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Abstract

Modern machine learning datasets can have biases for
certain representations that are leveraged by algorithms to
achieve high performance without learning to solve the un-
derlying task. This problem is referred to as “representa-
tion bias”. The question of how to reduce the representa-
tion biases of a dataset is investigated and a new dataset
REPresentAtion blas Removal (REPAIR) procedure is pro-
posed. This formulates bias minimization as an optimiza-
tion problem, seeking a weight distribution that penalizes
examples easy for a classifier built on a given feature rep-
resentation. Bias reduction is then equated to maximizing
the ratio between the classification loss on the reweighted
dataset and the uncertainty of the ground-truth class la-
bels. This is a minimax problem that REPAIR solves by
alternatingly updating classifier parameters and dataset re-
sampling weights, using stochastic gradient descent. An ex-
perimental set-up is also introduced to measure the bias of
any dataset for a given representation, and the impact of
this bias on the performance of recognition models. Ex-
periments with synthetic and action recognition data show
that dataset REPAIR can significantly reduce representa-
tion bias, and lead to improved generalization of models
trained on REPAIRed datasets. The tools used for charac-
terizing representation bias, and the proposed dataset RE-
PAIR algorithm, are available at https://github.com/
JerryYLi/Dataset—-REPAIR/.

1. Introduction

Over the last decade, deep neural networks (DNNs) have
enabled transformational advances in various fields, deliver-
ing superior performance on large-scale benchmarks. How-
ever like any other machine learning systems, the quality of
DNNs is only as good as that of the datasets on which they
are trained. In this regard, there are at least two sources of
concern. First, they can have limited generalization beyond
their training domain [32, 2]. This is classically known as
dataset bias. Second, the learning procedure could give rise
to biased deep learning algorithms [3, 25]. Representation
bias is an instance of this problem, that follows from train-
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ing on datasets that favor certain representations over oth-
ers [22]. When a dataset is easily solved by adoption of a
specific feature representation ¢, it is said to be biased to-
wards ¢. Bias is by itself not negative: If the classification
of scenes, within a certain application context, is highly de-
pendent on the detection of certain objects, successful scene
recognition systems are likely to require detailed object rep-
resentations. In this application context, scene recognition
datasets should exhibit object bias. However, in the absence
of mechanisms to measure and control bias, it is unclear if
conclusions derived from experiments are tainted by unde-
sirable biases. When this is the case, learning algorithms
could simply overfit to the dataset biases, hampering gener-
alization beyond the specific dataset.

This problem is particularly relevant for action recog-
nition, where a wide range of diverse visual cues can be
informative of action class labels, and leveraged by dif-
ferent algorithms. In the literature, different algorithms
tend to implement different representations. Some mod-
els infer action categories from one or a few video frames
[27, 14, 40], while others attempt to model long-term de-
pendencies [35, 37, 9]; some focus on modeling human
pose [15], and some prefer to incorporate contextual in-
formation [10]. In general, two algorithms that perform
equally well on a dataset biased towards a representation,
e.g. a dataset with static or single frame bias, can behave
in a drastically different manner when the dataset is aug-
mented with examples that eliminate this bias, e.g. by re-
quiring more temporal reasoning. Without the ability to
control the static bias of the dataset, it is impossible to rule
out the possibility that good performance is due to the abil-
ity of algorithms to pick up spurious static visual cues (e.g.
backgrounds, objects, etc.) instead of modeling action.

In this work, we investigate the question of how to reduce
the representation biases of a dataset. For this, we introduce
a new REPresentAtion blas Removal (REPAIR) procedure
for dataset resampling, based on an a formulation of bias
minimization as an optimization problem. REPAIR seeks a
set of example-level weights penalizing examples that are
easy for a classifier built on a given feature representation.
This is implemented by using a DNN as feature extractor for
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the representation of interest and learning an independent
linear classifier to classify these features. Bias reduction is
then equated to maximizing the ratio between the loss of
this classifier on the reweighted dataset and the uncertainty
of the ground truth class labels. We show that this reduces
to a minimax problem, solved by alternatingly updating the
classifier coefficients and the dataset resampling weights,
using stochastic gradient descent (SGD).

