


or ResNet [10]. Similarly, some “black-box” attacks involv-

ing simple image transformations [6, 11] appear to be much

more effective than “white-box” methods that require access

to the CNN and optimization based on backpropagation style

of algorithms.

In general however, it can be quite difficult to compare

the merits of different algorithms. This is due to two main

problems. First, most methods use perturbations that cannot

be easily compared. While many authors rely on the standard

of an image that is “perceptually indistinguishable from the

original” to define a valid attack, it is not clear what the

boundaries of “indistinguishable” are and no attempts have

been made to define this concept. Instead, the standard

is usually met by adoption of a very conservative attack

strategy, e.g. the use of an “infinitesimally small step along

some gradient direction”. It is frequently unclear if the use

of larger perturbations would enable the same algorithm to

produce more successful attacks. Second, most adversarial

works do not even attempt to compare performance with

previous approaches. This is unlike most other areas of

computer vision, where the ability to compare algorithms is

considered critical to evaluate progress.

Recently, some works have started to address the second

problem through a strategy that we denote as the “arms race”.

This exploits the fact that any attack procedure can be trans-

formed into a defense, by 1) augmenting the training set, e.g.

ImageNet, with examples produced by the procedure and

2) fine-tuning the network. While not guaranteeing full ro-

bustness against the attack [15, 26, 12], this defense strategy

renders most attacks much less effective. Under the “arms

race” paradigm, a new attack strategy is considered state

of the art if it fools a network that implements defenses to

previously known attacks [28]. The “arms race” captures

the fact that, for practical applications, the only significant

attacks are those for which no defenses are available. How-

ever, while knowing the attack procedure enables a defense,

not all attacks are equally easy to defend. An important

variable is the defense’s cost. For example, attacks that re-

quire more computation to defend against are more costly

than attacks than can be thwarted with little computation.

Similarly, attacks have different costs. For example, white

box attacks can be rendered impractical by the simple use of

a proprietary CNN. Overall, the most concerning attacks are

those easiest to execute and hardest to defend against.

In this work, we consider the design of such attacks. We

argue that the most successful attacks are those that leverage

the limitations of computer vision, namely those based on

perturbations that are easily produced by people but cannot

be replicated by computers. This exploits the large imbal-

ance between the cost of attack and defense in terms of the

number of required examples. While an attack requires a few

well chosen examples, its defense requires augmenting the

training set with an extensive number of examples. Hence,

while attacks can be generated manually, those that cannot

be defended with computer generated examples are imprac-

tical to defend against. We then consider a set of image

perturbations based on variation of object pose. This is an

operation that can be implemented by a child (simply by

rotating an object) but is very hard to defend against, due

to the well known difficulty of synthesizing objects under

different poses [21, 27]. We consider attacks using both

small and large perturbations, due to camera shake (CS) and

pose variations (PV). However, the study of such attacks

requires a definition of which perturbations are valid. After

all, extreme poses can confuse even humans. Unfortunately,

common definitions, such as “infinitesimal gradient steps” or

imperceptibility on side-by-side image comparisons, are not

suitable for large perturbations. We argue that these can only

be declared imperceptible given an attack context and seek

definitions of imperceptibility suited for the object recogni-

tion context. This suggests a distinction between impercepti-

ble perturbations (IPs), which survive image comparisons,

and semantically imperceptible perturbations (SIPs), which

are perceptible on image comparisons but have no impact on

human ability to recognize objects.

Overall, this work makes three contributions to the study

of adversarial attacks on CNNs. The first is a dataset of im-

ages of multiple object classes under camera shake and pose

variation. The object classes are a subset of ImageNet, to en-

able the attack of ImageNet trained CNNs, and each object is

imaged with extensive coverage of both small (camera shake)

and large (pose variation) view variability. The second con-

tribution is a procedure to determine which perturbations are

imperceptible to humans, using Amazon Turk experiments.

The procedure is designed to support many attack contexts

and could be used to characterize many other types of at-

tacks. We consider two contexts, image and object retrieval,

that enable the differentiation between imperceptible per-

turbations and semantically imperceptible perturbations for

object recognition; these can be thought of as small vs. large

perturbations. A dataset containing camera shake and pose

variation perturbations of the two types is finally assembled,

to support the study of recognition attacks. A final contri-

bution is an extensive experimental study of camera shake

and pose variation attacks’ performance, against multiple

CNN models, trained on multiple datasets, and augmented

with multiple defenses from the literature. This shows that

pose attacks are highly successful against existing CNNs,

previous defenses are ineffective against them, and even data

collection can have limited effectiveness. Thus, while easy

to perform, pose attacks can be difficult to defend.

