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Abstract

The role of pose invariance in image recognition and
retrieval is studied. A taxonomic classification of embed-
dings, according to their level of invariance, is introduced
and used to clarify connections between existing embed-
dings, identify missing approaches, and propose invariant
generalizations. This leads to a new family of pose invariant
embeddings (PIEs), derived from existing approaches by a
combination of two models, which follow from the interpre-
tation of CNNs as estimators of class posterior probabili-
ties: a view-to-object model and an object-to-class model.
The new pose-invariant models are shown to have interest-
ing properties, both theoretically and through experiments,
where they outperform existing multiview approaches. Most
notably, they achieve good performance for both 1) classifi-
cation and retrieval, and 2) single and multiview inference.
These are important properties for the design of real vision
systems, where universal embeddings are preferable to task
specific ones, and multiple images are usually not available
at inference time. Finally, a new multiview dataset of real
objects, imaged in the wild against complex backgrounds,
is introduced. We believe that this is a much needed com-
plement to the synthetic datasets in wide use and will con-
tribute to the advancement of multiview recognition and re-
trieval.

1. Introduction

Convolutional neural networks (CNNs) are frequently
used for classification and metric learning, among other
tasks. Classification is the central problem of important
computer vision applications, such as object and action
recognition or detection. Metric learning plays a similar
role for image retrieval, face recognition and identification,
or zero shot learning. Despite the many different applica-
tions, the two tasks are closely related, since they both learn
an embedding g : X — G that maps images x € X into
features g(x) € G and are implemented with several CNN
layers. Classification aims to produce a discriminant feature
space JF, which separates the different classes, while metric
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Figure 1. Taxonomy of embeddings learned by different methods
according to different level of invariance. Green solid boxes rep-
resent methods in the literature and yellow dashed boxes repre-
sent methods proposed in this work. The proposed pose invariant
embedding incorporates single view and multiview invariance and
can be applied to different methods, including CNN, proxy-NCA
and triplet center. While CNN is designed for classification, the
other two aim for metric learning (retrieval task).

learning aims to produce a feature space F with a certain
metric structure, where similarity can be captured by some
distance function, typically the Euclidean distance.

As shown in the bottom row of Figure 1, classification
and metric learning have evolved in lockstep. While details
of the architecture of g(.) may favor one or the other, ap-
proaches to the two problems have differed mostly in the
subsequent network layers and loss function. Classifiers
complement the embedding g with a softmax layer trained
with the logistic loss. Classic metric learning uses no ad-
ditional layers and a different loss. While several variants
have been proposed [5, 10, 21, 15], the most popular is the
triplet loss of [27, 26, 1, 19]. In practice, however, the dif-
ferences can be significant. Since triplets raise the dataset
size to its cube, metric learning networks are more difficult
to train than classifiers. To address this, much of the embed-
ding literature has been devoted to triplet sampling strate-
gies [20, 1, 19, 17, 21], aimed to increase training speed.
Recently however, [15] has shown that much faster training
is possible by using proxy embeddings, which make metric
learning a lot more like classification. Inspired by a met-
ric learning approach known as neighborhood component
analysis (NCA) [Y], it adds a layer that resembles a soft-
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max classifier to the embedding and uses the logistic loss
for training. A similar generalization of triplet embeddings
has been proposed in [ 1], and denoted as triplet center em-
beddings.

Ideally, an embedding should map all the images of an
object collected from multiple views, depths or under dif-
ferent illuminations, into a single point, known as the ob-
ject invariant to these transformations. However, this is
hard to achieve on datasets such as ImageNet, which tend
to emphasize class diversity and maximize the number of
objects imaged per class. They do not provide a dense cov-
ering of the transformations (imaged from different cam-
era positions, variable lighting, etc) where an object may
be subjected to. Recently, this problem has received sig-
nificantly more attention, with the introduction of datasets
such as ModelNet [29] or ShapeNet [4]. Being datasets of
synthetic images rendered from 3D CAD models, these al-
low the generation of many views of each object labelled
for view angle, also known as object pose.

