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Figure 2. Multi-domain and universal object detectors for three domains. “D” is the domain, “O” the output, “A” domain-specific adapter,

and “DA” the proposed domain attention module. The blue color and the DA are domain-universal, but the other colors domain-specific.

tor much more challenging than a universal image classifier.

In this work, we consider the design of an object detec-

tor capable of operating over multiple domains. We begin

by establishing a new universal object detection benchmark,

denoted as UODB, consisting of 11 diverse object detection

datasets (see Figure 1). This is significantly more challeng-

ing than the Decathlon [40] benchmark for multi-domain

recognition. To the best of our knowledge, we are the first

to attack universal object detection using deep learning. We

expect this new benchmark will encourage more efforts in

the area. We then propose a number of architectures, shown

in Figure 2, to address the universal/multi-domain detection

problem.

The two architecture on the left of Figure 2 are multi-

domain detectors, which require prior knowledge of the do-

main of interest. The two architectures on the right are uni-

versal detectors, with no need for such knowledge. When

operating on an unknown domain, the multi-domain detec-

tor have to repeat the inference process with different sets

of domain-specific parameters, while the universal detector

performs inference only once. The detector of Figure 2 (a)

is a bank of domain-specific detectors, with no sharing of

parameters/computations. Multi-domain learning (MDL)

[20, 35, 24, 59, 19, 5] improves on this, by sharing pa-

rameters across various domains, and adding small domain-

specific layers. In [40, 1], expensive convolutional layers

are shared and complemented with light-weight domain-

specific adaptation layers. Inspired by these, we propose

a new class of light adapters for detection, based on the

squeeze and excitation (SE) mechanism of [15], and de-

noted SE adapters. This leads to the multi-domain detector

of Figure 2 (b), where domain-specific SE adapters are in-

troduced throughout the network to compensate for domain

shift. On UODB, this detector outperforms that of Figure 2

(a) with ∼5 times fewer parameters.

In contrast, the universal detector of Figure 2 (c)

shares all parameters/computations (other than output lay-

ers) across domains. It consists of a single network, which

is always active. This is the most efficient solution in terms

of parameter sharing, but it is difficult for a single model to

cover many domains with nontrivial domain shifts. Hence,

this solution underperforms the multi-domain detector of

Figure 2 (b). To overcome this problem, we propose the

domain-attentive universal detector of Figure 2 (d). This

leverages a novel domain attention (DA) module, in which

a bank of the new universal SE adapters (active at all times)

is first added, and a feature-based attention mechanism is

then introduced to achieve domain sensitivity. This mod-

ule learns to assign network activations to different do-

mains, through the universal SE adapter bank, and soft-

routs their responses by the domain-attention mechanism.

This enables the adapters to specialize on individual do-

mains. Since the process is data-driven, the number of do-

mains does not have to match the number of datasets and

datasets can span multiple domains. This allows the net-

work to leverage shared knowledge across domains, which

is not available in the common single-domain detectors.

Our experiments, on the newly established UODB, show

that this data-driven form of parameter/computation sharing

enables substantially better multi-domain detection perfor-

mance than the remaining architectures of Figure 2.

2. Related Work

Object Detection: The two stage detection framework of

the R-CNN [12], Fast R-CNN [11] and Faster R-CNN [44]

detectors has achieved great success in recent years. Many

works have expanded this base architecture. For example,

MS-CNN [2] and FPN [26] built a feature pyramid to effec-

tively detect objects of various scales; the R-FCN [4] pro-

posed a position-sensitive pooling to achieve further speed-

ups; and the Cascade R-CNN [3] introduced a multi-stage

cascade for high quality object detection. In parallel, single-

stage object detectors, such as YOLO [42] and SSD [29],

became popular for their fairly good performance and high
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speed. However, none of these detectors could reach high

detection performance on more than one dataset/domain

without finetuning. In the pre-deep learning era, [23] pro-

posed a universal DPM [8] detector, by adding dataset spe-

cific biases to the DPM. But this solution is limited since

DPM is not comparable to deep learning detectors.