Beyond introducing the dataset REPAIR procedure, we
develop an experimental procedure for its evaluation. We
consider two scenarios in this work. The first is a controlled
experiment where we explicitly add color bias to an oth-
erwise unbiased dataset of grayscale images. This enables
the design of experiments that explicitly measure recogni-
tion performance as a function of the amount of bias. The
second is action recognition from videos, where many pop-
ular datasets are known to have static bias. In both cases,
dataset REPAIR is shown to substantially reduces represen-
tation bias, which is not possible with random subsampling.
A generic set-up is then introduced to evaluate the effect of
representation bias on model training and evaluation. This
has two main components. The first measures how the per-
formance of different algorithms varies as a function of the
bias of datasets towards a given representation. The second
analyzes how representation bias affects the ability of algo-
rithms to generalize across datasets. Various experiments in
this set-up are performed leading to a series of interesting
findings about behavior of models on resampled datasets.

Overall, the paper makes three main contributions. The
first is a novel formulation of representation bias minimiza-
tion as a differentiable and directly optimizable problem.
The second is a SGD-based dataset resampling strategy,
REPAIR, which is shown able to significantly reduce rep-
resentation bias. The third is a new experimental set-up for
evaluating dataset resampling algorithms, that helps deter-
mine the importance of such resampling to achieving both
model generalization and fair algorithm comparisons.

2. Related Work

Fair Machine Leaning. As data-driven learning systems
are used in an increasingly larger array of real-world appli-
cations, the fairness and bias of the decisions made by these
systems becomes an important topic of study. In recent
years, different criteria have been proposed to assess the
fairness of learning algorithms [38, 7, 12], stimulating at-
tempts to build unbiased algorithms. In general, deep learn-
ing systems are apt at capturing or even magnifying biases
in their supervisory information [25, 39, 1, 29]. This is in
part due to the end-to-end nature of their training, which
encourages models to exploit biased features if this leads
to accurate classification. Prior works have mostly focused
on uncovering and addressing different instances of bias in
learned models, including gender bias [3, 39, 1] and racial

bias [29]. However, the bias of the data itself has received
less attention from the community.

Dataset Bias. While datasets are expected to resemble the
probability distribution of observations, the data collection
procedure can be biased by human and systematic factors,
leading to distribution mismatch between dataset and real-
ity, as well as between two datasets. This is referred to
as dataset bias [32, 30]. [32] analyzed the forms of bias
present in different image recognition datasets, and demon-
strated its negative effect on cross-dataset model general-
ization. Dataset bias has been well studied and can be com-
pensated with domain adaptation techniques [18, 8, 24].
Representation bias is a more recent concept, describ-
ing the ability of a representation to solve a dataset. It was
first explicitly formulated in [22], and used to measure the
bias of modern action recognition datasets towards objects,
scenes and people. Representation bias is different from
dataset bias, in that it enables potential “shortcuts” (the rep-
resentations for which the dataset is biased) that a model
can exploit to solve the dataset, without learning the under-
lying task of interest. For example, contextual bias allows
recognition algorithms to recognize objects by simply ob-
serving their environment [31]. Even when an agent does
not rely solely on shortcuts, its decisions may be biased for
these representations, as [25] showed in their case study of
how shape bias is captured by models trained on ImageNet.

Video Action Recognition. Early efforts at human action
recognition mainly relied on compact video descriptors en-
coding hand-crafted spatiotemporal features [20, 34, 35].
Deep learning approaches, like two-stream networks [27],
3D convolutional networks [16, 33] and recurrent neural
networks [37], use network architectures that learn all rele-
vant features. A common theme across many action recog-
nition works is to capture long-term temporal structure in
the video. However, current datasets have an abundance of
static cues that can give away the action (i.e. bias towards
static representations), making it difficult to assess the im-
portance of long-term temporal modeling. The presence of
this static bias has been noted and studied in previous work:
[10] exploited contextual cues to achieve state-of-the-art ac-
tion recognition performance. [0] visualized action models
to uncover unwanted biases in training data. Finally, [14]
identified action categories that can be recognized without
any temporal reasoning.