The introduction of these multiview synthetic datasets
motivated a new wave of algorithms for multiview [22, 12,
] classification and retrieval, as shown in the middle row of
Figure 1. These methods have been shown competitive, if
not superior, to many methods based on 3D representations,
such as voxels [29, 14, 3, 28] or point clouds [7, 31, 30].
This is important because view-based representations can
be easily deployed in the real world, where 3D representa-
tions are much more expensive, if not completely infeasi-
ble. The most popular architecture for view-based classifi-
cation is the multiview-CNN (MV-CNN) [22], which com-
plements a standard CNN embedding with a view pooling
mechanism that produces a shape descriptor. The shape de-
scriptor is then fed to the softmax layer for classification.
Similarly, [11] have introduced the triplet-center loss for
multiview metric learning. This is a generalization of the
triplet loss and center loss to a multiview level for NCA
style metric learning.

While these approaches have been shown to be effec-
tive for multiview classification and retrieval, which can
be performed easily in the CAD world (e.g ModelNet and
ShapeNet), their usefulness for real vision systems is more
questionable, for two reasons. First, it is not known how
well they work on real images due to the absence of datasets
of real images in the wild, with coverage of pose trajecto-
ries. While some dense pose datasets exist [2, 12, 8, 16],
they are small and tend to depict objects on turntables, with-
out complex backgrounds. Second, and more important,
these approaches do not really learn pose invariant embed-
dings. While the shape descriptor is a summary of all the
views of the object, the embedding of a single image is not
constrained to be similar to this descriptor. In result, these
methods tend not to perform well for single view recogni-
tion or retrieval, where they frequently have weaker perfor-

mance than standard CNNs. This is important because the
multiview setting is not realistic for most real world appli-
cations. While multiview training is of interest to enable
learning algorithms to capture object variability under var-
ious transformations, applications frequently constrain in-
ference to single views. To support the latter, multiview
training must produce truly pose invariant embeddings.

In this work, we address these limitations through a com-
bination of contributions. First we perform a review of
various approaches in the literature, placing various meth-
ods on equal footing and enabling a better understanding
of their relative strengths and weaknesses. This results in
Figure 1, which groups embeddings by their level of invari-
ance. Existing methods are identified by green boxes. It
is clear that no truly pose invariant embeddings are avail-
able. While view-based embeddings have little invariance,
multiview embeddings produce a shape descriptor that rep-
resents multiple views, but do not map individual views to
this descriptor.

Second, we propose a number of new approaches,
showed as yellow boxes in Figure 1. Some of these just fill
holes in the layers populated by existing methods. For ex-
ample, MV-Proxy is simple variants of [15] for multiview
level and triplet center is variants of [11] for single view
level. Other yellow boxes in pose invariant level (top row)
are based on new loss functions that encourage embeddings
that cluster individual images in the neighborhood of shape
descriptors. This makes the shape descriptors truly invari-
ant and enables better performance on single view retrieval
and recognition tasks. Finally, we introduce a new multi-
view dataset for object recognition in the wild. This dataset
is composed of objects belonging to ImageNet, and are in
all aspects similar to ImageNet images. However, each ob-
ject is imaged under a set of pre-defined poses, which are
provided as additional labels. Similarly to ShapeNet and
ModelNet, this enables the learning of pose invariant repre-
sentations. However, because the images are real, the new
dataset enables the testing of invariance in a more realistic
setting. Experiments on both the proposed dataset and syn-
thetic datasets show that the proposed pose invariant embed-
ding is more robust to a variable number of views provided
for inference.

2. Related work

Many works have addressed embeddings for classifica-
tion and retrieval. We review the literature in this section,
emphasizing the ideas that are directly relevant to this work.

Classification: Given observations and class labels drawn
from random variables X € R™ and Y € {1,...,C}
the classifier of minimum probability of error is y* =
arg max, Py|x (y[x). A CNN is a model for the posterior
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composed of two stages. The first is an embedding g(x) €
F C R?, implemented by the layers of the network up to the
last one, where ¢ is a d dimension feature extractor. Usu-
ally, g consists of a combination of convolutions, pooling,
and a ReLU non-linearity. The second is a softmax layer
that resides at the top of the network and computes (1) us-
ing a layer of weights W € R%*¢ and biases b € R®. To
minimize notational clutter, we will omit the bias vector in
many of the expressions below. This follows the common
practice of absorbing it in W and using homogeneous coor-
dinates. CNNs are trained by cross-entropy minimization.