Multi-Task Learning: Multi-task learning (MTL) investi-

gates how to jointly learn multiple tasks simultaneously, as-

suming a single input domain. Various multi-task networks

[25, 62, 13, 28, 50, 63] have been proposed for joint solu-

tion of tasks such as object recognition, object detection,

segmentation, edge detection, human pose, depth, action

recognition, etc., by leveraging information sharing across

tasks. However, the sharing is not always beneficial, some-

times hurting performance [7, 22]. To address this, [32]

proposed a cross-stitch unit, which combines tasks of dif-

ferent types, eliminating the need to search through several

architectures on a per task basis. [62] studied the common

structure and relationships of several different tasks.

Multi-Domain Learning/Adaptation: Multi-domain

learning (MDL) addresses the learning of representations

for multiple domains, known a priori [20, 36]. It uses

a combination of parameters that are shared across do-

mains and domain-specific parameters. The latter are

adaptation parameters, inspired by works on domain

adaptation [38, 30, 46, 31], where a model learned from a

source domain is adapted to a target domain. [1] showed

that multi-domain learning is feasible by simply adding

domain-specific BN layers to an otherwise shared network.

[40] learned multiple visual domains with residual adapters,

while [41] empirically studied efficient parameterizations.

However, they build on BN layers and are not suitable for

detection, due to the batch constraints of detector training.

Instead, we propose an alternative SE adapters, inspired by

“Squeeze-and-Excitation” [15], to solve this problem.

Attention Module: [49] proposed a self-attention module

for machine translation, and similarly, [51] proposed a non-

local network for video classification, based on a spacetime

dependency/attention mechanism. [15] focused on chan-

nel relationships, introducing the SE module to adaptatively

recalibrate channel-wise feature responses, which achieved

good results on ImageNet recognition. In this work, we in-

troduce a domain attention module inspired by SE to make

data-driven domain assignments of network activations, for

the more challenging problem of universal object detection.

3. Multi-domain Object Detection

The problem of multi-domain object detection is to de-

tect objects on various domains.

3.1. Universal Object Detection Benchmark

To train and evaluate universal/multi-domain object de-

tection systems, we established a new universal object de-

tection benchmark (UODB) of 11 datasets: Pascal VOC [6],

WiderFace [58], KITTI [9], LISA [33], DOTA [53], COCO

[27], Watercolor [17], Clipart [17], Comic [17], Kitchen

[10] and DeepLesions [55]. This set includes the popu-

lar VOC [6] and COCO [27], composed of images of ev-

eryday objects, e.g. bikes, humans, animals, etc. The 20

VOC categories are replicated on CrossDomain [17] with

three subsets of Watercolor, Clipart and Comic, with objects

depicted in watercolor, clipart and comic styles, respec-

tively. Kitchen [10] consists of common kitchen objects,

collected with an hand-held Kinect, while WiderFace [58]

contains human faces, collected on the web. Both KITTI [9]

and LISA [33] depict traffic scenes, collected with cameras

mounted on moving vehicles. KITTI covers the categories

of vehicle, pedestrian and cyclist, while LISA is composed

of traffic signs. DOTA [53] is a surveillance-style dataset,

containing objects such as vehicles, planes, ships, harbors,

etc. imaged from aerial cameras. Finally DeepLesion [55]

is a dataset of lesions on medical CT images. A represen-

tative example of each dataset is shown in Figure 1. Some

more details are summarized in Table 1. Altogether, UODB

covers a wide range of variations in category, camera view,

image style, etc, and thus establishes a good suite for the

evaluation of universal/multi-domain object detection.

3.2. Single-domain Detector Bank

The Faster R-CNN [44] is used as the baseline architec-

ture of all detectors proposed in this work. As a single-

domain object detector, the Faster R-CNN is implemented

in two stages. First, a region proposal network (RPN) pro-

duces preliminary class-agnostic detection hypotheses. The

second stage processes these with a region-of-interest de-

tection network to output the final detections.

As illustrated in Figure 2 (a), the simplest solution to

multi-domain detection is to use an independent detector

per dataset. We use this detector bank as a multi-domain de-

tection baseline. This solution is the most expensive, since

it implies replicating all parameters of all detectors. Fig-

ure 3 shows the statistics (mean and variance) of the convo-

lutional activations of the 11 detectors on the correspond-

ing dataset. Some observations can be made. First, these

statistics vary non-trivially across datasets. While the acti-

vation distributions of VOC and COCO are similar, DOTA,

DeepLesion and CrossDomain have relatively different dis-

tributions. Second, the statistics vary across network layers.

