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Abstract— We consider the optimal multi-agent persistent
monitoring problem defined by a team of cooperating agents
visiting a set of nodes (targets) on a graph with the objective
of minimizing a measure of overall node state uncertainty. The
solution to this problem involves agent trajectories defined both
by the sequence of nodes to be visited by each agent and
the amount of time spent at each node. We propose a class
of distributed threshold-based parametric controllers through
which agent transitions from one node to the next are controlled
by thresholds on the node uncertainty. The resulting behavior
of the agent-target system is described by a hybrid dynamic
system. This enables the use of Infinitesimal Perturbation Anal-
ysis (IPA) to determine on-line optimal threshold parameters
through gradient descent and thus obtain optimal controllers
within this family of threshold-based policies. Simulations are
included to illustrate our results and compare them to optimal
solutions derived through dynamic programming.

I. INTRODUCTION

The cooperative multi-agent persistent monitoring prob-
lem arises when agents are tasked to monitor a dynamical
environment which cannot be fully covered by stationary
agents. Thus, persistent monitoring differs from traditional
consensus [1] and coverage [2] problems due to the con-
tinuous need to explore changes in the environment. In
many cases, this exploration process leads to the discov-
ery of various “points of interest”, which, once detected,
become “targets” that need to be perpetually monitored.
This paradigm applies to surveillance [3], sampling and
environmental monitoring [4]. It also finds use in particle
tracking in molecular biology to understand the dynamics
and interactions of macromolecules [5], [6]. In contrast to
sweep coverage and patrolling [7], the problem we address
here focuses on a finite number of targets. The goal of agents
is to collect information from each target so as to reduce
a metric of uncertainty about its state. This uncertainty in-
creases while no agent is present in its vicinity and decreases
when it is being “sensed” by one or more agents. Thus,
the objective is to minimize an overall measure of target
uncertainty by controlling the movement of all agents.

Our previous work [8] considered this problem in 1D and
showed that the solution can be reduced to a parametric con-
troller form. In particular, the optimal agent trajectories are
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characterized by a finite number of points where each agent
switches direction and by a dwell time at each such point.
However, in 2D, such parametric representations for optimal
agent trajectories no longer hold [9]. Nonetheless, various
forms of parametric trajectories (e.g., ellipses, Lissajous
curves, interconnected linear segments) offer an alternative
[9], [10]. These approaches limit agent trajectories to certain
forms which, while they possess desirable properties (e.g.,
periodicity), cannot always capture the dynamic changes in
target uncertainties and may lead to poor local optima.

In this paper, we adopt a higher-level point of view
whereby targets are nodes in a graph and their connectivity
defines feasible paths in the graph. This graph-based model
accounts for physical constraints such as obstacles in the 2D
space which the graph is designed to avoid. It is also suitable
for problems where agent motion is already constrained by
a graph, as in a ground transportation network. Moreover,
it allows us to deal with planning problems (e.g. air traffic
scheduling) without tracking the detailed agent motion at
a higher resolution. An agent trajectory in such a graph is
specified by a sequence of nodes and an associated dwell
time at each node in the sequence. The controller associated
with each agent determines (i) the dwell time at the current
node and (ii) the next node to be visited. We propose a
class of event-driven controllers, which is distributed and
scalable, based on a set of threshold parameters associated
with the target uncertainties. When compared to the actual
value of the target, thresholds are controlled to provide
information about the importance of visiting a specific target.
By adjusting thresholds, we control agent behavior in terms
of target visiting and dwelling and, therefore, optimize agent
performance within the parametric family considered.