2. Prior work

There is now a significant literature on adversarial attacks.

The most popular setting is a non-targeted white-box digital

attack of a single model [8, 14, 18]. The attack is usually
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an image perturbation based on an infinitesimal step along

the gradient of the loss used to train the model, evaluated at

the image [8, 14]. The simplest attacks reduce to one back-

propagation iteration, computing derivatives with respect to

the input image, and require a forward and backward pass

through the network [8]. Many variants have been proposed,

including different algorithms [20, 3, 16] or slight variations

on the problem. For example, [17] proposed similar tech-

niques for universal attacks, i.e. perturbations that fool many

models, and [25, 20, 3] considered targeted attacks. These

aim to induce specific errors, e.g. the classification of “ap-

ples” as “oranges”, using a somewhat more sophisticated

optimization. All these methods are digital and can, in prin-

ciple, be defended against by using the attack algorithm to

generate augmentation data to retrain the CNN.

More recently, there has been interest in attacks based on

object manipulation in the real world [14, 7, 1]. Some of

these address specific applications, such as recognition by

smart cars. For example, [7] investigated attacks based on

the addition of stickers to traffic signs. This is much less

general than the attacks now proposed, which can be applied

to any object. Others have investigated the manipulation of

images in the world, or the fabrication of objects with certain

properties. For example, [1] devised an interesting procedure

to fabricate objects that can consistently fool CNNs irrespec-

tive of viewing angle. While having some similarities to the

attacks now proposed, this setup is substantially more com-

plex than the one presented, which does not require object

fabrication. Fabrication raises the cost of attack, by requiring

access to knowledge of object fabrication, and drastically

reduces the cost of defense, since it relies on algorithms that

can be leveraged to produce defenses digitally. For example,

because the objects fabricated by [1] have digital textures,

their images can be rendered by computer. This is unlike real

objects and textures, which are well known to be difficult to

capture and render accurately under pose variation [27].

Perhaps most related to this work are previous efforts

based on image transformations. For example, [6] has shown

that black box attacks by simple image rotation can fool

CNNs more effectively than white-box attacks based on

gradient optimization. A recent extension of this idea uses

spatial transformer networks to synthesize image transfor-

mation attacks more general than rotations [28]. This work

again showed that image transformations are successful even

on networks that implement defenses against gradient at-

tacks. However, all these methods implement digital attacks,

using algorithms that can in turn be exploited to defend

against them. We propose a setting that generalizes these

procedures, relying on real world image manipulation. This

is much harder to defend against.

3. Using pose to attack recognition networks

There are several challenges to the study of adversarial

attacks. A meaningful attack requires two images: a true

positive x, i.e. a successfully classified image, and a per-

turbation x′. A first difficulty is that x′ should be, in some

sense, “identical” to x. Otherwise, it is illogical to ask the

classifier to assign it to the same class, and the attack is

ill-defined. We refer to this as the problem of attack validity.

Consider the popular framework of attacks based on additive

perturbations, x′ = x + ηδ, where δ is a function of the

gradient of the classification loss with respect to x [15]. In

the absence of a criterion to test whether x and x′ are “iden-

tical”, validity is sought by constraining η to be very small,

so as to make x′ visually indistinguishable from x. However,

this is not a full guarantee of validity, since a person with

infinite time can frequently identify the perturbed image.

There can also be moiré-like interference patterns that easily

give the perturbation away. Some methods attempt to ad-

dress the problem by thresholding the gradient, but this can

produce salt-and-pepper artifacts. In general, it is difficult to

guarantee that x and x′ are indistinguishable.

For these methods, the validity problem follows from

the lack of realism in the perturbations used for the attack.

We refer to this as the realism problem. The difficulty is

that δ is not a natural image. Hence, the methods above

simply produce images at the “edge” of the space of natural

images. While overly large steps along δ produce completely

unrealistic images, a small enough η guarantees they are

acceptable. Yet, because the perturbed images do not occur

in the real world, the perturbations must be very small for

the attack to remain valid. This leads to a third problem,

which is the small perturbation problem, i.e. exclusion of

attacks that are not immediate neighbors of the true positive.

For most applications, such attacks are a much stronger

concern than infinitesimal steps towards the edge of image

space. For example, the shake and pose attacks proposed

in this work can occur naturally during the operation of a

vision system. This also implies that they are much easier to

perform and thus much more likely to be executed – imagine

a world where any child can hack a robot simply by showing

it familiar objects in strange poses.