Early layers, which are more responsible for correcting do-

main shift, have more evident differences than latter layers.

This tends to hold up to the output layers. These are respon-

sible for the assignment of images to different categories

and naturally differ. Interestingly, this behavior also holds

for RPN layers, even though they are category-independent.

Third, many layers have similar statistics across datasets.

This is especially true for intermediate layers, suggesting
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Figure 3. The activation statistics of all single-domain detectors.

that they can be shared by at least some domains.

3.3. Adaptive Multi-domain Detector

Inspired by Figure 3, we propose an adaptive multi-

domain detector, shown in Figure 2 (b). In this model, the

output and RPN layers are domain-specific. The remain-

der of the network, e.g. all convolutional layers, is shared.

However, to allow adaptation to new domains, we intro-

duce some additional domain-specific layers, as is com-

monly done in MDL [40, 1]. These extra layers should be 1)

sufficiently powerful to compensate for domain shift; 2) as

light as possible to minimize parameters/computation. The

adaptation layers of [40, 1] rely extensively on BN. This is

unfeasible for detection, where BN layers have to be frozen,

due to the small batch sizes allowable for detector training.

Instead, we have experimented with the squeeze-and-

excitation (SE) module [15] of Figure 4 (a). There are

a few reasons for this. First, feature-based attention is

well known to be used in mammalian vision as a mech-

anism to adapt perception to different tasks and environ-

ments [61, 37, 52, 18, 60]. Hence, it seems natural to con-

sider feature-based attention mechanisms for domain adap-

tation. Second, the SE is a module that accounts for in-

terdependencies among channels to modulate channel re-

sponses. This can be seen as a a feature-based attention

mechanism. Third the SE module has enabled the SENet to

achieve state-of-the-art classification on ImageNet. Finally,

it is a light-weight module. Even when added to each resid-

ual block of the ResNet [14] it increases the total parameter

count by only ∼10%. This is close to what was reported

by [40] for BN-based adapters. For all these reasons, we

adopt the SE module as the atomic adaptation unit, used to

build all domain adaptive detectors proposed in this work,

and denote it by the SE adapter.

Residual

Global pooling

FC

ReLU

FC

Sigmoid

Scale

(a) SE adapter

FC

Residual

Global pooling

FC FC

ReLU ReLU ReLU

FC FC FC

Sigmoid

Scale

(b) SE adapter bank

Figure 4. (a) block diagram of SE adapter and (b) SE adapter bank.

3.4. SE Adapters

Following [15], the SE adapter consists of the sequence

of operations of Figure 4 (a): a global pooling layer, a fully

connected (FC) layer, a ReLU layer, and a second FC layer,

implementing the computation

XSE = FSE(Favg(X)), (1)

where Favg is a global average pooling operator, and FSE

the combination of FC+ReLU+FC layers. The channel di-

mension reduction factor r, in Figure 4, is set as 16 in our

experiments. To enable multi-domain object detection, the

SE adapter is generalized to the architecture of Figure 4 (b),

which is denoted as the SE adapter bank. This consists

of adding a SE adapter branch per domain and a domain-

switch, which allows the selection of the SE adapter associ-

ated with the domain of interest. Note that this architecture

assumes this domain to be known a priori. It leads to the

multi-domain detector of Figure 2 (b). Compared to Figure

2 (a), this model is up to 5 times smaller, while achieving

better overall performance across the 11 datasets.

4. Universal Object detection

The detectors of the previous section require prior

knowledge of the domain of interest. This is undesirable for

autonomous systems, like robots or self-driving cars, where

determining the domain is part of the problem to solve. In

this section, we consider the design of universal detectors,

which eliminate this problem.

