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Figure 1. Why are those bound boxes detected as cats? Illustration of qualitatively interpreting model interpretability via unfolding latent
structures end-to-end without any supervision used in training. Latent structures are represented by parse trees (shown to the right of each
image) computed on-the-fly and object layouts/configurations (superposed on the bounding boxes) are collapsed from the parse trees. The
left four images are from PASCAL VOC2007 test dataset and the right four ones from the COCO val2017 dataset. For clarity, only one
detected object instance is shown. See text for details. Best viewed in color and magnification.

Abstract

This paper first proposes a method of formulating model
interpretability in visual understanding tasks based on the
idea of unfolding latent structures. It then presents a case
study in object detection using popular two-stage region-
based convolutional network (i.e., R-CNN) detection sys-
tems [19, 50, 7, 23]. The proposed method focuses on
weakly-supervised extractive rationale generation, that is
learning to unfold latent discriminative part configurations
of object instances automatically and simultaneously in de-
tection without using any supervision for part configura-
tions. It utilizes a top-down hierarchical and compositional
grammar model embedded in a directed acyclic AND-OR
Graph (AOG) to explore and unfold the space of latent
part configurations of regions of interest (Rols). It presents
an AOGParsing operator that seamlessly integrates with
the RolPooling [19]/RolAlign [23] operator widely used in

*X. Song is an independent researcher.

R-CNN and is trained end-to-end. In object detection, a
bounding box is interpreted by the best parse tree derived
from the AOG on-the-fly, which is treated as the qualita-
tively extractive rationale generated for interpreting detec-
tion. In experiments, Faster R-CNN [50] is used to test
the proposed method on the PASCAL VOC 2007 [13] and
the COCO 2017 [40] object detection datasets. The exper-
imental results show that the proposed method can com-
pute promising latent structures without hurting the perfor-
mance. The code and pretrained models are available at
https://github.com/iVMCL/1iRCNN.

1. Introduction
1.1. Motivation and Objective

Recently, deep neural networks [37, 32] have improved
prediction accuracy significantly in many vision tasks, and
even outperform humans in image classification tasks [24,
58]. In the literature of object detection, there has been a
critical shift from more explicit representation and mod-
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Figure 2. Illustration of the proposed method using Faster R-CNN [50] as the baseline system. Unfolding latent structures of Region-of-
Interest (Rol) is realized by a generic top-down grammar model represented by a directed acyclic AND-OR Graph (AOG). The AOG can
be treated as the counterpart of explicit part representations for the implicit (black-box) flatten and fully-connected layer in the traditional
head classifier. For clarity, we show an AOG constructed for a 3 x 3 grid using the method proposed in [560]. The AOG unfolds the space
of all possible latent part configurations. See text for details. (Best viewed in color and magnification)

els such as the mixture of deformable part-based mod-
els (DPMs) [16] and its many variants, and hierarchical
and compositional AND-OR graphs (AOGs) models [56,
69, 59, 60], to less transparent but much more accurate
ConvNet based approaches [50, 7, 49, 42, 23, 8]. Mean-
while, it has been shown that deep neural networks can
be easily fooled by so-called adversarial attacks which uti-
lize visually imperceptible, carefully-crafted perturbations
to cause networks to misclassify inputs in arbitrarily cho-
sen ways [47, 2], even with one-pixel attack [57]. And, it
has also been shown that deep learning can easily fit ran-
dom labels [66]. It is difficult to analyze why state-of-the-
art deep neural networks work or fail due to the lack of
theoretical underpinnings at present [1]. From cognitive
science perspective, state-of-the-art deep neural networks
might not learn and think like people who know and can
explain “why” [34]. Nevertheless, there are more and more
applications in which prediction results of computer vision
and machine learning modules based on deep neural net-
works have been used in making decisions with potentially
critical consequences (e.g., security video surveillance and
autonomous driving).

It has become a common recognition that prediction
without interpretable justification will have limited appli-

cability eventually. It is a crucial issue of addressing ma-
chine’s inability to explain its predicted decisions and ac-
tions (e.g., eXplainable Al or XAl proposed in the DARPA
grant solicitation [10]), that is to improve accuracy and
transparency jointly: Not only is an interpretable model
capable of computing correct predictions of a random ex-
ample with very high probability, but also rationalizing its
predictions, preferably in a way explainable to end users.
Generally speaking, learning interpretable models is to let
machines make sense to humans, which usually consists
of many challenging aspects. So there has not been a
universally accepted definition of the notion of model in-
terpretability. Especially, it remains a long-standing open
problem to measure interpretability in a principled quanti-
tative way.