Dataset Resampling. Resampling refers to the practice
of obtaining sample points with different frequencies than
those of the original distribution. It is commonly used in
machine learning to balance datasets, by oversampling mi-
nority classes and under-sampling majority ones [5]. By al-
tering relative frequencies of examples, dataset resampling
enables the training of fairer models, which do not discrim-
inate against minority classes.



3. Minimum-bias Dataset Resampling
3.1. Representation Bias

Representation bias [22] captures the bias of a dataset
with respect to a representation. Let ¢ : X — Z be a
feature representation. The bias of dataset D towards ¢ is
the best achievable performance of the features ¢(z) on D
normalized by chance level. In this work, we measure clas-
sification performance with the risk defined by the cross-
entropy loss

R*(D,6) = min Exy[~log P(Y | Z:60)] (D
where X and Y are examples and their respective labels,
and Z = ¢(X) is the feature-space representation of X.
Here P(Y | ¢(X);0) is computed by a softmax layer
(weight matrix plus softmax nonlinearity) of input Z and
parameters 6, which are optimized by gradient descent. We
do not fine-tune the representation ¢ itself to retain its orig-
inal semantics; only the parameters of the softmax layer are
learned. Noting that minimizing the cross-entropy loss en-
courages the softmax classifier to output the true posterior
class probabilities P(Y | Z), we may rewrite (1) as

R(D,¢) =Ezy[-log P(Y | Z)]
=Ezy |-log P(Y) —log Pfé? (3/)
=H(Y)-I1(Z,Y) ?

The risk R*(D, ¢) is therefore upper-bounded by the en-
tropy of class label Y and decreases as the mutual informa-
tion between the feature vector Z and the label Y increases.
Hence, a lower R*(D, ¢) indicates that ¢ is more informa-
tive for solving D, i.e. the representation bias is larger. This
is captured by defining bias as

1(Z,Y)

R*(D, ¢)
H(Y) '

T TEW

B(D,¢) =

3)

Intuitively, bias has a value in [0, 1] that characterizes the re-
duction in uncertainty about the class label Y when feature
Z is observed. The normalization term H(Y) guarantees
fairness of bias measurements when datasets have different
numbers of classes. In practice the terms used to define bias
(3) are estimated by their empirical values

. 1
R*(D,({))%m@m—ﬁ Z log P(y | x;0) (4)
(x,y)€D
1
HY)~ 5 > logp, ©)
(x,y)€D

where p,, is the frequency of class y. Measuring the bias
thus amounts to learning a linear classifier 6, referred to as

bias estimator, and recording its cross-entropy loss as well
as the class frequencies. It should be noted that the bias for-
mulation of (3) differs from that of [22], in that 1) the bias
value is properly normalized to the range [0, 1], and 2) bias
is differentiable w.r.t. §. The last property is particularly
important, as it enables bias optimization.

3.2. Adversarial Example Reweighting

Representation bias can be problematic because it im-
plies that the dataset D favors some representations over
others. While there is an unknown ground-truth represen-
tation ¢* that achieves the best performance on a task, this
may not be the case for a dataset D of that task, if the dataset
is biased towards other representations. We provide some
simple examples of this in Sections 4.1 and 4.2. When this
is the case, it is desirable to modify the dataset so as to min-
imize bias. One possibility, that we explore in this work, is
to perform dataset resampling. While the risk of (4) and en-
tropy of (5) assign equal weight to each example in D, bias
can be controlled by prioritizing certain examples over oth-
ers. In other words, we attempt to create a new dataset D’
of reduced bias, by non-uniformly sampling examples from
the existing dataset D. For this, it suffices to augment each
example (x;,y;) € D with a weight w; that encodes the
probability of the example being selected by the resampling
procedure. This transforms (4) and (5) into