4.1. Universal Detector

The simplest solution to universal detection, shown in

Figure 2 (c), is to share a single detector by all tasks. Note

that, even for this detector, the output layer has to be task-

specific, by definition of the detection problem. We have

found that there is also a benefit in using task-specific RPN

layers, due to the observations of Figure 3. This is not a
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Figure 5. The block diagram (left) and the detailed view (right) of the proposed domain adaptation module.

problem because the task, namely what classes the system is

trying to detect, is always known. Universality refers to the

domain of input images that the detector processes, which

does not have to be known in the case of Figure 2 (c). Be-

yond universal, the fully shared detector is the most efficient

of all detectors considered in this work, as it has no domain-

specific parameters. On the other hand, by forcing the same

set of parameters/representations on all domains, it has little

flexibility to deal with the statistical variations of Figure 3.

In our experiments, this detector usually underperforms the

multi-domain detectors of Figure 2 (a) and (b).

4.2. Domain-attentive Universal Detector

Ideally, a universal detector should have some domain

sensitivity, and be able to adapt to different domains. While

this has a lot in common with multi-domain detection, there

are two main differences. First, the domain must be inferred

automatically. Second, there is no need to tie domains and

tasks. For example, the traffic tasks of Figure 1 operate on

a common visual domain, “traffic scenes”, which can have

many sub-domains, e.g. due to weather conditions (sunny

vs. rainy), environment (city vs. rural ), etc. Depending on

the specific operating conditions, any of the tasks may have

to be solved in any of the domains. In fact, the domains may

not even have clear semantics, i.e. they can be data-driven.

In this case, there is no need to request that each detector

operates on a single domain, and a soft domain-assignment

makes more sense. Given all of this, while domain adapta-

tion can still be implemented with the SE adapter of Fig-

ure 4 (a), the hard attention mechanism of Figure 4 (b),

which forces the network to fully attend to a single domain,

can be suboptimal. To address this limitations, we propose

the domain adaptation (DA) module of Figure 5. This has

two components, a universal SE adapter bank and a domain

attention mechanism, which are discussed next.

4.3. Universal SE Adapter Bank

The universal SE (USE) Adapter Bank, shown in Figure

5, is an SE adapter bank similar to that of Figure 4 (b). The

main difference is that there is no domain switching, i.e. the

adapter bank is universal. This is implemented by concate-

nating the outputs of the individual domain adapters to form

a universal representation space

XUSE = [X1

SE , X2

SE , ..., XN
SE ] ∈ R

C×N , (2)

where N is the number of adapters and Xi
SE the output of

each adapter, given by (1). Note that N is not necessar-

ily identical to the number of detection tasks. The USE

adapter bank can be seen as a non-linear generalization of

the filter banks commonly used in signal processing [48].

Each branch (non-linearly) projects the input along a sub-

space matched to the statistics of a particular domain. The

attention component then produces a domain-sensitive set

of weights that are used to combine these projections in a

data-driven way. In this case, there is no need to know the

operating domain in advance. In fact there may not even be

a single domain, since an input image can excite multiple

SE adapter branches.

4.4. Domain Attention

The attention component, of Figure 5, produces a

domain-sensitive set of weights that are used to combine

the SE bank projections. Motivated by the SE module, the

domain attention component first applies a global pooling

to the input feature map, to remove spatial dimensions, and

then a softmax layer (linear layer plus softmax function)

SDA = FDA(X) = softmax(WDAFavg(X)), (3)

where WDA ∈ R
N×C is the matrix of softmax layer

weights. The vector SDA is then used to weigh the USE

bank output XUSE , to produce a vector of domain adaptive

responses

XDA = XUSESDA ∈ R
C×1. (4)

As in the SE module of [15], XDA is finally used to channel-

wise rescale the activations X ∈ R
C×H×W being adapted,

X̃ = Fscale(X, σ(XDA)) (5)

where Fscale(·) implements a channel-wise multiplication,

and σ is the sigmoid function.
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dataset
dataset details hyperparameters