Given a dataset D = {(x;,y;)}!_; this consists of finding
W and the parameters of g that minimize the risk

R(D) = ZL(xl-, Yi), )

defined by the logistic loss L(x, y) = — log hy(x; W).
Metric learning: Metric learning aims to endow the feature
space F with a metric, usually the Euclidean distance

d(g(x),9(y)) = llg(x) — g¥)II%, 3)

so as to allow the geometric implementation of operations
like classification, e.g. using nearest neighbors. While
many losses have been proposed [5, 10, 21], this is usually
done with a loss function that operates on example triplets,
pulling together (pushing apart) similar (dissimilar) exam-
ples [27, 26, 1, 19]. Given an anchor x, a similar x* and a
dissimilar example x ™, the triplet loss is defined as

L(x,x",x7) = ¢ (d(g(x), g(x7)) — d(g(x), g(xT))) ,
“)
where ¢(.) is a margin loss, e.g. the hinge loss ¢(v) =
max (0, m — v) or the logistic loss ¢(v) = log(1+e~"). In
general, similar and dissimilar examples are determined by
the class labels of D. We refer to these methods as triplet
embeddings.

Modern CNN s are learned by stochastic gradient descent
(SGD), processing the data in batches of relatively small
size, e.g. b = 32. On a dataset of size n there are O(n) ex-
amples and O(n3) triplets. Similarly, there are O(b) exam-
ples and O(b?) triplets in a batch. Hence, while the number
of batches needed to cover the dataset is O(n/b) for exam-
ples, it becomes O((n/b)3) for triplets [15]. Since n/b is
in the tens of thousands, triplet learning is cubically more
complex than example-based learning. While many sam-
pling strategies have been proposed to address this prob-
lem [19, 26, 17, 23], metric learning methods are substan-
tially harder to use and slower to converge than classifica-
tion methods.

Recently, [15] has shown that this problem can be over-
came using a loss function inspired by neighborhood com-
ponent analysis (NCA) [9]. This consists of defining a proxy
Py per class, adding a softmax-like layer

efd(g(X),Py)
Sy € OB PR)

where P is the matrix of proxies py, and learning both P
and g(x) by minimizing the risk of (2) with the logistic loss
L(x,y) = —log s,(x; P). We refer to this method as proxy
embedding.

Multiview classification: In multiview classification, each
observation consists of a set of V views X = {x;}/_,
and parameters are learned from a multiview dataset D,,, =
{Xy) e, = {(xi1,.- -, %iv,9:) }7-;. The goal is to
jointly classify all these views. A popular approach is the
multiview-CNN (MV-CNN) [22], which implements two
embeddings. Each individual image zj, where xj, is imaged
at k" predefined viewpoint, is processed by a shared fea-
ture extractor ¢ and all the resulting view descriptors g(z)
is then averaged to produce a shape descriptor

sy(x; P) = 5)

1 |4
gm(X) = 3- > g(x), (©)
k=1

where subscript m denotes multiview. The embedding pa-
rameters are learned from a multiview dataset D,,, by using
gm With softmax layer (1), the risk of (2), and the logis-
tic loss. Several variants of this approach have been pro-
posed, either making specific architectural enhancements
to the embedding g [25, 18], or using weighted versions
of (6) [6]. Similar enhancements are possible for all meth-
ods discussed in this work.

Multiview metric learning: Substantially less work has
been devoted to multiview metric learning. [1 1] combined
the MV-CNN embedding with the proxy-based idea of [15],
but applied to the triplet loss. They denote proxies as cen-
ters and define the multiview triplet-center loss

LX, 3. P) = 6 (i dlgn (X).5) — dlgn(X). ) )
(7

where P is the matrix of centers p; and g, is defined as
in (6). We refer to this method as multiview triplet center
(MV-TC) embedding.

3. Bringing object invariants to the real world

In this section, we discuss a number of contributions that
follow from the above review.