|D|
R (D', ¢) ~ mln— Z Z logP(yl | x4;60)  (6)
L.
~— " logp! 7
; S 8P 0
where
Py = Zi_y = ®)
The goal is then to find the set of weights {wz} that min-
imizes the bias
R*(D',9)
B(D’ =1-——7- 9
@.0)=1- 5T ©
This leads to the optimization problem
(w*,0%) = minmeax V(w, ) (10)
;w;log Py; | xi;0
V(w,8) = 1 — ZiWilos P | xi:6) )
> wilogpl,

To solve the minimax game of (10), we optimize the ex-
ample weights w = (wy, ..., wp|) and the bias estimator
0 in an alternating fashion, similar to the procedure used
to train adversarial networks [11]. To guarantee that the
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weights w; are binary probabilities, we define w as the out-
put of a sigmoid function w; = p(w;) = (1 +e«)"1 €
(0,1), and update w; directly. Throughout the training iter-
ations, the optimization of # with a classification loss pro-
duces more accurate estimates of the representation bias.
On the other hand, the optimization of w attempts to mini-
mize this bias estimate by assigning larger weights to mis-
classified examples. Upon convergence, 6* is a precise
measure of the bias of the reweighted dataset, and w* en-
sures that this bias is indeed minimized.

Resampling D according to the distribution w; leads to
a dataset D’ that is less biased for representation ¢, while
penalizing classes that do not contribute to the classification
uncertainty. Because this has the effect of equalizing the
preference of the dataset for different representations, we
denote this process as dataset REPresentAtion blas Removal
(REPAIR).

3.3. Mini-batch Optimization

Efficient optimization on a large-scale dataset usually re-
quires mini-batch approximations. The objective function
above can be easily adapted to mini-batch algorithms. For
this, it suffices to define

w;

> Wi

where w is the sample average of w;. The risk of (6) and
the entropy of (7) can then be rewritten as

12)

ry = 2 — ||
w

7|
R (D', ) ~ Hbm_ﬁ Zri log P(y; | x;;0)  (13)
=1
L
HY') ~ 1] Zri log p),, (14)
1=1

and estimated from mini-batches, by replacing | D| with the
mini-batch size. This enables the use of mini-batch SGD for
solving the optimal weights of (10). In practice REPAIR is
performed on training and test splits of D combined, to en-
sure that the training and test sets distributions are matched
after resampling.

4. Case studies

In this section, we introduce two case studies for the
study of bias reduction. The first is based on an artificial
setting where bias can be controlled explicitly. The second
uses the natural setting of action recognition from large-
scale video datasets. While the ground-truth representation
is not known for this setting, it is suspected that several bi-
ases are prevalent in existing datasets. In both cases, we in-
vestigate how representation biases can impair the fairness
of model evaluation, and prevent the learning of representa-
tions that generalize well.

4.1. Colored MNIST

The first case study is based on a modified version of
MNIST [21], which is denoted Colored MNIST. It exploits
the intuition that digit recognition does not require color
processing. Hence, the ground-truth representation for the
task of digit recognition should not involve color process-
ing. This is indeed guaranteed for representations learned
on a grayscale dataset like MNIST. However, by introduc-
ing color, it is possible to create a dataset biased for color
representations.

Experiment Setup. To introduce color bias, we color
each digit, using a different color for digits of different
classes, as shown in Figure la. Coloring was performed by
assigning to each example x; a color vector z; = (r;, g;, b;)
in the RGB color space. Color vectors were sampled from
class-dependent color distributions, i.e. examples of digit
y were colored with vectors sampled from a normal distri-
bution distribution p,(z) of mean p, = (u, 9, pub) and
covariance covariance ¥, = o?1. Since the simple obser-
vation of the color gives away the digit, Colored MNIST is
biased for color representations z. When learned on this
dataset, a CNN can achieve high recognition accuracies
without modeling any property of digits other than color.
The color assignment scheme also enables control over the
strength of this bias. By altering the means and variances
of the different classes, it is possible to create more or less
overlap between the color distributions, making color more
or less informative of the class label.

