


labels, and then use them only to update the segmentation

adaptation model while excluding predicted labels with

low confidence. This process is referred as self-supervised

learning, which aligns two domains better than one-trial

learning that is widely used in existing approaches. Fur-

thermore, better segmentation adaptation model would

contribute to better translation model through our backward

direction learning.

On the backward direction (i.e., “segmentation-to-

translation”), our translation model would be iteratively im-

proved by the segmentation adaptation model, which is dif-

ferent from [12, 36] where the image-to-image translation

is not updated once the model is trained. For the purpose,

we propose a new perceptual loss, which forces the seman-

tic consistency between every image pixel and its translated

version, to build the bridge between translation model and

segmentation adaptation model. With the constraint in the

translation model, the gap in visual appearance (e.g., light-

ing, object textures), between the translated images and real

datasets (target) can be further decreased. Thus, the seg-

mentation model can be further improved through our for-

ward direction learning.

From the above two directions, both the transla-

tion model and the segmentation adaptation model com-

plement each other, which helps achieve state-of-the-

art performance in adapting large-scale rendered image

dataset SYNTHIA [28]/GTA5 [27], to real image dataset,

Cityscapes [5], and outperform other methods by a large

margin. Moreover, the proposed method is general to dif-

ferent kinds of backbone networks.

In summary, our key contributions are:

1. We present a bidirectional learning system for seman-

tic segmentation, which is a closed loop to learn the

segmentation adaptation model and the image transla-

tion model alternatively.

2. We propose a self-supervised learning algorithm for

the segmentation adaptation model, which incremen-

tally align the source domain and the target domain at

the feature level, based on the translated results.

3. We introduce a new perceptual loss to the image-to-

image translation, which supervises the translation by

the updated segmentation adaptation model.

2. Related Work

Domain Adaptation. When transferring knowledge from

virtual images to real photos, it is often the case that there

exists some discrepancy from the training to the test stage.

Domain adaptation aims to rectify this mismatch and tune

the models toward better generalization at testing [24]. The

existing work on domain adaptation has mainly focused

on image classification [30]. A lot of work aims to learn

domain-invariant representations through minimizing the

domain distribution discrepancy. Maximum Mean Discrep-

ancy (MMD) loss [8], computing the mean of representa-

tions, is a common distance metric between two domains.

As the extension to MMD, some statistics of feature dis-

tributions such as mean and covariance [2, 21] are used to

match two different domains. Unfortunately, when the dis-

tribution is not Gaussian, solely matching mean and covari-

ance is not enough to align the two different domains well.

Adversarial learning [9] recently becomes popular, and

another kind of domain adaptation methods. It reduces the

domain shift by forcing the features from different domains

to fool the discriminator. [34] would be the pioneer work,

which introduces an adversarial loss on top of the high-level

features of the two domains with the classification loss for

the source dataset and achieves a better performance than

the statistical matching methods. Expect for adversarial

loss, some work proposed some extra loss functions to fur-

ther decrease the domain shift, such as reweighted function

for each class [4], and disentangled representations for sep-

arated matching [35]. All of these methods work on sim-

ple and small classification datasets (e.g., MNIST [16] and

SVHN [22]), and may have quite limited performance in

more challenging tasks, like segmentation.

Domain Adaptation for Semantic Segmentation. Re-

cently, more domain adaptation techniques are proposed for

semantic segmentation models, since an enormous amount

of labor-intensive work is required to annotate so many im-

ages that are needed to train high-quality segmentation net-

works. A possible solution to alleviate the human efforts

is to train networks on virtual data which is labeled auto-

matically. For example, GTA5 [27] and SYHTHIA [28]

are two popular synthetic datasets of city streets with over-

lapped categories, similar views to the real datasets (e.g.,

CITYSCAPE [5], CamVid [1]). Domain adaptation can be

used to align the synthetic and the real datasets.

The first work to introduce domain adaptation for seman-

tic segmentation is [13], which does the global and local

alignments between two domains in the feature level. Cur-

riculum domain adaptation [37] estimates the global dis-

tribution and the labels for the superpixel, and then learns

a segmentation model for the finer pixel. In [33], mul-

tiple discriminators are used for different level features to

reduce domain discrepancy. In [31], foreground and back-

ground classes are separately treated for decreasing the do-

main shift respectively. All these methods target to directly

align features between two domains. Unfortunately, the vi-

sual (e.g., appearance, scale, etc.) domain gap between syn-

thetic and real data usually makes it difficult for the network

to learn transferable knowledge.

