirics, and experiments are needed to make the manipulability idea practical.
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