Bias and Generalization. To understand how representa-
tion bias affects the fair evaluation of models, we trained a
LeNet-5 CNN on the Colored MNIST training set and com-
pared its ability to recognize digits on the test sets of both
the Colored MNIST and the original (grayscale) MNIST
datasets. To control the color bias of Colored MNIST, we
varied the variance o of the color distributions. Figure 1b
shows how the bias, computed with (3) on the colored test
set, varies with o. Clearly, increasing the variance o reduces
bias. This was expected, since large variances create more
overlap between the colors of the different classes, making
color less discriminant.

Figure 1c shows the recognition accuracy of the learned
CNN on the two test sets, as a function of the color bias. A
few observations can be drawn from the figure. First, it is
clear that CNN performance on MNIST degrades as the bias
increases. This shows that representation bias can hurt the
generalization performance of the CNN. Second, this effect
can be overwhelming. For the highest levels of bias, the
performance on MNIST drops close to chance level (10%
on this dataset). This shows that, when Colored MNIST is
strongly biased for color, the CNN learns a representation
that mostly accounts for color. While sensible to solve the
training dataset (Colored MNIST), this is a terrible strategy
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Generalization performance.

Figure 1: Dataset Resampling on Colored MNIST Dataset.

to solve the digit recognition fask in general. As demon-
strated by the poor performance on MNIST, the CNN has
not learned anything about digits or digit recognition, sim-
ply overfitting to the bias of the training set. Finally, and
perhaps most important, this poor generalization is not vis-
ible on the Colored MNIST test set, on which the CNN re-
ports deceptively high classification accuracy. The problem
is that, like the training set, this is biased for color. Note that
adding more Colored MNIST style data will not solve the
problem. The overfitting follows from the bias induced by
the procedure used to collect the data, not from a shortage
of data. Unless the dataset collection procedure is changed,
adding more data only makes the CNN more likely to over-
fit to the bias.

While this example is contrived, similar problems fre-
quently occur in practice. A set of classes is defined and a
data collection procedure, e.g. data collection on the web,
is chosen. These choices can introduce representation bi-
ases, which will be present independently of how large the
dataset is. There are many possible sources of such biases,
including the fact that some classes may appear against cer-
tain types of backgrounds, contain certain objects, occur in
certain types of scenes or contexts, exhibit some types of
motion, efc. Any of these can play the role of the digit colors
of Colored MNIST. Since, in general, the test set is collected
using a protocol similar to that used to collect the training
set, it is impossible to detect representation bias from test
set results or to reduce bias by collecting more data. Hence,
there is a need for bias reduction techniques.

Resampling Strategies. We next tested the ability of RE-
PAIR to reduce representation bias on Colored MNIST.
REPAIR was implemented according to (10) on the col-
ored training and test sets combined, with learning rates
79 = 1073 and ,, = 10 for 200 epochs, yielding an opti-

mal weight vector w* . This was then used to implement a
few sampling strategies.