mAP
class T/V/T domain size BS RoIs S/R

KITTI 3 7k/-/7k traffic 576 256 128 12/3 64.3

WiderFace 1 13k/3k/16k face 800 256 256 12/1 48.9

VOC 20 8k/8k/5k natural 600 256 256 4/3 78.5

LISA 4 8k/-/2k traffic 800 64 32 4/3 88.3

DOTA 15 14k/5k/10k aerial 600 128 128 12/3 57.5

COCO 80 35k/5k/- natural 800 256 256 4/3 47.3

Watercolor 6 1k/-/1k watercolor 600 256 256 4/3 52.4

Clipart 6 0.5k/-/0.5k clipart 600 256 256 4/3 32.1

Comic 20 1k/-/1k comic 600 256 256 4/3 45.8

Kitchen 11 5k/-/2k indoor 800 256 256 12/3 87.7

DeepLesion 1 23k/5k/5k medical 512 128 64 12/3 51.3

Average - - - - - - - 59.4

Table 1. The dataset details, the domain-specific hyperparame-

ters and the performance of the single-domain detectors. “T/V/T”

means train/val/test, “size” the shortest side of inputs, BS RPN

batch size, and S/R anchor “scales/aspect ratios”.

In this way, the USE bank captures the feature subspaces

of the domains spanned by all datasets, and the DA mech-

anism soft-routes the USE projections. Both operations are

data-driven, and operate with no prior knowledge of the do-

main. Unlike the hard attention mechanism of Figure 4

(b), this DA module enables information sharing across do-

mains, leading to a more effective representation. In our ex-

periments, the domain-attentive universal detector outper-

forms the other detectors of Figure 2.

5. Experiments

In all experiments, we used a PyTorch implementation

[57] of the Faster R-CNN with the SE-ResNet-50 [15] pre-

trained on ImageNet, as the backbone for all detectors.

Training started with a learning rate of 0.01 for 10 epochs

and 0.001 for another 2 epochs on 8 synchronized GPUs,

each holding 2 images per iteration. All samples of a batch

are from a single (randomly sampled) dataset, and in each

epoch, all samples of each dataset are processed only once.

As is common for detection, the first convolutional layer,

the first residual block and all BN layers are frozen, during

training. These settings were used in all experiments, unless

otherwise noted. Both multi-domain and universal detectors

were trained on all domains of interest simultaneously.

The Faster R-CNN has many hyperparameters. In the

literature, where detectors are tested on a single domain,

these are tuned to the target dataset, for best performance.

This is difficult, and very tedious, to do over the 11 datasets

now considered. We use the same hyperparameters across

datasets, except when this is critical for performance and

relatively easy to do, e.g. the choice of anchors. The main

dataset-specific hyperparameters are shown in Table 1.

5.1. Datasets and Evaluation

Our experiments used the new UODB benchmark intro-

duced in Section 3.1. For Watercolor [17], Clipart [17],

Params time KITTI VOC WiderFace LISA Kitchen Avg

single-domain 31.06M×5 5x 64.3 78.5 48.8 88.3 87.7 73.5

adaptive 42.37M 6x 67.8 78.9 49.9 88.5 86.0 74.2

BNA [1] 31.72M 5x 64.0 71.9 44.0 66.8 84.3 66.2

RA [40] 82.72M 6x 64.3 70.5 46.9 69.1 84.6 67.1

universal 31.64M 1x 66.3 76.7 45.5 88.4 85.4 72.5

universal+DA† 42.37M 1.3x 67.5 79.0 49.8 88.2 88.0 74.6

universal+DA 42.44M 1.33x 67.9 79.2 52.2 87.5 88.5 75.1

Table 2. The comparison on multi-domain detection. † denotes

fixed assignment. “time” is the relatively run-times on the five

datasets when the domain is unknown.

Comic [17], Kitchen [10] and DeepLesion [55], we trained

on the official trainval sets and tested on the test set.

For Pascal VOC [6], we trained on VOC2007 and VOC2012

trainval set and tested on VOC2007 test set. For

WiderFace [58], we trained on the train set and tested on

the val set. For KITTI [9], we followed the train/val split-

ting of [2] for development and trained on the trainval

set for the final results on test set. For LISA [33], we

trained on the train set and tested on the val set. For

DOTA [53], we followed the pre-processing of [53], trained

on train set and tested on val set. For MS-COCO

[27], we trained on COCO 2014 valminusminival and

tested on minival, to shorten the experimental period.