In summary, because there is lack of realism, validity

can only be guaranteed by small perturbations. This has

motivated a recent emergence of perturbations x′ = f(x)
where f is no longer additive. Various functions have been

proposed, from affine transformations [6] to affixing stickers

on images [7, 2], to building 3D objects [1]. Because they are

more realistic, the perturbations can be larger. On the other

hand, large realistic perturbations exacerbate the difficulty

of the validity problem since it is even harder to define an

“indistinguishable” transformation. For example, a simple

in-plane rotation can turn a ‘6’ into a ‘9’. Similarly, if one

is allowed to affix fur to a traffic sign, or repaint it, it will
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(a) (b)

(c)

Figure 1: (a) Drone capturing images during flight. (b)

Examples of varying levels of camera shake as the drone

hovers. (c) Example images collected per viewing angle.

eventually stop being a traffic sign. While most works make

an effort to select perturbations indistinguishable from the

true positive in some form, this is never quantified. Beyond

potentially compromising the significance of these studies,

this makes it difficult to compare attacks.

In this work, we avoid these problems by introducing

a new attack strategy based entirely on real-world object

manipulations. This automatically eliminates the realism

problem, since all attacks are based on natural images. We

then propose a protocol to guarantee the validity of all at-

tacks, by verifying that all perturbations are imperceptible

to humans. Finally, we consider a domain (view transfor-

mations) that enables the characterization of the size of a

perturbation. This enables the study of both small and large

perturbations. We next discuss these contributions in detail.

3.1. Camera shake and pose manipulations

The ultimate goal of this work is to explore the space

of attacks that are easy to perform (sometimes even arising

naturally from real-world vision systems) but difficult to

defend. The idea is to exploit image transformations that

can be easily performed in the real world but are hard to

replicate by computer. This leverages the fact that while

an attack may be performed with a single example, most

attacks can only be defended by training the classifier with

many examples. When example collecting is costly, the de-

fense becomes impractical. In this context, digital attacks

which use algorithms to produce examples are easier to de-

fend than real world attacks involving image manipulations

not replicable by computer. Despite significant advances in

photo-realistic rendering, it is still not possible to synthesize

truly realistic examples from most object classes, at least

without a significant investment in a sophisticated computer

graphics infrastructure, rendering experts, etc. Hence, at-

tacks with examples of objects under novel views or novel

imaging conditions are difficult to defend. An additional

benefit of these attacks is that they make it relatively easy

to manipulate perturbation size, which correlates with the

degree of view change. We illustrate this by introducing a

family of attacks ranging from small transformations due to

“camera shake” (CS – small variations of camera position) to

larger transformations due to “pose variation” (PV – changes

in viewing angle). These attacks are also particularly im-

portant because they are trivial to perform. For example, a

child can shake a camera or rotate an object. In fact, they

are inevitable in certain domains of computer vision, such as

robotics, where objects can appear in many 3D orientations

and the vision system is subject to nuisances such as shaking

due to robot movement.

The first contribution of this work is a dataset to enable

replicable studies of camera shake and pose variation attacks.

For this, we relied on a drone-based imaging setup. A drone

was flown around an object, as illustrated in Figure 1a, us-

ing markings on the ground to define picture taking stops

at regularly spaced intervals. By collecting images at these

stops under alignment with the markings on the ground, the

drone assembled a set of views of the object corresponding

to different orientations of the object in 3D. We refer to these

as “object poses”. Examples of multiple poses of an object

are shown in Figure 1c. Within each stop, the drone was

allowed to hover and collect several images of the object, as

shown in Figure 1b. Due to the small hovering motion, many

of these images are indistinguishable to the inattentive eye.

They show the same pose of the same object, varying by very

small translations of the camera and some amount of motion

blur. We refer to this as “camera shake”. The procedure was

repeated for 20 objects per class from 23 different object

classes. To facilitate attacks on existing object recognizers,

these are classes represented in the ImageNet dataset, where

the recognizers are trained. Overall, the dataset contains 30

camera shake images per pose and 8 poses for 460 objects,

totaling 110,400 images. It is split into a defense dataset

containing 16 objects per class and an attack dataset contain-

ing 4 objects per class. The defense dataset can be used to

learn defenses against the proposed attacks. Each object is

furthermore assigned a “frontal” pose by visual inspection,

e.g. the frontal pose of the telephone in Figure 1c is that in

the upper left corner. It should be noted that this setup is

only necessary to enable replicable studies of the proposed

attacks and to collect data for defense purposes. The attacks

themselves can be performed by simply rotating objects.
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clearly perceptible for image retrieval can easily be imper-

ceptible for object recognition. This difference is captured

by the two questions (is this the same image? vs. is this the

same object?) that set different contexts for the experiment.