3.1. New view-based and mutiview embeddings

Figure 1 provides a functional organization of embed-
dings for classification and metric learning. The bottom two
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a) view-based
Figure 2. Embeddings produced by methods at the three levels of invariance of Figure 1. In all plots, there are three classes, two objects
per class, and each dot represents the embedding of an image. Dots of the same color correspond to different views of the same object. In
b) and c), a’+’ is used to denote the shape descriptor and a dashed circle to denote the distribution of views of the associated object. Only
the invariant embedding of ¢) guarantees a good clustering of both shape descriptors per class and individual views per object.

rows summarize the state of the literature, with green boxes
identifying the approaches that have been proposed. They
group these methods according to whether they embed sin-
gle or multiple views. One immediate contribution is that
there are a number of “missing” approaches (e.g multiview
proxy and single view triplet center). We propose to fill
the gaps, introducing several new embeddings, which are
extensions of those available: the triplet center embedding
is the view-based equivalent of the multiview triplet center
embedding[ | |], replacing multiview triplet-center loss (7)
with single view

Lx 0. P) = 0 (mind(g(x.p;) ~ dlg).p) ) . 9
and the MV-proxy generalizes the single view proxy embed-
ding (5) to multiview

o= gm (),0y)
Zk;ﬁy efd(gm(x%pk) ’

sI(X;P) = )

where superscript m denotes multiview.

3.2. The need for invariant embeddings

A second, and practically more important, contribution
of Figure | is to show that no attention has been given to
the design of truly invariant embeddings. This is important
for many real-world systems, where one would like to lever-
age multiview data for training but perform classification or
retrieval on single views. In general, it is not realistic to
expect that multiple views of an object will be available at
classification or retrieval time. We refer to this problem as
pose invariant classification and retrieval. Figure 2 illus-
trates the limitations of existing approaches to address this
problem.

View-based embeddings do not leverage multiple object
views during training, treating all views of all objects in
the same class equally. In result, as illustrated in Figure 2

b) multi-view

¢) invariant

a), there is no guarantee that these embeddings will clus-
ter views from same object. While clustering views into
classes, they are free to intertwine the views of different
objects in the same class. On the other hand, multiview em-
beddings (6) only constrain the shape descriptor, i.e. the av-
erage of single view embedding. As illustrated by Figure 2
b), where shape descriptors are denoted by a ’+’, this suf-
fices to produce a good shape descriptor clustering. How-
ever, it does not guarantee a good clustering of all individ-
ual views from an object. Note that the shape descriptors
are all correctly classified, but this is not the case for the
individual views, which can spread across class boundaries.
This is illustrated by the dashed circles, which identify the
distribution of images of each object. Due to this prob-
lem, multiview approaches tend to underperform the single
view embeddings of a) for single view classification and re-
trieval [12, 6].

In order to address these problem, a new form of em-
beddings is needed. Figure 2 c) shows the behavior desired
for a truly invariant embedding, which should be both sin-
gle view invariant and multiview invariant. We denote this
new form of embedding as pose invariant embedding (PIE).
PIE guarantees two properties: that 1) single view embed-
dings (image descriptors) of an object are clustered around
multiview embedding (shape descriptor) and 2) multiview
embedding is clustered around the descriptor of its labeled
class.

To guarantee the two properties, we return to the prob-
abilistic formulation and introduce an intermediate object
variable O, leading to

ZPY\O,X(ZIWX)PQX(”\X)

n

= Y Pyolyln)Pox(nfx) (10)

Pyix(ylx) =

where we have used the fact that once the object is known
the class is independent of the view. This provides a decom-
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position of the posterior probabilities into an object-to-class
Py|o(yn) and a view-to-object Py x (n|x) model. This
decomposition can be exploited to enforce the two proper-
ties above. We next discuss how to do this for the various
approaches of Figure 1.

3.3. Pose invariant proxy embedding

We start by extending the proxy embedding [15] of (5)
with the conditional probabilities of (10). We then note that
the multiview form of proxy embedding, given by (9), is
an object-to-class model, if the shape descriptors is pro-
duced by averaging image descriptors associated with the
same object (6). Hence, the object-to-class model can be
identical to the multiview proxy embedding (9)

PY\O(M”) = SLH(XTLQ P). (11)

The view-to-object model should be similar to single view
proxy (5) but use a set of object proxies. To encourages
the clustering of Figure 2 c), we propose adopting the shape
descriptor produced by (6) as the proxy for the associated
object. This leads to the model

o= (9(),9m (X))

> e €~ 0.9 K

Pox(nlx) = (12)

Pose invariant proxy (PI-Proxy) embedding can then be de-
rived by combining the two models with conditional prob-

ability (10). The approximated probabilities in [15] is then
used and we have
—d"" (x,Xp,Py)
. e y
im0 (x, P) = 2 (13)

—din (%, X0 i)
Zi;éy,n e ( n>Pi)

where

A (x, X, py) = ad(g(x), gm(Xn)) + Bd(gm(Xn), Py)

(14
is denoted as the pose invariant distance. «, S are two hy-
perparmeters that enable control over the contribution of the
two components of the distance. Note that the feature ex-
tractor g is exactly the same as in the MV-CNN, i.e. there is
no additional parameters and no change in the network.