Motivated by the recent progress of unpaired image-to-

image translation work (e.g., CycleGAN [38], UNIT [17],

MUNIT [14]), the mapping from virtual to realistic data is

regarded as the image synthesis problem. It can help re-
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Table 1: Performance of bidirectinal learning

GTA5 → Cityscapes

model mIoU

M
(0) 33.6

M
(1) 40.9

M
(0)(F(1)) 41.1

M
(1)
0 (F(1)) 42.7

M
(2)
0 (F(2)) 43.3

4.1. Bidirectional Learning without SSL

We show the results obtained by the model trained in a

bidirectional learning system without SSL. In Table 1, M(0)

is our baseline model that gives the lowerbound for mIoU.

We find a similar performance between the model M(1) and

M
(0)(F

(1)
) both of which achieve more than 7% improve-

ment compared to M
(0) and about 1.6% further improve-

ment is given by M
(1)(F(1)). It means segmentation adap-

tation model and the translation model can work indepen-

dently and when combined together which is basically one

iteration of the bidirectional learning they can be comple-

mentary to each other. We further show that through con-

tinue training the bidirectional learning system, in which

case M
(1)(F(1)) is used to replace M

(0) for the backward

direction, a better performance can be given by the new

model M
(2)
0 (F(2)).

4.2. Bidirectional Learning with SSL

In this section, we show how the SSL can further im-

prove the ability of segmentation adaption model and in re-

turn influence the bidirectional learning process. In Table 2,

we show results given by two iterations(k = 1, 2) based on

Algorithm 1. In Figure 4, we show the segmentation results

and the corresponding mask map given by the max proba-

bility threshold (MPT) which is 0.9. In Figure 4, the white

pixels are the ones with prediction confidence higher than

MPT and the black pixels are the low confident pixels.

While k = 1, when model M
(1)
0 (F(1)) is updated

to M
(1)
2 (F(1)) with SSL, the mIoU can be improved by

4.5%. We can find for each category when the IoU is be-

low 50, a big improvement can be got from M
(1)
0 (F(1)) to

M
(1)
2 (F(1)). It can prove our previous analysis in section

3.2 that with SSL the well aligned data from source and

target domain can be kept and the rest data can be further

aligned through the adversarial learning process.

While k = 2, we first replace M
(0) with M

(1)
2 (F(1))

to start the backward direction. Without SSL the mIoU is

44.3 which is a larger improvement compared to the results

shown in Table 1. It can further prove our discussion in sec-

tion 4.1 about the importance role played by the segmenta-

tion adaptation model in the backward direction. Further-

more, we can find from Table 2, although in the beginning

of the second iteration the mIoU drops from 47.2 to 44.3,

while SSL is induced, the mIoU can be promoted to 48.5

Table 3: Influence of threshold

GTA5 → Cityscapes

model threshold mIoU

M
(1)
1 (F(1)) 0.95 45.7

M
(1)
1 (F(1)) 0.9 46.8

M
(1)
1 (F(1)) 0.8 46.4

M
(1)
1 (F(1)) 0.7 45.9

M
(1)
1 (F(1)) − 44.9

Table 4: Influence of N

GTA5 → Cityscapes

model pixel ratio mIoU

M
(1)
0 66% 40.9

M
(1)
0 (F(1)) 69% 42.7

M
(1)
1 (F(1)) 79% 46.8

M
(1)
2 (F(1)) 81% 47.2

M
(1)
3 (F(1)) 81% 47.1
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Figure 5: Relationship between pixel ratio and the prediction confidence

which outperforms the results in the first iteration. From

the segmentation results shown in Figure 4, our findings

can be further confirmed and the most important thing is

as we improve the segmentation performance, the segmen-

tation adaptation model can give more confident prediction

which can be observed by the increasing white area in the

mask map. It gives us the motivation to use the mask map to

choose the threshold and number of iterations for the SSL

process in Algorithm 1.