In summary, the probabilities pCS and pPV can be in-

distinguishable perturbation rates (IPR) or semantically in-

distinguishable perturbation rates (SIPR), depending on the

context (image retrieval or object recognition respectively).

Table 1 summarizes the rates observed on the Turk exper-

iments. Several conclusions can be taken from the table.

First, turkers’ scores were excellent when spotting replicas

of the true positive (IPR > 99%) or rejecting images from

different objects (SIPR ≤ 1%). This suggests that the exper-

imental protocol is robust. Second, all rates were lower for

pose variation than for camera shake. This was expected, be-

cause pose variation induces larger image variations. These

results confirm the hypothesis that camera shake is a small

perturbation, while pose variation is a larger perturbation.

Note that only 7% of the pose variation perturbations were

indistinguishable perturbations, while this held for 72% of

the camera shake perturbations. Finally, it is clear that in-

distinguishability depends on context. While only 72% of

the camera shake perturbations were indistinguishable per-

turbations, 92% were semantically indistinguishable pertur-

bations. Similarly, while only 8% of the pose variation per-

turbations were indistinguishable perturbations, 82% were

semantically indistinguishable perturbations.

3.3. Attacks and defenses

The third contribution of this work is a study of the diffi-

culty of defending attacks based on real-world object manip-

ulations. This is based on the image pairs declared as indis-

tinguishable by the Turk experiment 1. While experiments

were performed for both indistinguishable perturbations and

semantically indistinguishable perturbations, we report se-

mantically indistinguishable perturbations only, since these

are the most relevant perturbations for object recognition.

Indistinguishable perturbation results are discussed in sup-

plementary material. Three datasets were used to imple-

ment all defenses: 1) a subset of ImageNet containing all

object classes used for attacks, denoted “ImageNet,” 2) a

subset of the defense dataset of Section 3.1 containing only

frontal pose images, denoted “Frontal,” and 3) the entire

defense dataset, denoted “All”. Every attack was performed

on AlexNet [13], ResNet34 [10], and VGG16 [22].

To evaluate the impact of different object manipulations,

the attacks were implemented with both camera shake and

pose variation semantically imperceptible perturbations. For

each true positive x, the associated perturbation x′ was fed

to the classifier and recognition rates (RR) rCS and rPV

are recorded. Defenses were evaluated under the “arms

race” strategy, by synthesizing examples with different attack

1All data collected in this work will be made available publicly.

IPR (%) SIPR (%)

(Image Retrieval) (Object Recognition)

pTP 99.7 99.8

pCS 72.4 91.6

pPV 7.5 81.5

pDO 0.2 1.0

Table 1: Turker imperceptibility rates for true positive (TP),

camera shake (CS), pose variation (PV), and different object

(DO) pairs. For image retrieval task, indistinguishable per-

turbation rates (IPR) is considered, while for object recogni-

tion task, semantic IPR (SIPR) is used.

methods and retraining the network on a dataset augmented

with these examples. We considered methods from the two

broad categories discussed above: 1) transformation based

and 2) gradient based.

1. Transformation based

• Affine: Random affine transformations with rota-

tion less than 15 degrees.

• Blur: Gaussian blur kernel with random standard

deviation in [0, 0.6].

• Blur-Affine: Combination of affine and blur.

• Worst-of: The worst-of-K method of [6]. Ten

affine transformations are randomly sampled and

the one of highest loss is selected.

• Color Jitter: Image saturation and hue transfor-

mation according to [11].

2. Gradient based

• FGSM: The fast gradient sign method of [15].

• ENS: The ensemble adversarial training method

of [26].

• IFGSM: The iterative fast gradient sign method

of [15].

3. Standard training is also experimented as baseline for

comparison. The standard training method included

random cropping and random horizontal flipping. The

learning rate was set to 0.001.

4. Experiments

4.1. Implementation

All experiments were conducted with Pytorch. For train-

ing process, we found that at most 20 epochs were enough

for the classifier to converge, and the maximum number of

epochs was set to this value. Vanilla SGD was used as the

optimizer and momentum was set to 0.9 for all classifiers.
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Table 2: Recognition rates for camera shake and pose variation semantically indis-

tinguishable perturbation attacks, under different defense methods and datasets.