3.4. Properties of pose invariant distance

The pose invariant distance of (14) has several properties
of interest. First, setting « = 0 and 5 = 1 results in the
distance of the MV-proxy embedding (9), which leads to
Figure 2 b). Second, for &« = g = 1, it becomes Figure 2 c)
and follows from the triangle inequality that

e (Xa Xn, py) = d(g(x), Im (Xn)) + d(gm (Xn)7 Py)

d(9(x),Py), (15)

Y

i.e. the invariant distance is an upper bound on the distance
of the single view proxy. While the « term encourages clus-
tering of individual views around the object (shape descrip-
tor), the 8 term encourages clustering of objects into object
class. Hence, the PI-Proxy embedding offers a range of so-
lutions between the behaviors of Figure 2 b) and c).

3.5. Generating pose invariant embeddings

The procedure above can be generalized to all ap-
proaches of Figure | that use proxies. This is also true
for classifiers, where the weights w, of (1) play the role
of proxies . The procedure for producing a pose invariant
model is as follows.

1. use the multiview model as object-to-class model
Py o(y|n).

2. use the view-based model as view-to-object model
Pojx (n|x).

3. replace the proxies of Pp|x (n|x) by the shape descrip-
tors of (6). Use the shape descriptor of object O as
proxy for this object.

4. use the conditional probability (10) to combine the two
models into a pose invariant model.

Applying this procedure to the CNN of (1) leads to the pose
invariant-CNN (PI-CNN)

dinv (x’xn P )
2 ’

S el X))’
n,)

by (x,y; W) = (16)

where d"(x,X,,, py) is defined as in (14). This is iden-
tical to the MV-CNN when («a, ) = (0,1). For larger «,
the classifier also discriminates between objects in the same
class, assigning each view to the corresponding object de-
scriptor. only assigns views to objects.

Applying the procedure to the triplet center approach,
leads to the pose invariant triplet center (PI-TC) embed-
ding. This combines the multiview triplet center distance
of (7) and the triplet center loss of (8), using shape descrip-
tor as centers, leading to the loss function

L(x,y,P) =
= ¢(a(gig d(X, Xk) - d(X7 XTL))

3.6. Learning and inference

The models of (13), (16), and (17) are all functions of the
view and multiview embeddings, g and g,,,. However, since
view feature extractor g is shared by all views and g,, is
the average over view features given by (6), the total num-
ber of parameters is equal to that of a single CNN. In this
aspect, all invariant embeddings of Figure 1 have the same
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Figure 3. Examples of the 8 viewpoints of ObjectPI, for 2 objects.

complexity. Training boils down to learning the parame-
ters of CNN, using (13), (16), and the logistic loss or (17)
in risk R (2). This is a standard backpropagation learning
problem. For inference, several modes are possible. In the
multiview mode, only the model Py |o(y|X) is used. This
is equivalent to using the multivew methods in the second
row of Figure 1, i.e. MV-CNN, MV-proxy (9), and MV-
triplet center (7). However, these models can still benefit
from invariant training. For pose invariant recognition and
classification, the models are those of (13), (16), and (17).
In the case where a single view x is available at inference
time, i.e. 0, = gn(X,) is not available, all expressions
can be simplified. For example, the PI-CNN reduces to

. —d(x,py)
muv J— e
hy (X7 y) = >, PRrIEN TN

at inference time, the multiview mode is again used, but (6)

If partial views are available

is reformulated as g,,,(X) = EZ;I g(xx), where V' is
the number of views available.