To address the interpretability challenge, many work
have proposed to visualize the internal filter kernels or to
generate attentive activation maps, which reveal a lot of in-
sights of what DNNs have learned in a post-hoc way. Com-
plementary to those methods, this paper focuses on how
to unfold the latent structures for addressing model in-
terpretability in learning and inference end-to-end (see
some examples in Figure 1). We first propose a method
of formulating model interpretability, centered on the idea
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of unfolding meaningful latent structures in a weakly-
supervised way. We then present a case study in object
detection. Our goal is to investigate the feasibility of in-
tegrating top-down grammar models with bottom-up Con-
vNet backbones end-to-end. The former are introduced
to represent the space of latent structures hierarchically
and compositionally and thus define the unfolding opera-
tions. We also aim to qualitatively rationalize the popular
two-stage region-based ConvNets detection system, i.e., R-
CNN [19, 50, 7] without hurting the detection performance.
Jointly improving the performance and transparency is out
of the scope of this paper, which is left for future work.

1.2. Method Overview

Figure 2 illustrates the proposed method for object de-
tection. We adopt two-stage R-CNN as the baseline system.
We focus on weakly-supervised extractive rationale gener-
ation in the Rol prediction component in R-CNN (e.g., the
widely used 2-fc layers implementation), that is learning to
unfold latent discriminative part configurations of Rols au-
tomatically and simultaneously in detection without using
any supervision for part configurations. We address the fol-
lowing two challenges.

i) Moving from traditional flat structure representa-
tions of Rols to hierarchical and compositional struc-
ture representations, and thus enabling from ‘‘uninfor-
mative” fully-connected exploration and exploitation of
Rol features to grammatically-guided exploration and
exploitation. The popular RoIPooling/RolAlign layers
usually use predefined flat grid quantization such as 7 x 7
cells of input Rols whose sizes vary. In the 2-fc layers im-
plementation of Rol prediction component, the 7 x 7 cells
is flatten, followed by two FC layers (see the bottom of Fig-
ure 2). In terms of prediction, this implementation is of
highly discriminative power, seeking the most discrimina-
tive linear combinations in the high-dimensional Rol fea-
ture space. To enable interpretable object detection with
respect to inferring latent object layouts/configurations, the
flat structure of Rols needs to be enriched, similar in spirit to
how the spatial pyramid representation [35] was developed
to enrich the bag-of-feature representation in scene classi-
fication tasks. In this paper, we utilize a generic top-down
hierarchical and compositional grammar model embedded
in a directed acyclic AND-OR Graph (AOG) [56, 60] to
explore and unfold the space of latent part configurations
of Rols (see an example in the top of Figure 2). There
are three types of nodes in an AOG: an AND-node repre-
sents binary decomposition of a large part into two smaller
ones, an OR-node represents alternative ways of decompo-
sition, and a Terminal-node represents a part instance. The
AOG is consistent with the general image grammar frame-
work [18, 70, 15, 69].

ii) Distilling and inducing meaningful latent struc-
tures in weakly-supervised discriminative tasks. Accord-

ing to the observations in network dissection [3], model in-
terpretability and performance do not have strong correla-
tions in discriminative tasks. Intuitively, since the objective
function usually cares about performance only subject to
generic model regularization, the model will pick up what-
ever features that are useful for minimizing the loss on the
training dataset. So, even with the hierarchical and com-
positional representation introduced for Rols, we are fac-
ing the difficulty of distilling and inducing the underlying
meaningful latent structures in a weakly-supervised man-
ner. In this paper, we first introduce Terminal-node sensitive
feature maps in computing features using the AOG (see the
top of Figure 2), similar in spirit to the position-sensitive
feature maps used in the R-FCN [7]. Each Terminal-node
feature map is low-dimensional (e.g., 20). We then intro-
duce a value sub-network that computes the figure of merits
(attention weights) of different Terminal-nodes which will
be informative for bottom-up and top-down parsing Rols
with the AOG, similar in spirit to value sub-networks in
deep reinforcement learning, e.g. in the AlphaGo [54]. We
call the AOGParsing operator for the proposed compo-
nent. We compare three ways of applying the value net-
work.