Recognition rates are averaged over AlexNet, ResNet34 and VGG16.

Attack
CS PV CS PV CS PV CS PV

Defense ImageNet Frontal All Avg
None 73.7 47.2 82.0 63.7 87.1 79.1 80.9 63.3

T
ra

n
sf

o
rm

at
io

n Affine 71.8 45.1 83.4 58.8 85.2 76.5 80.1 60.1
Blur 74.2 45.2 84.8 64.1 86.9 78.3 82.0 62.5

Blur-Affine 75.4 47.5 83.5 60.0 88.0 76.6 82.3 61.3
Worst-of 73.0 47.1 83.8 63.0 86.4 76.1 81.0 62.0

Color Jitter 74.5 45.5 86.4 61.6 87.1 79.1 82.7 62.0
Avg 73.8 46.1 84.4 61.5 86.7 77.3 81.6 61.6

G
ra

d
ie

n
t FGSM 72.9 49.2 84.7 61.1 83.2 74.3 80.3 61.5

ENS 75.7 46.3 83.6 58.1 81.9 72.8 80.4 59.0
IFGSM 71.8 47.0 82.8 55.5 83.3 70.0 79.3 57.5

Avg 73.5 47.5 83.7 58.2 82.8 72.3 80.0 59.3

Telephone
Book
Train (Model)
Radio
Shoe
Boat (Model)
Teapot
Clock (Digital)
Remote
Hat
Piano (Model)
Keyboard
Clock (Analog)
Car (Model)
Laptop
Airplane (Model)
Toaster
Monitor
Computer Mouse
Bowl
Backpack
Lamp
Bottle

CSPV

30
40
50
60
70
80
90

Figure 3: Per class RR for

CS/PV SIP attacks.

4.2. Qualitative results

Attack and defense efficiency: A preliminary observa-

tion was that the attacks had similar effect on the three net-

works. While some models have higher accuracy than others,

the relative drop in accuracy due to the attacks were nearly

identical. Hence, for brevity, we only discuss average accu-

racy of the three models here. More detailed, per-model, re-

sults are given in the supplement. Table 2 presents the recog-

nition rates of camera shake and pose variation manipulation

attacks, for networks with various defenses. Each defense

was implemented on the three defense datasets and recog-

nition rates are presented per defense method and dataset.

Since all perturbations have been declared semantically indis-

tinguishable perturbations by turkers, the human recognition

rate is 1 on these experiments (under the assumption that

turkers could correctly classify the true positive).

Various conclusions can be drawn. First, as expected,

pose variation is the more dangerous attack. For standard

ImageNet classifiers the recognition rate drops to almost half

(from 70s to 40s), independently of the defense implemented.

Second, no defense method stands out. While gradient meth-

ods achieve best performance for ImageNet training, trans-

formations have superior performance for Frontal and All

training. Within each category, relative performance varies

with dataset and perturbation type. On average (as seen in

the last column of the table), Color Jitter is the top defense

against camera shake. Third, none of the defense algorithms

improves significantly on no defense. In fact, the absence

of defense is the best defense against pose variation, and

close to the best (80.9 vs. 82.7) against camera shake, on

average. Fourth, data collection is a much more effective

defense than algorithms. Independently of the algorithm,

recognition rates increase significantly from ImageNet to

Frontal (10+ points) and increase further from Frontal to

All (2 points). However, even the collection of data with

camera shake and pose variation perturbations fails to fully

defend against real-world object manipulations. The best

performance against pose variation (none) has a recognition

rate of only 63.3%. For camera shake the top recognition

rate is 82.7%. All these observations support the hypothesis

that real-world manipulations are a very effective tool to

attack CNNs. Besides being trivial to perform, they can be

very hard to defend. Since the collection of real data fails to

produce a foolproof defense, it is questionable that digital

defenses could fully neutralize these attacks. Clearly, simple

digital defenses such as Affine or Blur transformations are

ineffective.