4.3. Hyper Parameter Learning

We will describe how to choose the threshold to filter

out data with high confidence and the iteration number N

in Algorithm 1.

When we choose the threshold, we have to balance be-

tween two folds. On one hand, we desire the predicted la-

bels with high confidence as many as possible (presented

as white areas in Figure 4). On the other hand, we want

to avoid inducing too much noise caused by the incorrect

prediction, namely, the threshold should be as high as possi-

ble. We present the relationship of the prediction confidence

(maximum class probability of per pixel from M) and the

ratio between selected pixels and all pixels (i.e., percentage

of all white areas shown in Figure 4) on the left side of Fig-

ure 5, then show the slope in the right side of Figure 5. We

can find when the prediction confidence increases from 0.5
to 0.9, the ratio decreases almost linearly and the slope stays

almost unchanged. But from 0.9 to 0.99, the ratio decreases

much faster. Based on the observation, we choose the in-

flection point 0.9 as the threshold as the trade-off between

the number and the quality of selected labels.

In order to further prove our choice, in Table 3, we show

segmentation results using different thresholds to the self-

supervised learning of MK
N when K = 1 and N = 1 in Al-

gorithm 1. As another option, we also consider soft thresh-

old instead of hard one, namely, every pixel being weighted
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Table 2: Performance of bidirectional learning with self-supervised learning

GTA5 → Cityscapes
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mIoU

M
(0) 69.0 12.7 69.5 9.9 19.5 22.8 31.7 15.3 73.9 11.3 67.2 54.7 23.9 53.4 29.7 4.6 11.6 26.1 32.5 33.6

k = 1
M

(1)
0 (F(1)) 89.1 42.0 82.0 24.3 15.1 27.4 35.7 24.6 81.1 32.4 78.0 57.6 28.7 76.0 26.5 36.0 4.0 25.7 24.9 42.7

M
(1)
1 (F(1)) 91.2 47.8 84.0 34.8 28.9 31.7 37.7 36.0 84.0 40.4 76.6 57.9 25.3 80.4 31.2 41.7 2.8 27.2 32.4 46.8

M
(1)
2 (F(1)) 91.4 47.9 84.2 32.4 26.0 31.8 37.3 33.0 83.3 39.2 79.2 57.7 25.6 81.3 36.3 39.7 2.6 31.3 33.5 47.2

k = 2
M

(2)
0 (F(2)) 88.2 41.3 83.2 28.8 21.9 31.7 35.2 28.2 83.0 26.2 83.2 57.6 27.0 77.1 27.5 34.6 2.5 28.3 36.1 44.3

M
(2)
1 (F(2)) 91.2 46.1 83.9 31.6 20.6 29.9 36.4 31.9 85.0 39.7 84.7 57.5 29.6 83.1 38.8 46.9 2.5 27.5 38.2 47.6

M
(2)
2 (F(2)) 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

by its maximum class probability. We show the result on

the bottom row. All the results confirm our analysis. When

the threshold is lower than 0.9, the uncorrected prediction

becomes the key issue to influence the performance of SSL.

While we increase the threshold to 0.95, the SSL process

is more sensitive to the number of pixels that can be used.

When we use soft threshold, the result is still worse. It is

probably because an amount of labeling noise are involved

and the bad impact cannot be well alleviated by assigning

a lower weight to the noise label. Thus, 0.9 seems to be a

good choice for the threshold in the following experiments.

For the iteration number N , we select a proper value ac-

cording to the predicted labels as well. When N increases,

the segmentation adaptation model becomes much stronger,

causing more labels to be used for SSL. Once the pixel ra-

tio for SSL stops increasing, it means that the learning for

the segmentation adaptation model is converged and nearly

no improved. We definitely increase the value of K to start

another iteration. In Table 4, we show some segmentation

results with the theshold 0.9 as we increase the value of N .

We can find the mIoU becomes better with the increasing of

N . When N = 2 or 3, the mIoU almost stopped increasing,

and the pixel ratio stay around the same. It may suggest that

N = 2 is a good choice, and we use it in our work.

5. Experiments

In this section, we compare the results obtained between

our method and the state-of-the-art methods.