4. Pose invariance dataset

Existing multiview object datasets can be grouped in two
classes. The first includes synthetic datasets such as Mod-
elNet [29] or ShapeNet [4]. These are large and popular,
but only depict computer graphics rendered objects. The
second includes “turntable datasets”, i.e. datasets imaged in
the lab, by collecting images placed on a turntable, as it is
rotated [2, 8, 16]. These are more realistic, but still lack nat-
ural backgrounds. In this work, we introduce a new dataset
that addresses these limitations. It consists of images col-
lected in the wild, by placing each object in a scene and
taking pictures with a camera, which is moved around the
object. An example of the views collected for an object is
shown in Figure 3. The dataset contains 8 views per object,
for 500 objects from 25 classes. These classes are chosen
from ImageNet, to enable the use of CNNs pre-trained on
the latter. The dataset is split into a training and test set,
containing 16 and 4 objects respectively for each class. We
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refer to the dataset as the object pose invariance (ObjectPI)’
dataset.

5. Experiments

In this section, we report on an experimental evaluation
of the methods of Figure 1 on 5 different tasks, covering
classification and retrieval at different levels of invariance.

5.1. Experimental setup

Dataset All experiments are based on three datasets.
ModelNet40 [29] is a 3D CAD dataset, of 40 object classes
and 3183 objects . We use the training and testing splits
of [22, 11], with 80 training and 20 test objects. For each
object, 12 views are rendered uniformly (viewpoint interval
30 degree), identical to [22] and case (i) of [12]. Note that
all reported results are for instance accuracy.

MIRO [12] is a dataset of real world objects. Each object
is imaged from 10 elevations and 16 azimuths, to produce
160 images. We use the 16 images of 0° elevation.
ObjectPl is described in Section 4.

Tasks All embeddings are tested on retrieval and classi-
fication and trained with all object views. Both single and
multi-view inference are considered.

Classification: For CNN based methods, class is deter-
mined by the probabilities generated by the network, while
for proxy and triplet center (TC) based methods, a nearest
neighbor classifier is used. Classification accuracy is re-
ported. Single view classification predicts the class of one
image. Multiview classification predicts the class of a set
of object views. For a CNN, this is done by averaging class
probabilities over all views. For proxy and triplet center
methods, a nearest neighbor classifier compares the shape
descriptors extracted from the set of views to the class de-
scriptors obtained from the training set.

Retrieval: Retrieval results are reported in terms of mean
average precision (mAP). Three retrieval tasks are consid-
ered. Single view retrieval aims to retrieve images in the
class of a query view. Object retrieval aims to retrieve
other views of the object in the query view. These methods
compare view descriptors. Multiview retrieval compares
shape descriptors, aiming to retrieve the objects in the same
class of the object used to generate a set of query views.
Implementation All experiments use a VGG16 [20] model
implemented on Pytorch. For MV approaches, view pool-
ing is performed before the softmax function. Learning rate
is le-5 and Adam[ 3] optimizer is used in all experiments.

5.2. Joint classification and retrieval

The development of representations for joint classifica-
tion and retrieval has shown to be difficult. Most methods

! All data collected in this work will be made available publicly.

82



° Task Proxy MV-Proxy PI-Proxy
% Single| 685  63.2 68.7
s g
Rl . Class: Nt (788 78.3 0.0
P . et e (Acc) Avg [737 707 744
. b . * .. » Object| 477 493 494
®; o .o " o Retr. Single[39.7  57.9 62.6
% ° o Multi [ 768 747 782
(mAP) Avg | 614 60.6 63.4
Proxy MV-Proxy PI-Proxy (a« = 8 = 1)

Figure 4. TSNE visualization of proxy based embeddings on ObjectPI. Each dot is an object view,

objects are identified by color, and their shape descriptors by ’x’s.

specialize on one of the tasks, to the point that the papers
do not even present results for the other. For example, [12]
only addresses classification, while [1 1] is mainly designed
for retrieval. The few works that report both classification
and retrieval results use additional steps to prop at least one
of the tasks. For example, [6, 22] train an additional low
rank Mahalanobis metric to boost retrieval performance. In
addition, only few methods report single image retrieval and
classification result on classifier trained with multiview. It
is simply accepted that view based embeddings have bet-
ter performance for view classification and retrieval, while
multiview embeddings are better for multiview classifica-
tion and retrieval. It has so far not been shown that a single
embedding can perform well on both tasks for both single
and multiview.