e The vanilla reweighing method that re-calibrates the
Terminal-node feature maps using the output of the value
network.

e A sparsity-inducing method that only keeps the Top-k
Terminal-nodes for each Rol individually, where &k can
be the grid size of Rols (e.g., 49 of a 7 x 7 Rol).

e An adversarial attack method that is the opposite of
the sparsity-inducing method, and removes the Top-
k Terminal-nodes in terms of the output of the value
network. With the discrminative object function, the
sparsity-inducing method may be trapped in the sub-
space of unmeaningful yet discriminatively powerful la-
tent structures. The adversarial attack method encourages
exploration in the entire space of latent structures.

We note that defining interpretability-sensitive loss func-
tions w.r.t. the AOG is a complementary direction to be
studied in future work.

In experiments, we apply the proposed method using
Faster R-CNN [50] as baseline system with the residual
net [24] pretrained on the ImageNet [52]. We test our
method on the PASCAL VOC 2007 [13] and the COCO
2017 [40] datasets with qualitatively meaningful latent
structures learned and comparable performance retained.

2. Related Work

In general, model interpretability is very difficult to char-
acterize.Efforts in addressing model interpretability w.r.t.
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DNNSs can be roughly categorized into the following two
lines of work.

Interpret post-hoc interpretability of deep neural net-
works by associating explanatory semantic information
with nodes in a deep neural network. There are a vari-
ety of methods including identifying high-scoring image
patches [20, 43] or over-segmented atomic regions [51]
directly, visualizing the layers of convolutional networks
using deconvolutional networks to understand what con-
tents are emphasized in the high-scoring input image
patches [65], identifying items in a visual scene and recount
multimedia events [64, 17], generating synthesized images
by maximizing the response of a given node in the net-
work [12, 36, 55] or by developing a top-down generative
convolutional networks [45, 62], and analyzing and visual-
izing state activation in recurrent networks [26, 29, 38, 14]
to link word vectors to semantic lexicons or word proper-
ties. On the other hand, Hendricks et al [25] extended the
approaches used to generate image captions [30, 46] to train
a second deep network to generate explanations without ex-
plicitly identifying the semantic features of the original net-
work. Most of these methods are not model-agnostic except
for [51]. More recently, the Grad-CAM work [53], built on
top of the CAM work [68], can produce a coarse localiza-
tion map highlighting the important regions in the image
used by deep neural networks for predicting the concept. In
similar spirit, the excitation back-propagation method [67]
can generate task-specific attention map. The latest network
dissection work [3] reported empirically that interpretable
units are found in representations of the major deep learn-
ing architectures [32, 4, 24] for vision, and interpretable
units also emerge under different training conditions. On
the other hand, they also found that interpretability is nei-
ther an inevitable result of discriminative power, nor is it a
prerequisite to discriminative power. Most of these methods
are not model-agnostic except for [51, 31]. In [31], a classic
technique in statistics, influence function, is used to under-
stand the black-box prediction in terms of training sample,
rather than extractive rationale justification.

Learn interpretable models directly. Following the
analysis-by-synthesis principle, generative image model-
ing using deep neural networks has obtained significant
progress with very vivid and sharp images synthesized since
the breakthrough work, generative adversarial network [2 1],
was proposed [ 1, 22, 6, 62, 48]. Apart from deep neural
networks, Lake et al [33] proposed a probabilistic program
induction model for handwritten characters that learns in a
similar fashion to what people learn and works better than
deep learning algorithms. The model classifies, parses, and
recreates handwritten characters, and can generate new let-
ters of the alphabet that look right as judged by Turing-like
tests of the model’s output in comparison to what real hu-
mans produce. There are a variety of interpretable models

based on image grammar [70, 15, 41, 69], which can offer
intuitive and deep explanation, but often are suffered from
difficulties in learning model structures and recently being
outperformed in terms of accuracy by deep neural networks
significantly.