All detectors were evaluated on each dataset individu-

ally. The Pascal VOC mean average precision (mAP) was

used for evaluation in all cases. The average mAPs was

used as the overall measure of universal/multi-domain de-

tection performance. The domain attentive universal detec-

tor was also evaluated using the official evaluation tool of

each dataset, for comparison with the literature.

5.2. Single-domain Detection

Table 1 shows the results of the single-domain detector

bank of Figure 2 (a) on all datasets. Our VOC baseline with

the SE-ResNet-50 is 78.5, and better than the Faster R-CNN

performance of [45, 14] (76.4 mAP for ResNet-101). The

other entries in the table are incomparable to the literature,

where different evaluation metrics/tools are used for differ-

ent datasets. The detector bank is a fairly strong baseline

for multi-domain detection (average mAP of 59.4).

5.3. Multi-domain Detection

Table 2 compares the multi-domain object detection per-

formance of all architectures of Figure 2. For simplic-

ity, only five datasets (VOC, KITTI, WiderFace, LISA and

Kitchen) were used in this section. The table confirms that

the adaptive multi-domain detector of Section 3.3 (“adap-

tive”) is light-weight, only adding ∼11M parameters to the

Faster R-CNN over the five datasets. Nevertheless, it out-

performs the much more expensive single-domain detector

bank by 0.7 points. Note that the latter is a strong base-

line, showing the multi-domain detector can beat individu-

ally trained models with a fraction of the computation. Ta-
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# adapters Params DA index KITTI VOC WiderFace LISA Kitchen COCO DOTA DeepLesion Comic Clipart Watercolor Avg

single-domain - 31.06M×11 - 64.3 78.5 48.8 88.3 87.7 47.3 57.5 51.2 45.8 32.1 52.6 59.4

universal - 32.60M - 67.5 80.9 45.5 87.1 88.5 45.5 54.7 45.3 51.1 43.1 47.0 59.7

adaptive 11 58.13M - 68.0 82.1 50.6 88.5 87.2 45.7 54.1 53.0 50.0 56.1 57.8 63.0

universal+DA 11 58.29M all 68.1 82.0 51.6 88.3 90.1 46.5 57.0 57.3 50.7 53.1 58.4 63.8

universal+DA* 6 41.74M first+middle 67.6 82.7 51.8 87.9 88.7 46.8 57.0 54.8 52.6 54.6 58.2 63.9

Table 3. Overall results on the full universal object detection benchmark (11 datasets).

# adapters Params KITTI VOC WiderFace LISA Kitchen Avg

single 31.06M×5 64.3 78.5 48.8 88.3 87.7 73.5

1 32.32M 66.3 74.9 43.5 87.4 85.4 71.3

3 37.38M 67.8 78.4 47.1 87.7 89.0 74.1

5 42.44M 67.9 79.2 52.2 87.5 88.5 75.1

7 47.50M 67.9 79.6 52.2 89.5 88.7 75.6

Table 4. The effect of SE adapters number.

ble 2 also shows that the proposed SE adapter significantly

outperforms the BN adapter (BNA) of [1] and the residual

adapter (RA) or [40], previously proposed for classification.

This is not surprising, given the above discussed inadequacy

of BN as an adaptation mechanism for object detection.

The universal detector of Figure 2 (c) is even more

efficient, adding only 0.5M parameters to the Faster R-

CNN, accounting for domain-specific RPN and output lay-

ers. However, its performance (“universal” in Table 2) is

much weaker than that of the adaptive multi-domain de-

tector (1.7 points). Finally, the domain-attentive universal

detector (“universal+DA”) has the best performance. With

a ∼7% parameter increase per domain, i.e. comparable to

the multi-domain detector, it outperforms the single-domain

bank baseline by 1.6 points. To assess the importance of

data-driven domain attention mechanism of Figure 5 (b),

we fixed the soft domain assignments, simply averaging

the SE adapter responses, during both training and infer-

ence. This (denoted “universal+DA†”) caused a perfor-

mance drop of 0.5 point. Finally, Table 2 shows the rela-

tive run-times of all methods on the five datasets, when the

domain is unknown. It can be seen that “universal+DA” is

about 4× faster than the multi-domain detectors (“single-

domain” and “adaptive”) and only 1.33× slower than “uni-

versal”.