1. Thresholding (threshold): Keep all examples
such that w; > t, where t = 0.5 is the threshold;

2. Ranking (rank): Keep p = 50% examples of largest
weights w;;

3. Per-class ranking (c1ls_rank): Keep the p = 50%
examples of largest weight w; from each class;

4. Sampling (sample): Keep each example ¢ with prob-
ability w; (discard with probability 1 — wy;).

5. Uniform (uniform): Keep p = 50% examples uni-
formly at random.

To evaluate the resampling strategies, we tested their
ability to reduce representation bias and improve model
generalization (test accuracy on MNIST). The experiments
were performed with different color variances o, to simu-
late different level of bias. The results were averaged over
5 runs under each setting. Figure 1d (top) shows the bias
after resampling, as a function of o. All four strategies
where resampling leverages the weights w; led to a signif-
icant reduction in color bias, relative to both the bias be-
fore resampling and that achieved by uniform resampling.
Among them, thresholding and ranking were more effective
for large biases (small values of o). The reduction in color
bias also led to better model generalization, as shown in Fig-
ure 1d (bottom). This confirms the expectation that large
bias harms the generalization ability of the learned model.
Visual inspection of examples from the REPAIRed dataset,
shown in Figure 1a (bottom), explains this behavior. Since
it becomes harder to infer the digits from their color, the
CNN must rely more strongly on shape modelling, and thus
generalizes better.
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Figure 2: Left: Histograms of resampling weights. Right: Examples with highest and lowest weights from each dataset.
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Figure 3: Static bias as a function of dataset size. Examples are
removed either randomly or according to their weights.

4.2. Scenario II: Action Recognition

Video action recognition is a complex task with various
potential sources of bias, as shown by the analysis of [22].
In this work, we focus on static bias, i.e. bias towards single-
frame representations. The observation that popular action
recognition datasets like UCF101 [28] and Kinetics [17] are
biased for static features, in that substantial portions of their
data can be solved without leveraging temporal information,
has been reported by several recent works [ 14, 6]. Yet, little
attention has been given to the impact of bias on learning
and evaluation of action recognition models.

In this section, we present an in-depth analysis on the
connection between static dataset bias and model perfor-
mance on the dataset. We used REPAIR to manipulate
the static bias of a dataset, through the selection of exam-
ples according to their learned weights. We then evaluated
how the performance of prevailing action recognition mod-
els changes as a function of static bias. This allowed us
to compare the sensitivity of the models to the presence of
static cues in the data. Finally, by examining models trained
on datasets with different level of static bias, we assessed
their ability to capture temporal information and learn hu-
man actions that generalize across datasets.

Static Bias Minimization. We implemented ¢ with Im-
ageNet features extracted from the ResNet-50 [13], a typ-
ical representation for static image recognition. REPAIR

weights were learned for 20k iterations with learning rate
79 = 1073 and ,, = 1073|D|, as the number of weights
w; to be learned grows linearly with dataset size. Figure 2
(left) shows the distribution of resampled weights learned
for UCF101 [28], HMDBS51 [19] and Kinetics [17]; A ran-
dom frame from videos of highest and lowest weights is
displayed in Figure 2 (right). Several observations can be
made. First, REPAIR uncovers videos with abundant static
cues (e.g. pool tables in billiards and parallel vertical lines
in playing harp). These videos receive lower scores during
resampling. On the other hand, videos with no significant
static cues (e.g. complex human interactions in push), are
more likely to be selected into the resampled dataset. Sec-
ond, the optimization does not learn the trivial solution of
setting all weights to zero. Instead, the weights of all videos
range widely from O to 1, forming two clusters at both ends
of the histogram. Third, while all datasets contain a substan-
tial amount of videos that contribute to static bias, Kinetics
contained more videos of large weight (w > 0.5), enabling
more freedom in the assembly of new datasets.

Following the ranking strategy of section 4.1, the videos
were sorted by decreasing weights. Resampled datasets
were then formed by keeping the top p% of the data and
eliminating the rest (value of p varies). Figure 3 shows how
the static biases of the three datasets are reduced by this
resampling procedure. This is compared to random sam-
pling the same number of examples. The bias of (3) was
computed as the maximum over 5 measurements, each time
training the bias estimator 6 with a different weight decay,
ranging from 10~! to 107>, so as to prevent overfitting due
to insufficient training data. The bias curves validate the
effectiveness of REPAIR, as the static classifier performs
much weaker on the REPAIRed datasets (hence less static
bias). This is unlike random sampling, which does not af-
fect the bias measurements significantly. These results are
also interesting because they enable us to alter static dataset
bias within a considerable range of values, for further ex-
periments with action recognition models.