Spatial attention-like mechanism has been widely stud-
ied in deep neural network based systems, including, but
not limited to, the seminal spatial transform network [27]
which warps the feature map via a global parametric trans-
formation such as affine transformation, the exploration of
global average pooling and class specific activation maps
for weakly-supervised discriminative localization [68], the
deformable convolution network [9] and active convolu-
tion [28], and more explicit attention based work in image
caption and visual question answering (VQA) such as the
show-attend-tell work [63] and the hierarchical co-attention
in VQA [44]. Attention based work unfold the localization
power of filter kernels in deep neural networks. The pro-
posed end-to-end integration of the top-down full structure
grammar and bottom-up deep neural networks attempts to
harness the power from both methodologies in visual recog-
nition, which can be treated as hierarchical and composi-
tional structure based spatial attention mechanism.

Our Contributions. This paper makes three main con-
tributions to the emerging field of learning interpretable
models as follows: (i) It presents a method of integrating
a generic top-down grammar model, embedded in an AOG,
and bottom-up ConvNets end-to-end to learn qualitatively
interpretable models in object detection. (ii) It presents an
AOGParsing operator which can seamlessly integrate with
the RoIPooling/RolAlign operators widely used in R-CNN
based detection systems. (iii) It shows detection perfor-
mance comparable to state-of-the-art R-CNN systems, thus
shedding light on addressing accuracy and transparency
jointly in learning deep models for object detection.

3. Interpreting Model Interpretability

In this section, we present a generic formulation of
model interpretability in visual understanding tasks which
accounts for unfolding well-defined latent structures in a
weakly-supervised way.

Intuitively, we would expect that an interpretable model
could learn and capture latent semantic structures automat-
ically which are not annotated in training data. For exam-
ple, if we consider the basic image classification task with
only image labels available in training as commonly used, to
compare which classification models are more interpretable
or explainable, one principled way is to show the capabil-
ity of extracting the latent localization of object of interest
w.r.t. the ground-truth label. Similarly, a person detector
is more interpretable if it is learned using person bounding
box annotations only, but capable of interpreting a person
detection with the latent semantic structure explained, ide-
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ally the kinetic pose. So, our intuitive idea is that model
interpretability can be posed as the capability of exploring
the latent space of a higher level task (e.g., localization vs
classification and pose recovery vs detection) in a principled
way, and of capturing the sufficient statistics in the latent
space. The more a model can explore and capture the latent
tasks at higher level, the better the model interpretability is.

To that end, we first consider an underlying task hierar-
chy, e.g., from image classification, to object localization
and detection, to object part recovery (object parsing), and
all the way to full image parsing (i.e., all image pixels are
explained-away in a mathematically sound way). Then, for
a task at hand (e.g., object detection), we seek a principled
way of defining and exploring the latent space of the task
of object part-based parsing, and then compute extractive
rationale for the task at hand.

Let A be the domain on which the latent structures are
defined such as the image lattice in image classification or
the Rol in object detection. Our formulation is a straight-
forward top-down method consisting of two components:

e A domain parser that unfolds the latent structures of the
domain A in an effective and compact way. The parser
can be built either in a greedy pursuit way as done in
the classic deformable part-based models (DPMs) [16]
or in a top-down fashion such as the classic quad-tree
method or more generally as done in the AND-OR Tree
(AOT) models [56, 60]. We use the latter in this paper.
Denote by 2, the space of latent structures computed by
a domain Parser.

o A data-driven parsing algorithm that seeks the optimal
latent structure in {25 for a given sample = defined on
A. Thanks to the DAG structure of the AOG used in this
paper, it is straightforward to implement the parsing al-
gorithm in two phases: a bottom-up phase following the
depth-first search (DFS) order to compute the figure of
merits of all nodes in the AOG, and a top-down phase
following the breadth-first search (BFS) order to retrieve
the optimal latent structure by making decisions at each
encountered OR-nodes.

4. A Case Study: Interpretable R-CNN

In this section, we first briefly present background on R-
CNN and the construction of the top-down AOG [56, 60] to
be self-contained. Then, we present the end-to-end integra-
tion of AOG and R-CNN.

4.1. Background

The R-CNN Framework. The R-CNN framework con-
sists of three components: (i) A ConvNet backbone such
as the Residual Net [24] for feature extraction, parameter-
ized by O¢ and shared between the region-proposal network

(RPN) and the Rol prediction network. (ii) The RPN net-
work for objectness detection (i.e., category-agnostic detec-
tion through binary classification between foreground ob-
jects and background) and bounding box regression, pa-
rameterized by ©,. Denote by B a Rol (i.e., a foreground
bounding box proposal) computed by the RPN. (iii) The
Rol prediction network for classifying a Rol B and refin-
ing it, parameterized by ©2, which utilizes the RoIPool-
ing operator and usually use one or two fully connected
layer(s) as the head classifier and regressor. The parame-
ters © = (O, O©1, ©2) are trained end-to-end.