Visualization: To study this issue in more detail, we
consider the proxy based approaches of Figure 1, namely
Proxy, MV-Proxy, and PI-Proxy. We start by visualizing, in
Figure 4, the embeddings produced by the three approaches,
using TSNE [24]%. To simplify the plots, only 12 classes
and 1 object per class are shown. Objects are identified
by dots of the same color, which correspond to individual
views. The shape descriptor of (6) is also shown as an "x’.
The classes and objects used in the visualization were cho-
sen randomly. This plot confirms the predictions of Fig-
ure 2. While all methods succeed at separating the shape
descriptors, the placement of individual views is very dif-
ferent. For Proxy and MV-Proxy, these may be embed-
ded far away from the shape feature. MV-Proxy, which
only optimizes the shape embedding (ignores the placement
of views) produces the most scattered distribution. Proxy
methods have more clustered embeddings, but the cluster-
ing is significantly inferior to that of PI-Proxy. In this case,
most views cluster around the shape embedding produce ob-
ject clusters of very small overlap. This is a direct conse-
quence of the use of the pose invariant distance of (14).

Classification & Retrieval: Table 1 shows that PI-Proxy
achieves the best performance of the three methods on all
retrieval and classification tasks. While this is not surpris-
ing, given the clusterings of Figure 4, the differences can
be quite significant, depending on the the task. Note that

2Similar TSNE visualizations of all approaches of Fig 1 can be found
in the supplementary materials.

Table 1. Proxy based methods on Ob-
jectPl. & = B = 1 for PI-Proxy.
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Figure 5. Classification accuracy of proxy based embedding on
ObjectPI as a function of number of views at inference time.

MV-Proxy is particularly poor for single view classification.
This is explained by the poor view clustering and is a well
known limitation of multiview methods [6]. Proxy, is com-
petitive with PI-Proxy on image classification, but inferior
(2-3% points weaker) on the other tasks.

Robustness to number of views: Although multiview
training improves classification accuracy [22], the latter of-
ten decreases dramatically for single view inference [0, |2].
In this setting multiview CNNs frequently underperform a
standard single view classifier. This is unlike the proposed
pose invariant embeddings, as shown in Figure 5.

The PI-Proxy embedding has performance comparable
to that of MV-Proxy for multiple views, but much supe-
rior performance as the number of views decreases. This is
again justified by the improved view clustering of Figure 4.

5.3. Comparison to the state of the art

We next performed a comparison of all embeddings of
Figure 1 to other methods in the literature, on ModelNet,
MIRO and ObjectPI datasets. Since most previous work
has been done on ModelNet, we used the results on this
dataset as guidance to select some state of the art mod-
els. It should be said that this is not easy, because the
existing methods vary along many dimensions. This in-
cludes the use of different backbone network architectures
(e.g. VGG-M instead of the more popular VGG16 that we
adopt), architectural enhancements (e.g. view pooling lay-
ers that implement operations different from averaging view
descriptor (6)) and complementary steps (e.g. optimizing
the distance metric used for retrieval after the embedding is
learned). All these variations are orthogonal to the invari-



Table 2. Comparison with state of the art methods on 3 different dataset for 5 different tasks on VGG16. The best result of each task is
marked in bold and shadow denotes that the result of pose invariant based method is better or comparable than that of multiview based.

ModelNet (12 views) MIRO (16 views) ObjectPI (8 views)

Method Classification Retrieval Classification Retrieval Classification Retrieval

(Accuracy %) (mAP %) (Accuracy %) (mAP %) (Accuracy %) (mAP %)
Single Multi  Avg. | Object Single Multi Avg. [| Single  Multi Avg. | Object Single Avg. [[ Single Multi Avg. | Object Single Multi Avg.
RN[12] 80.2 89.0 846 226 202 639 356 932 100 96.6[ 330 33.0 330 375 632 50.3] 40.1 252 419 357
MV-CNN[22] | 71.0 879 7941 29.6 41.7 715 476 100 100 100 | 920 920 920 (| 62.1 741 681 426 538 723 562
PI-CNN 854 88.0 86.7| 50.8 775 81.8 70.0 100 100 100 | 100 100 100 66.5 76,5 71.5| 60.7 589 72.1 639
MV-TC[IIT | 773 889 83.I| 366 635 840 614 100 100 100 | 99.8 99.8° 998 [| 657 792 724 518 595 773 629
PI-TC 812 889 851 | 414 715 842 657 100 100 100 | 100 100 100 693 775 732 | 61.8 638 767 674
MV-Proxy 797 89.6 847 350 66.1 851 62.1 100 100 100 | 99.8° 998 99.8 || 632 783 70.7| 493 579 747 60.6
PI-Proxy 851 88.7 869 | 406 799 851 68.6 100 100 100 | 100 100 100 687 80.0 744 | 494 626 782 634

ance issue studied in this work, and could be applied to any
of the embeddings of Figure 1.