Video Models vs. Static Bias. To evaluate how represen-
tation bias affects the action recognition performance of dif-
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Figure 4: Evaluations of action recognition models on resampled datasets.

ferent models, we trained and evaluated three models from
the literature on the original and REPAIRed action datasets:

1. 2D ConvNet (C2D): Baseline ResNet-50 applied in-
dependently to each frame, predictions then averaged.
Pre-trained on ImageNet [26].

2. Temporal segment network (TSN) [36]: Aggregating
features (we used RGB-diff) from multiple snippets of
the video according to their segmental consensus. Pre-
trained on ImageNet.

3. Inflated 3D ConvNet (I3D) [4]: Spatiotemporal convo-
lutions inflated from a 2D Inception-v1 network. Pre-
trained on ImageNet and Kinetics.

The networks were fine-tuned through SGD with learn-
ing rate 10~2 and momentum 0.9, for 10k iterations on
UCF101 and HMDB51 and 50k iterations on Kinetics. Fig-
ure 4 shows the performance of all three models on the three
datasets. It is clear that all networks have weaker perfor-
mance on the REPAIRed datasets (smaller static bias) than
on the origonal ones. The drop in accuracy is a measure of
the reliance of the action models on static features, which
we denote as the static bias dependency of the models.
More precisely, we define the static bias dependency co-
efficient 3 of a model on representation ¢ as the difference
between model performance on randomly sampled and RE-
PAIRed datasets, averaged over resampling rates (0.25, 0.5
and 0.75 in this case). The larger 3 is, the more the model
leverages static bias to solve the dataset; 5 = 0 indicates
that model performance is independent of static bias. Table
| summarizes the dependency coefficients of the different
models, showing that C2D has much larger static bias de-
pendency than TSN and I3D. While this comparison is not,
by itself, enough to conclude that one model is superior to
the rest, the reduced static bias dependency of the more re-
cent networks suggests that efforts towards building better
spatiotemporal models are paying off.

Another notable observation from Figure 4 is that the
ranking of models by their performance on the original
dataset is not necessarily meaningful. For example, while
C2D outperforms TSN on UCF101, the reverse holds af-
ter 50% and 25% resampling. This shows that rankings

50 P Sampling
—e— REPAR
40 __4___—»'***77»-7»-—»_/) —#- Random
30 /'
20 -/.
100 40 60 80 100
Dataset size %
| C2D[27] TSN [36] 13D [4]
UCF101 0.213 0.115 0.065
HMDBS51 0.236 0.148 0.155
Kinetics 0.146 0.146 0.128
Average 0.198 0.136 0.116

Table 1: Static bias dependency coefficient 5 of the three action
recognition models, evaluated on the three different datasets.

Dataset size | 100% (orig.) 75% 50%  25%
mAP % | 61.48 6345 63.06 63.24

Table 2: Cross-dataset generalization from Kinetics to HMDB51
over 12 common classes. See Figure 5 for per-class AP.

of action recognition architectures could simply reflect how
much they leverage representations biases. For example,
stronger temporal models could underperform weaker static
models if the dataset has a large static bias, potentially lead-
ing to unfairness in model evaluation. By reducing repre-
sentation bias, REPAIR can alleviate this unfairness.

Cross-dataset Generalization. We next compared the
performance of the I3D models trained on the original and
resampled datasets. Unlike the Colored MNIST experiment
of Figure Ic, it is not possible to evaluate generalization
on an unbiased test set. Instead, we measured cross-dataset
generalization, with similar setup to [32]. This assumes that
the datasets do not have the exact same type of representa-
tion bias, in which case overfitting to the biases of the train-
ing set would hamper generalization ability.

We used Kinetics as the training set and HMDBS51 as the
test set for generalization performance. The two datasets
had 12 action classes in common. While more classes are
shared among UCF101 and Kinetics, they are both collected
on YouTube and have very similar distributions. HMDBS51,
on the contrary, consists of videos sourced from movies and
other public databases and poses a stronger generalization
challenge. The I3D models were trained on the 12 classes of
the original and REPAIRed versions of Kinetics, and eval-
uated without fine-tuning on the same classes of HMDBS1.
Model generalization was evaluated by average precision
(AP), measured for each of the common classes.