The AOG as the domain parser. In the R-CNN frame-
work, a Rol is interpreted as a predefined flat configura-
tion. To learn interpretable models, we need to explore the
space of latent part configurations defined in a Rol. To that
end, a Rol is first divided into a grid of cells as done in
the RoIPooling operator (e.g., 3 X 3 or 7 x 7). Denote by
Se,yw,h and tz 4 p a non-terminal symbol and a termi-
nal symbol respectively, both representing the sub-grid with
left-top (x,y) and width and height (w, h) in the Rol. We
only utilize binary decomposition, either H orizontal cut or
Vertical cut, when interpreting a non-terminal symbol. We
have four rules,

Sw,%wﬁ Termination tx,y,wJL (1)
Ver.Cut
Sw,y,w,h(l; <_>) —_— Sz,y,l,h : Sac-i—l,y,w—l,h 2)
Hor.Cut

Sw,y,wﬁ(l? i) o Sw7y7w,l ’ Sw7y+l7u77h—l 3)

Szywh = toywhlSeyawh (lmin; )] | )
Sm,y,w,h(w - lmin; <_>)|Sz,y,w,h(lmin; i)' e |
Sx,y,w,h(h — lin; i)a

where [,,;, represents the minimum side length of a valid
sub-grid allowed in the decomposition (e.g., lnin = 1).
When instantiated, the first rule will be represented by
Terminal-nodes, both the second and the third by AND-
nodes, and the fourth by OR-nodes.

The top-down AOG is constructed by applying the four
rules in a recursive way [56, 60]. Denote an AOG by G =
(V, E) where V' = Vanqa U Vo, U Vp and Vapg, Vo, and
Vr represent a set of AND-nodes, OR-nodes and Terminal-
nodes respectively, and F' a set of edges. We start with V' =
() and E = 0, and a first-in-first-out queue ) = (). It unfolds
all possible latent configurations. Figure 2 shows the AOG
constructed for a 3 x 3 grid.

A parse tree is an instantiation of the AOG, which fol-
lows the breadth-first-search (BFS) order of nodes in the
AOG, selects the best child node for each encountered OR-
nodes, keeps both child nodes for each encountered AND-
node, and terminates at each encountered Terminal-node. A
configuration is generated by collapsing all the Terminal-
nodes of a parse tree onto the image domain.
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4.2. The AOGParsing Operator in R-CNN

We now present a simple end-to-end integration of the
top-down AOG in R-CNN as illustrated in Figure 2. Con-
sider an AOG Gy, 4.1,,,, With the grid size being h x w
and the minimum side length [,,;,, allowed for nodes (e.g.,
Gs 3,1 in Figure 2).

Terminal-node sensitive feature maps. Denote by F;
the Terminal-node sensitive feature map for a Terminal-
node ¢t € Vr in the AOG, Gp y,i,,,,.- All Fy’s have the
same dimensions, C' x H x W, where the height H and
the width W are the same as those of outputs of RoIPool-
ing/RolAlign (e.g., 7 x 7), and the channel C' the number of
channels which is relatively small, especially for big AOGs
(e.g., C' = 20). Let Fr,; be the output feature maps of
RolIPooling or RolAlign (see Figure 2). F}’s are usually
computed through either 1 x 1 or 3 x 3 convolution.

Denote by f; the C-dimension feature of a Terminal-
node t. f; is computed via either channel-wise average-
pooling or max-pooling in sub-domain occupied by 5 4 w1
in the feature map F;. Denote by fy, the C' x
|Vr|-dimension feature vector concatenated from all the
Terminal-nodes.

Computing Terminal-node value. We use a sim-
ple 2-layer FC sub-network (e.g., FC+ReLu+FC+Sigmoid)
which takes fy,. as the input and outputs |Vr| scores for
Terminal-nodes value. Let s; be the value score of a
Terminal-node t. Let sy, be the slice repeated Terminal-
nodes value vector which is of C' x |V;|-dimension. Based
on the three policies of applying the value network, we have
st4s¢ as the baseline weight vector, s{,  the Top-k sparsity-
inducing one, and the s%/’;“ the adversarial attack one. With-
out loss of generality, denote by f? as the re-calibrated fea-
ture vector for a Terminal-node ¢ according to a given policy
p € {base, k,adv}. Similarly, f@T is the concatenated fea-
ture vector.