In-depth comparisons of the table also challenge some

common notions in the adversarial literature. One striking

effect is the reversal of performance between gradient and

transformation based methods with the defense dataset. Gra-

dient methods work better on ImageNet, but are not effective

when camera shake and pose variation perturbations are

added to the defense set. This supports the hypothesis that

they mostly push examples to the edge of the natural image

space. Better coverage of these regions, by camera shake and

more camera views, eliminates these methods’ gains. For ex-

ample, the average recognition rate of the gradient methods

on the All defense dataset is 4 to 7 points weaker than using

no defense algorithm at all. Transformation based methods

perform significantly better on this dataset. In the adversarial

literature, IFGSM and ENS have also been claimed to out-

perform FGSM. This is because IFGSM generates stronger

adversarial examples and ENS decouples the adversarial

example generator for the defender (by adding adversarial

examples from a third party to the training set). However,

this is nearly the opposite of the results on Table 2. On

average, FGSM outperforms IFGSM and ENS. Again, this

is likely due to the real world nature of the attacks. The

fact that IFGSM and ENS are better defenses against digital

attacks, seems to translate into no benefits for real world

attacks.
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Table 3: Examples of IPs and SIPs, for CS and PV pertur-

bations, that fool many classifiers. In all cases, TP is left,

perturbation right. Also shown is ground truth class and #
of classifiers fooled (out of 81, see supplementary material).

IPs

CS PV

TP: Hat Fools 16 TP: Bowl Fools 36

TP: Remote Fools 21 TP: Hat Fools 20

SIPs

CS PV

TP: Car Fools 13 TP: Plane Fools 20

TP: Keyb. Fools 13 TP: Car Fools 32

Objects: It is also pertinent to ask which types of objects

lead to more successful attacks. Figure 3 shows the recogni-

tion rate of camera shake and pose variation perturbations per

object class. While camera shake leads to higher recognition

rates for all objects, the recognition rate trend is similar for

camera shake and pose variation. This suggests that attack

efficiency is indeed determined by object properties. Finally,

a “lack of symmetry” seems to be the object property most

predictive of successful attacks – symmetric objects, such

as bottles, lamps, and bowls are less effective attackers than

less symmetric objects like telephones, radios, and trains.

Universal attacks: A final question is which attacks fool

a large number of classifiers. Table 3 shows some exam-

ples of the most successful perturbations from this point

of view (more in supplementary material). Some interest-

ing observations can be made. First, perturbations that

are clearly noticeable under a forensic comparison (side-

by-side images, infinite time) can become indistinguish-

able under the memory recall paradigm of Figure 2. Take

the “bowl” and “hat” examples for instance, which were

deemed indistinguishable perturbations by the turkers; the

fact that these perturbations were deemed the same image

as the true positive shows that the standard practice of de-

termining attack validity by forensic comparisons is poorly

suited for object recognition. Second, it appears that per-

turbations of all sizes can fool a large number of models.

Table 4: Classifier accuracy

for crafted vs random attack

examples.

Dataset ImageNet Frontal

Attack CS PV CS PV

Random 73.7 47.2 82.0 63.7

Crafted 51.3 33.0 66.2 49.3

Note that the perturba-

tions shown range from

“insignificant” (almost im-

perceptible even on a

forensic comparison, e.g.

“remote”) to “large” (sig-

nificant pose variations,

e.g. “car” on the bottom

right). Overall, it appears

that even very elementary natural perturbations can fool

state-of-the-art classifiers.

Crafted attacks: Since the proposed attack happens nat-

urally in the real world, one might criticize that this is differ-

ent from Lp norm based attacks, which can be designed and

crafted. Inspired by [6], which generates attacks by rotating

the image and proposes a worst-of-K method to pick the

most adversarial transformation , we implemented this for

our attacks with K = 5 similar to the set up in [6]. Table 4

presents the results for no defense algorithm on random and

crafted attack examples. These CS/PV attacks are intention-

ally crafted, by picking the CS/PV instance most likely to

fool the network. They are more effective than the random

attacks as expected.

5. Conclusion

This work makes several contributions to the study of

adversarial attacks that are easy to execute but difficult

to defend, using a new setup based on real-world object

manipulations. Unlike the standard practice in the literature,

we considered both small and large perturbations, generated

by camera shake and pose variation, and introduced a

procedure for systematic collection of such perturbations.

This was complemented by a replicable procedure to

measure the imperceptibility of perturbations, using Turk

experiments. These contributions enabled the creation of

a dataset of small and large perturbations, imperceptible

under two contexts of interest for object recognition.

Experimental results comparing defenses based on many

datasets, CNN models, and algorithms from the litera-

ture elucidated the difficulty of defending these attacks.

None of the existing defenses were effective against

them, and while better results were achieved with real

world data augmentation, this is costly and not foolproof.

These results suggest that more research is needed on

defenses against “easy to perform” attacks and that the

data now assembled can play an important role in this regard.
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