Network Architecture. In our experiments, we choose to

use DeepLab V2 [3] with ResNet101 [11] and FCN-8s [18]

with VGG16 [32] as our segmentation model. They are ini-

tialized with the network pre-trained with ImageNet [15].

The discriminator we choose for segmentation adaptation

model is similar to [26] which has 5 convolution layers with

kernel 4 × 4 with channel numbers {64, 128, 256, 512, 1}
and stride of 2. For each convolutional layer except the last

one, a leaky ReLU [20] parameterized by 0.2 is followed.

For the image translation model, we follow the architecture

of CycleGAN [38] with 9 blocks and add the segmentation

adaptation model as the perceptual loss.

Training. When training CycleGAN [38], the image is

randomly cropped to the size 452 × 452 and it is trained

for 20 epochs. For the first 10 epochs, the learning rate is

0.0002 and decreases to 0 linearly after 10 epochs. We set

λGAN = 1, λrecon = 10 in Equation 3 and set λper = 0.1,

λper recon = 10 for the perceptual loss. When training the

segmentation adaptation model, images are resized with the

long side to be 1, 024 and the ratio is kept. Different pa-

rameters are used for DeepLab V2 [3] and FCN-8s [18].

For DeepLab V2 with ResNet 101, we use SGD as the

optimizer. The initial learning rate is 2.5 × 10−4 and de-

creased with ‘poly’ learning rate policy with power as 0.9.

For FCN-8s with VGG16, we use Adam as the optimizer

with momentum as 0.9 and 0.99. The initial learning rate

is 1 × 10−5 and decreased with ‘step’ learning rate policy

with step size as 5000 and γ = 0.1. For both DeepLab V2

and FCN-8s, we use the same discriminator that is trained

with Adam optimizer with initial learning rate as 1 × 10−4

for DeepLab V2 and 1×10−6 for FCN-8s. The momentum

is set as 0.9 and 0.99. We set λadv = 0.001 for ResNet101

and 1× 10−4 for FCN-8s in Equation 1.

Dataset. As we have mentioned before, two synthetic

datasets – GTA5 [27] and SYNTHIA [28] are used as

the source dataset and Cityscapes [5] is used as the target

dataset. For GTA5 [27], it contains 24, 966 images with the

resolution of 1914 × 1052 and we use the 19 common cat-

egories between GTA5 and Cityscapes dataset. For SYN-

THIA [28], we use the SYNTHIA-RAND-CITYSCAPES

set which contains 9, 400 images with the resolution 1280×
760 and 16 common categories with Cityscapes [5]. For

Cityscapes [5], it is splited into training set, validation set

and testing set. The training set contains 2, 975 images with

the resolution 2048 × 1024. We use the training set as the

target dataset only. Since the ground truth labels for the test-

ing set are missing, we have to use the validation set which

contains 500 images as the testing set in our experiments.

Comparison with State-of-Art. We compare the results

between our method and the state-of-the-art method with

two different backbone networks: ResNet101 and VGG16

respectively. We perform the comparison on two tasks:

“GTA5 to Cityscapes” and “SYNTHIA to Cityscapes”. In

Table 5, we present the adaptation result on the task “GTA5
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Table 5: Comparison results from GTA5 to Cityscapes

GTA5 → Cityscapes

Oracle Method ro
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mIoU

ResNet101[11]

65.1

Cycada[12] 86.7 35.6 80.1 19.8 17.5 38.0 39.9 41.5 82.7 27.9 73.6 64.9 19 65.0 12.0 28.6 4.5 31.1 42.0 42.7

AdaptSegNet[33] 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4

DCAN[36] 85.0 30.8 81.3 25.8 21.2 22.2 25.4 26.6 83.4 36.7 76.2 58.9 24.9 80.7 29.5 42.9 2.50 26.9 11.6 41.7

CLAN[19] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2

Ours 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

VGG16[32]