Computing features and values for AND- and OR-
nodes. For simplicity, we use MEAN and MAX operations
for AND-nodes and OR-nodes respectively. We follow the
DEFS order. For an AND-node, both its feature and value are
the average of its child nodes. For an OR-node, its value is
the maximum of values of its child nodes and its feature is
then the one from the child node with the maximum value.

Computing the optimal parse tree for each sample.
The parse tree can be retrieved in a straightforward way fol-
lowing the BFS order of nodes in the AOG. Starting from
the root node, each encountered OR-node selects its best
child and each encountered AND-node keeps all the child
nodes. The latent structure is then defined by the Terminal-
nodes in the retrieved parse tree. Each sample is then rep-
resented by a C' x |Vp|-dimension feature with Terminal-
nodes in the inferred latent structure kept only and others
zeroed-out.

As illustrated in Figure 2, another FC layer can be fur-

Method mAP (VOC) | Box AP (COCO)
Faster R-CNN [50]* 82.1 38.5
Faster R-CNN-D [71]* 82.2 -
Ours AOGg3 3,1 + base 81.9 -
Ours AOG3,3,1 + k 81.2 -
Ours AOGs3 3,1 + adv 81.4 -
Ours AOGs 5,1 + base 82.1 38.2
Ours AOGs 51 + k 80.4 37.0
Ours AOGs 5 1 + adv 81.4 38.0
Ours AOGy 7 1 + base 81.7 -
Ours AOG7,771 +k 81.2 -
Ours AOGy 7,1 + adv 81.7 -

Table 1. Performance comparisons using Average Precision (AP)
at the intersection over union (IoU) threshold 0.5 (AP@0.5) in the
PASCAL VOC2007 test dataset (using the protocol, competition
”comp4” trained using both 2007 and 2012 trainval datasets) and
the coco_val2017 dataset. * reported by retraining the models pro-
vided in MMDetection for fair comparisons.

ther used to fuse the information of the inferred latent struc-
tures, which is shared by the classification and box regres-
sion branches.

Latent structure oriented feature normalization. Dif-
ferent sample in a min-batch may use very different latent
structures of varied number of Terminal-nodes selected. To
reduce the fluctuations for the following FC layers, we can
normalize the features of a latent structure by dividing the
number of selected Terminal-nodes.

Thanks to its DAG structure, the integration of AOG will
not affect the end-to-end training. However the training ef-
ficiency is usually affected by the bottom-up phase and the
top-down phase of the AOGParsing operation due to their
serial nature.

4.3. The Folding-Unfolding Learning

Since the Terminal-node sensitive feature maps and val-
ues are computed with randomly initialized parameters, it is
not reasonable to compute good node values and make good
decisions on selecting the best child for each OR-node at the
beginning in the forward step. All nodes not retrieved by
the parse trees will not get gradient update in the backward
step. So, we resort to a folding-unfolding learning strategy.
In the folding stage, we directly use f{}T, so all Terminal-
nodes and the value sub-network are trained in a fair fash-
ion. After a few epochs, we then switch to the unfolding
stage of learning following the entire recipe in Section 4.2.

S. Experiments

In this section, we present experimental results on the
PASCAL VOC 2007 [13] and the COCO 2017 [40]. We im-
plement the proposed method in the latest MMDetection '

Ihttps://github.com/open-mmlab/mmdetection
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Figure 3. The AOGs 5,1 + adv learned in the PASCAL VOC 2007 and 2012 trainval datasets. In the each, we plot the category distribution
showing the proportion of the true positive per class. (Best viewed in color and magnification)

code platform [5]. We build on Faster R-CNN [50] with
ResNet101 [24] and feature pyramid network (FPN) [39]
as backbones. We maintain the model complexity compa-
rable by tuning the feature dimension C' in computing the
Terminal-node sensitive features and the value sub-network.
The inference time of our method is mostly comparable to
the baseline. We conduct experiments with three different
AOGS, 9373,1, g57571 and 97,771 in PASCAL VOC 2007. We
only test Gs 5 1 in COCO. We following the default hyper-
parameter settings (e.g., the total number of epochs, the ini-
tial learning rate and its schedule) provided in the MMDe-
tection platform. For the folding-unfolding learning, we
usually use half number of epochs for folding and the other
half for folding. We note that the proposed method can be
tested in other systems implemented in the MMDetection
platform in a straightforward way.