5.4. Effect of the number of SE adapters

For the USE bank of Figure 5 (b), the number N of SE

adapters does not have to match the number of detection

tasks. Table 4 summarizes how the performance of the do-

main attentive universal detector depends on N . For sim-

plicity, we again use 5 datasets in this experiment. For a

single adapter, the DA module reduces to the standard SE

module, and the domain attentive universal detector to the

universal detector. This has the worst performance. Perfor-

mance improves with the number of adapters. On the other

hand, the number of parameters increases linearly with the

number of adapters. In these experiments, the best trade-off

between performance and parameters is around 5 adapters.

Figure 6. Soft assignments across SE units for all datasets.

This suggests that, while a good rule of thumb is to use

“as many adapters as domains”, fewer adapters can be used

when complexity is at a premium.

5.5. Results on the full benchmark

Table 3 presents results on the full benchmark. The set-

tings are as above, but we used 10 epochs with learning rate

0.1, and then 4 epochs with 0.01 on 8 GPUs, each hold-

ing 2 images. The universal detector performs compara-

bly to the single-domain detector bank, with 10 times fewer

parameters. The domain-attentive universal detector (“uni-

versal+DA”) improves baseline performance by 4.4 points

with a 5-fold parameter decrease. It has large performance

gains (>5 points) on DeepLesion, Comic, and Clipart. This

is because Comic/Clipart contain underpopulated classes,

greatly benefiting from information leveraged from other

domains. The large gain of DeepLesion is quite interest-

ing, given the nontrivial domain shift between its medical

CT images and the RGB images of the other datasets. The

gains are mild for VOC, KITTI, Kitchen, WiderFace and

WaterColor (1∼5 points), and none for COCO, LISA and

DOTA. In contrast, for the universal detector, joint training

is not always beneficial. This shows the importance of do-

main sensitivity for universal detection.

To investigate what was learned by the domain attention

module of Figure 5 (b), we show the soft assignments of

each dataset, averaged over its validation set, in Figure 6.

Only the first and last blocks of the 4th and 5th residual
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Backbone mAP

Faster-RCNN [44] ResNet-101 76.4

R-FCN [4] ResNet-50 77.0

Faster-RCNN‡ [45] VGG16 78.8

Faster-RCNN (ours) SE-ResNet-50 78.5

Faster-RCNN+DA SE-ResNet-50 79.6

Faster-RCNN+DA† SE-ResNet-50 82.7

(a) The comparison on VOC 2007 test.

‡/† denotes with COCO trainval/val.

Backbone Easy Medium Hard

Faster-RCNN [44] VGG-16 0.907 0.850 0.492

MS-CNN [2] VGG-16 0.916 0.903 0.802

HR [16] ResNet-101 0.925 0.910 0.806

SSH [34] VGG-16 0.931 0.921 0.845

Faster-RCNN (ours) SE-ResNet-50 0.910 0.872 0.556

Faster-RCNN+DA SE-ResNet-50 0.914 0.882 0.587

(b) The comparison on WiderFace Val.

Backbone Sensitivity

Faster-RCNN [44] VGG-16 81.62

R-FCN [4] VGG-16 82.21

3-DCE, 9 Slices [54] VGG-16 84.34

3-DCE, 27 Slices [54] VGG-16 85.65

Faster-RCNN (ours) SE-ResNet-50 82.44

Faster-RCNN+DA SE-ResNet-50 87.29

(c) Sensitivity at 4 FPs per image on DeepLe-

sion test set.

Backbone Clipart Watercolor Comic

ADDA [47] VGG-16 27.4 49.8 49.8

Faster-RCNN[44] VGG-16 26.2 - -

SSD300 [29] VGG-16 26.8 49.6 24.9

Faster-RCNN+DT+PL[17] VGG-16 34.9 - -

SSD300+DT+PL[17] VGG-16 46.0 54.3 37.2

Faster-RCNN (ours) SE-ResNet-50 32.1 52.6 45.8

Faster-RCNN+DA SE-ResNet-50 54.6 58.2 52.6

(d) The comparison on Clipart, Watercolor and Comic test set.