60.3

Curriculum[37] 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 16.6 28.9

CBST[39] 66.7 26.8 73.7 14.8 9.5 28.3 25.9 10.1 75.5 15.7 51.6 47.2 6.2 71.9 3.7 2.2 5.4 18.9 32.4 30.9

Cycada[12] 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0 35.4

DCAN[36] 82.3 26.7 77.4 23.7 20.5 20.4 30.3 15.9 80.9 25.4 69.5 52.6 11.1 79.6 24.9 21.2 1.30 17.0 6.70 36.2

CLAN[19] 88.0 30.6 79.2 23.4 20.5 26.1 23.0 14.8 81.6 34.5 72.0 45.8 7.9 80.5 26.6 29.9 0.0 10.7 0.0 36.6

Ours 89.2 40.9 81.2 29.1 19.2 14.2 29.0 19.6 83.7 35.9 80.7 54.7 23.3 82.7 25.8 28.0 2.3 25.7 19.9 41.3

Table 6: Comparison results from SYNTHIA to Cityscapes

SYNTHIA → Cityscapes
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mIoU

ResNet101[11]

71.7

AdaptSegNet[33] 79.2 37.2 78.8 - - - 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 45.9

CLAN[19] 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 47.8

Ours 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 51.4

VGG16[32]

59.5

FCN wild[13] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.2

Curriculum[37] 65.2 26.1 74.9 0.1 0.5 10.7 3.5 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0

CBST[39] 69.6 28.7 69.5 12.1 0.1 25.4 11.9 13.6 82.0 81.9 49.1 14.5 66.0 6.6 3.7 32.4 35.4

DCAN[36] 79.9 30.4 70.8 1.6 0.6 22.3 6.7 23.0 76.9 73.9 41.9 16.7 61.7 11.5 10.3 38.6 35.4

Ours 72.0 30.3 74.5 0.1 0.3 24.6 10.2 25.2 80.5 80.0 54.7 23.2 72.7 24.0 7.5 44.9 39.0

to Cityscapes” with ResNet101 and VGG16. We can ob-

serve the role of backbone in all domain adaptation meth-

ods, namely ResNet101 achieves a much better result than

VGG16. In [37, 33, 19], they mainly focus on feature-

level alignment with different adversarial loss functions.

But working only on the feature level is not enough, even

though the best result [36] among them is still about 5%
worse than our results. Cycada [12] (we run their codes with

ResNet101) and DCAN [36] used the translation model fol-

lowed by the segmentation adaptation model to further re-

duce the visual domain gap, and both achieved very similar

performance. Ours uses similar loss function compared to

Cycada [12], but with a new proposed bidirectional learn-

ing method, 6% improvement can be achieved. CBST [39]

proposed a self-training method, and further improved the

performance with space prior information. For a fair com-

parison, we show the results that only use self-training.

With VGG16, we can get 10.4% improvement. Therefore,

we can find without bidirectional learning, the self-training

method is not enough to achieve a good performance.

In Table 6, we present the adaptation result on the

task “SYNTHIA to Cityscapes” for both ResNet101

and VGG16. The domain gap between SYNTHIA

and Cityscapes is much larger than that of GTA5 and

Cityscapes, and their categories are not fully overlapped.

As the baseline results [33, 19] chosen for ResNet101 only

use 13 categories, we also list results for the 13 categories

for a fair comparison. We can find from Table 6, as the do-

main gap increases, the adaptation result for Cityscapes is

much worse compared to the result in Table 5. For exam-

ple, the category like ‘road’, ‘sidewalk’ and ‘car’ are more

than 10% worse. And this problem will have a bad impact

on the SSL because of the lower prediction confidence. But

we can still achieve at least 4% better than most of other

results given by [37, 39, 36, 33].

Performance Gap to Upper Bound. We use the target

dataset with ground truth labels to train a segmentation

model, which shares the same backbone that we used, to

get the upper-bound result. For “GTA5 to Cityscapes”

with 19 categories, the upper bounds are 65.1 and 60.3 for

ResNet101 and VGG16 respectively. For “SYNTHIA to

Cityscapes” with 13 categories for ResNet101 and 16 cate-

gories for VGG16, the upper bounds are 71.7 and 59.5. For

our method, although the performance gap is 16.6 at least,

it has been reduced significantly compared to other meth-

ods. However, it means there is still big room to improve

the performance. We leave it in future work.

6. Conclusion

In this paper, we propose a bidirectional learning method

with self-supervised learning for segmentation adaptation

problem. We show via a lot of experiments that segmen-

tation performance for real dataset can be improved when

the model is trained bidirectionally and achieve the state-

of-the-art result for multiple tasks with different networks.
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