The proposed method obtains consistently comparable
accuracy performance with the baseline system. Table 1
summarizes the results. We note that the observed fluctua-
tions of performance may be caused by not tuning some of
hyper-parameters. We will present and update more results
with tuned training parameters in our Github repository. In-
terestingly, we observe that for the three policies of apply-
ing the value sub-network, the vanilla one obtains the best
performance, and the adversarial attack one is better than
the Top-k sparsity-inducing one. In the current implementa-
tion, the value sub-network is simple focusing on Terminal-
nodes only without considering the AOG structures. And,
the hard way of removing non-selected Terminal-nodes in
both the Top-k and its counterpart may need to be relaxed
to some soft versions. In the following, we will focus on
analyzing the qualitative interpretability of the proposed

method in the following.

Examples in Figure 1 and Figure 2 are all models
trained with AOGs 5 1 + adv. Figure 3 shows the learned
AOGs 5,1 +adv in PASCAL VOC. Although it is not easy to
interpret the “meaningfulness” of the learned AOG, it sheds
light on developing interpretability-sensitive objective func-
tions in learning interpretable models from scratch. For ex-
ample, with the AOGs, we will be able to formulate the
following two terms into an interpretability-sensitive object
functions.

Explainability and Sparsity in the space of latent part
configurations of a sample x. The intuitive idea is that
an underlying interpretable model should focus much more
on the most “meaningful” latent part configuration for a
random sample, which covers the most important underly-
ing semantic regions including both intrinsic and contextual
ones, not necessarily connected, of an image w.r.t. the label.
Furthermore, the focused latent part configuration should be
stable and consistent between the original sample and other
new augmented samples. If we could unfold the space of
latent part configurations, which is usually huge, we can
evaluate the interpretability score in the spirit similar to the
masking and scaling operators used in [61] for evaluating
information contributions of bottom-up/top-down comput-
ing processes in a hierarchical model.

Stability of the focused latent part configurations across
different images within a category. The intuitive idea is that
the number of distinct focused latent part configurations un-
folded for different samples within a category should be
small, i.e., most of them shared among a subset of samples.

Limitations and Discussions. The proposed method has
two main limitations to be addressed in future work. First,
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Figure 4. Examples of latent structures unfolded by AOGs. The first three rows show comparisons between results of the three AOGs,
Gs.3,1 +adv, G5 5,1 + adv and G771 + adv in the PASCAL VOC 2007. For clarity, we show one instance only in each image. The fourth
row shows a few detection results in COCO. (Best viewed in color and magnification)

although it can show qualitative extractive rationale in de-
tection in a weakly-supervised way, it is difficult to quan-
titatively measure the model interpretability. One potential
direction for quantitative interpretability is that we will in-
vestigate rigorous definitions which can be formalized as a
interpretability-sensitive loss term in end-to-end training, as
briefly discussed above. Second, current implementation of
the proposed method did not improve the accuracy perfor-
mance although it is not our focus in this paper. We will
explore new operators for AND-nodes and OR-nodes in the
AOG to improve performance. We hope detection perfor-
mance will be further improved with the interpretability-
sensitive loss terms.

6. Conclusion

This paper presented a method of integrating a generic
top-down grammar model (specifically the AND-OR gram-
mar model) with bottom-up ConvNets in an end-to-end
way for learning qualitatively interpretable models in ob-
ject detection using the R-CNN framework. It builds on top
the two-stage R-CNN method and proposes an AOGPars-

ing operator that seamlessly integrates with the RoIPool-
ing/RolAlign operators to unfold the space of latent part
configurations. It proposed a folding-unfolding method in
learning. In experiments, the proposed method is tested in
the PASCAL VOC 2007 and COCO val2017 benchmarks
with performance comparable to state-of-the-art baseline R-
CNN detection methods. The proposed method computes
the optimal parse tree in the AOG as qualitatively extractive
rationale in “justifying” detection results. It sheds light on
learning quantitatively interpretable models in object detec-
tion.
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