Backbone Moderate Easy Hard

Faster-RCNN [44] VGG-16 81.84 86.71 71.12

SDP+CRC [56] VGG-16 83.53 90.33 71.13

YOLOv3 [43] Darknet-53 84.13 84.30 76.34

MS-CNN [2] VGG-16 88.83 90.46 74.76

F-PointNet [39] PointNet 90.00 90.78 80.80

Faster-RCNN (ours) SE-ResNet-50 81.83 90.34 71.23

Faster-RCNN+DA SE-ResNet-50 88.23 90.45 74.21

(e) The comparison on KITTI test set of car.

Table 5. The comparison with official evaluation on Pascal VOC, KITTI, DeepLesion, Clipart, Watercorlor, Comic and WiderFace.

stages are shown. The fact that some datasets, e.g. VOC and

COCO, have very similar assignment distributions, suggests

a substantial domain overlap. On the other hand, DOTA

and DeepLesion have distributions quite distinct from the

remaining. For example, on block “DA 4 1”, DeepLesion

fully occupies a single domain. These observations are con-

sistent with Figure 3, indicating that the proposed DA mod-

ule is able to learn domain-specific knowledge.

A comparison of the first and the last blocks of each

residual stage, e.g. “DA 4 1” v.s. “DA 4 6”, shows that

the latter are much less domain sensitive than the former,

suggesting that they could be made universal. To test this

hypothesis, we trained a model with only 6 SE adapters for

the 11 datasets, and only in the first and middle blocks, e.g.

“DA 4 1” and “DA 4 3”. This model, “universal+DA*”,

achieved the best performance with much less parameters

than the “universal+DA” detector of 11 adapters. It outper-

formed the single domain baseline by 4.5 points.

5.6. Official evaluation

Since, to the best of our knowledge, this is the first work

to explore universal/multi-domain object detection on 11

datasets, there is no literature for a direct comparison. In-

stead, we compared the “universal+DA*” detector of Ta-

ble 3 to the literature using the official evaluation for each

dataset. This is an unfair comparison, since the universal de-

tector has to remember 11 tasks. On VOC, we trained two

models, with/without COCO. Results are shown in Table

5a, where all methods were trained on Pascal VOC 07+12

trainval. Note that our Faster R-CNN baseline ( SE-

ResNet-50 backbone) is stronger than that of [14] (ResNet-

101). Adding universal domain adapters improved on the

baseline by more than 1.1 points. Adding COCO enabled

another 3.1 points. Note that, 1) this universal training

is different from the training scheme of [45] (the network

trained on COCO then finetuned on VOC), where the final

model is only optimized for VOC; and 2) only the 35k im-

ages of COCO2014 valminusminival were used.

The baseline was the default Faster R-CNN that initially

worked on VOC, with minimum dataset-specific changes,

e.g. in Table 1. Table 5e shows that this performed weakly

on KITTI. However, the addition of adapters, enabled a

gain of 6.4 points (Moderate setting). This is compara-

ble to detectors optimized explicitly on KITTI, e.g. MS-

CNN [2] and F-PointNet [39]. For WiderFace, which has

enough training face instances, the gains of shared knowl-

edge are smaller (see Table 5b). On the other hand, on

DeepLesion and CrossDomain (Clipart, Comic and Water-

color), see Table 5c and 5d respectively, the domain atten-

tive universal detector significantly outperformed the state-

of-the-art. Overall, these results show that a single de-

tector, which operates on 11 datasets, is competitive with

single-domain detectors in highly researched datasets, such

as VOC or KITTI, and substantially better than the state-

of-the-art in less explored domains. This is achieved with a

relatively minor increase in parameters, vastly smaller than

that needed to deploy 11 single task detectors.

6. Conclusion

We have investigated the unexplored and challenging

problem of universal/multi-domain object detection. We

proposed a universal detector that requires no prior domain

knowledge, consisting of a single network that is active for

all tasks. The proposed detector achieves domain sensitivity

through a novel data-driven domain adaptation module and

was shown to outperform multiple universal/multi-domain

detectors on a newly established benchmark, and even indi-

vidual detectors optimized for a single task.
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