Figure 5 summarizes the generalization performance of
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Figure 5: Class-level cross-dataset generalization of I3D models trained on REPAIRed Kinetics datasets. Test set is HMDBS51.

the I3D models as a function of the static bias in the train-
ing set, for each of the 12 classes. To visualize the cor-
relation among the two variables we also show a line re-
gressed on the different points. The four points in each sub-
plot, from right to left, correspond to models trained on the
original dataset and the REPAIRed ones with 75%, 50%
and 25% sampling rate, respectively. Of the 12 classes, 7
showed a negative correlation between bias and generaliza-
tion. Furthermore, the correlation tends to be strongly neg-
ative for the classes where the model generalizes the worst,
namely hug, somersault and sword. On the contrary, pos-
itive correlation occurs on the classes of high generaliza-
tion performance. This indicates that, at the class level,
there are strong differences between the biases of the two
datasets. Classes that generalize well are those where bi-
ases are shared across datasets, while low performance ones
have different biases. The mean average precision (mAP) of
all 12 classes increased by ~2% after resampling as shown
in Table 2, validating the effectiveness of REPAIR on im-
proving model generalization.

Temporal Reasoning in Learned Models. Finally, we
analyzed in greater detail the I3D models learned on the
REPAIRed datasets, aiming to understand the improvement
in their generalization performance. We hypothesize that,
with less static cues to hold on to, the network (even with
unchanged structure) should learn to make inferences that
are more dependent on the temporal structure of the video.
To test this hypothesis, we performed a simple experiment.
Given an input video, we measured the Euclidean distance
between the feature vectors extracted from its regular 64-
frame clip and its time reversed version. This distance was
averaged over all video clips in the test set, and is denoted
as the temporal structure score of the model. Larger scores
reflect the fact that the model places more emphasis on
the temporal structure of the video, instead of processing
frames individually. Note that, because the 3D convolution
kernels of I3D are initialized by duplicating the filters of a
2D network [4], the temporal structure score should be zero
in the absence of training.

For this experiment, we used the test set of the 20BN-
Something-Something-V?2 [23] dataset, which is known for

Trainine set  Samplin Training set size

ainmg set Samplng | g, 75% 50% 25%
REPAIR 1.76 1.92 1.96

UCFIOL pandom | 7 175+.03 179+ .04 178 + .05
REPAIR 2.03 225 231

HMDBSL  pandom | 2% 2004+ .02 207+.07 208+ .02
Kinetios REPAIR | 3.63 3.68 383

Random | 3.66+.08 3.56+.04 3.59+.03

Table 3: Temporal structure scores of I3D models trained on
UCF101, HMDB51, and Kinetics, evaluated on the Something-
Something-V?2 test set.

the fact that its action classes are often dependent on the
arrow of time (e.g. opening vs. closing, or covering vs. un-
covering). Table 3 summarizes the scores obtained for all
learned models on the test set of Something-Something.
The table shows that, for REPAIRed datasets, the score in-
creases as more biased videos are removed from the dataset.
This is not a mere consequence of reduced dataset size,
since the score varies little for random discarding of the
same number of examples. This is evidence that static
bias is an obstacle to the modeling of video dynamics, and
dataset REPAIR has the potential to overcome this obstacle.

5. Conclusion

We presented REPresentAtion blas Removal (REPAIR),
a novel dataset resampling procedure for minimizing the
representation bias of datasets. Based on our new formu-
lation of bias, the minimum-bias resampling was equated
to a minimax problem and solved through stochastic gra-
dient descent. Dataset REPAIR was shown to be effective,
both under controlled settings of Colored MNIST and in
large-scale modern action recognition datasets. We further
introduced a set of experiments for evaluating the effect of
bias removal, which relates representation bias to the gen-
eralization capability of recognition models and the fairness
of their evaluation. We hope our work will motivate more
efforts on understanding and addressing the representation
biases in different areas of machine learning.
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