Furthermore, most existing methods only report results
for few, sometimes even only one, of the 5 tasks that we
consider. This allows for the detailed optimization of the
embeddings for these tasks. Such optimization is not fea-
sible under the experimental protocol now proposed, given
the need to compare many embeddings on the 5 tasks and
the goal of identifying embeddings that perform well across
the 5 tasks. We believe that this is a set-up of greater prac-
tical significance, which future works in this area should
adopt. Nevertheless, we used existing results to identify
two state of the art models on ModelNet: the RotationNet
(RN) [12] for classification and the triplet-center of [1 ] for
retrieval. The later is what we denote by MV-triplet center
(MV-TC) in Figure 1. For fair comparison, we re-trained
these models under our set-up and tested them on the 5 tasks
and 3 datasets that we now consider. For example, RN is re-
trained with VGG16 instead of AlexNet’. We also present
results for the other existing methods of Figure 1, namely
the MV-CNN [22] and the proxy embedding of [15].

Table 2 summarizes the results of multiview and PIE
based methods on the three datasets. Shadowed cells indi-
cate that the PI-embedding outperforms the MV-embedding
above it. Several conclusions can be drawn. First, pose
invariant embeddings (PIEs) are clearly more robust than
multiview embeddings (MVEs) on both classification and
retrieval tasks. Among the 60 results listed in the table, PIEs
outperformed MVEs on 46. In some cases, the difference
was drastic. For example, for single view classification on
ModelNet, the PI-CNN achieved 85.4% accuracy, outper-
forming the MVCNN by 14%. Second, one possibility to
compare the performance of the different PIEs is to count
the number of boldfaced entries. These indicate the num-
ber of "wins,” i.e. how many times the method had equal
or better performance than all others. Under this metric PI-
proxy (12 wins) had slightly better performance, followed
by PI-TC (10 wins), and PI-CNN (9 wins). However, the
difference was not very significant. This shows that adding
PIEs increases robustness regardless the approaches being
used in the multiview level. Third, regarding classifica-
tion vs. retrieval, the methods behave somewhat differently.

3Results of AlexNet model provided by [12] are reported in supple-
mentary material.

While PI-Proxy achieved the best classification results on
all datasets, PI-CNN had the best retrieval results in Mod-
elNet and PI-TC on ObjectPl. However, the results of the
three PIEs were close in most cases. Again, the most sig-
nificant observation is how this differs from the behavior
of the embeddings in the literature. For example, the Ro-
tationNet(RN) is competitive for classification but has very
weak retrieval performance. Fourth, regarding datasets, best
results were obtained on MIRO, then ModelNet, with Ob-
jectPI posing the greatest challenge to most embeddings.
This is not totally surprising, since MIRO and ModelNet
have no backgrounds, MIRO is a relatively small dataset
(120 objects), and ModelNet has no object textures. Nev-
ertheless, these results confirm the need for a more realistic
dataset, such as ObjectPI.

6. Conclusion

This work makes several contributions to the study of
pose invariance for image classification and retrieval tasks.
We started by introducing a functional organization of
embeddings to elaborate the relationships between existing
methods. As the taxonomy is organized according to
different level of invariance, some missing approaches are
identified and existing approaches are further generalized.
A new family of pose invariant embeddings (PIEs) is then
derived from existing methods, by combining a view-to-
object model and a object-to-class model. We show that the
proposed PIEs have mathematically interesting properties
and have good performance for both 1) classification and
retrieval, and 2) single and multiview inference. The gen-
eralization of PIEs is important because such embeddings
can be applied to different tasks and circumstances, which
is a more realistic scenario for vision application. Finally,
we introduced a multiview dataset, ObjectPI, with images
of real objects captured with in the wild backgrounds.
We believe that the proposed dataset will complement the
synthetic datasets and contribute to the advancement of
multiview study.
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