The contribution of this paper lies in the graph-based setup
of the 2D persistent monitoring problem, the formulation of
a threshold-based parametric optimization problem, and a so-
lution approach based on Infinitesimal Perturbation Analysis
(IPA) [11] and gradient descent. Our approach is distributed
since the decisions made by an agent at some node are based
on uncertainty states of neighboring nodes only. Moreover,
we exploit the event-driven nature of IPA to also render it
scalable in the number of events in the system and not the
size of the state space (in contrast to solutions dependent
on dynamic programming). An additional contribution is
to show that in the case of a single-agent system the IPA
gradient is monotonic in the thresholds involved which
implies a simple optimal structure: the agent visiting a node
should reduce the uncertainty state to zero before moving to
the next node. This is consistent with a similar earlier result
established in [12].



II. PROBLEM FORMULATION

Consider N agents and M targets in a graph G = (V,E)
where the set of vertices V (nodes) is defined by an indexed
list of targets V = {1, . . . ,M} and the set of edges (links)
E contains all feasible direct connections between them. The
neighborhood of a node i is defined to be the set NG(i) =
{j : eij ∈ E}. The matrix ∆ = [δij ] defines the travel time
over every edge, e.g., δij is the travel time over edge eij .

Target uncertainty model. We define uncertainty func-
tions Ri(t) associated with targets (nodes) i = 1, . . . ,M ,
with the following properties: (i) Ri(t) increases with a
prespecified rate Ai if no agent is visiting it, (ii) Ri(t)
decreases with a rate BiNi(t) where Bi is the rate at which
an agent collects data from target i, hence decreasing its
uncertainty state, and Ni(t) is the number of agents dwelling
at target i at time t, and (iii) Ri(t) ≥ 0 for all t. We model
the target uncertainty state dynamics as follows:

Ṙi(t) =

{
0 if Ri(t) = 0 and Ai ≤ BiNi(t)
Ai −BiNi(t) otherwise (1)

Agent model. In the graph topology, an agent is either
at a node or at an edge. We define the state of agent a, for
a = 1, . . . , N , to be xa(t) = (sa(t), va(t)) where sa(t) ∈ V
is a member of the node set V and va(t) ∈ {0, 1} indicates
whether the agent is dwelling at the node or traveling to it
(e.g., (i, 0) means the agent is physically located at a vertex
i and (i, 1) means the agent is traveling to node i from
some previous node). The travel time matrix ∆ gives the
transition time over each edge. The agent controller’s role
when visiting some node is to determine the dwelling time
and the index of next destination, denoted by ua(t). Figure
1 shows a typical control trajectory and helps pinpoint the
behavior of each agent controller. The trajectory consists of
a sequence of intervals [ta,k, ta,k+1) where the agent’s node
visits are indexed by k = 1, 2, . . . and ta,k is the time of
the k-th visit at any node. This interval contains the agent’s
dwelling time da,k and the travel time δa,k to the next node.
Note that on any trajectory:

ta,k+1 = ta,k + da,k + δa,k

and δa,k = δij , the ij-entry in ∆, where i = sa(ta,k +
da,k) is the current node and j = ua(ta,k + da,k) is the
destination. ua(t) is a piecewise constant right-continuous
function of time. According to the graph topology, the control
ua(t) is selected from the feasible control set Ua (t) =
{Ua,1 (t) , . . . ,Ua,M (t)} such that at any node i:

Ua,i (t) =

{{i} ∪ NG(i) if xa(t) = (i, 0)

{i} if xa(t) = (i, 1)
(2)

where NG(i) is the neighborhood of node i which contains
all the directly connected nodes to node i.

Objective function. Our goal is to determine the optimal
control u∗a(t) for all agents under which the average uncer-
tainty metric in (3) across all targets is minimized over T .
We formulate the following optimal control problem:

P1 : min
ua(t)∈Ua(t)
for a=1,...,N

J =
1

T

∫ T

0

M∑
i=1

Ri(t) dt (3)

Fig. 1: An agent control trajectory: da,k is the k-th dwell time and
δa,k is the k-th travel time. Node i and j are the agent’s k-th and
k + 1-th visiting nodes.

subject to the target dynamics (1) and the agent controls (2).
Observe that the control ua (t) switches only at times

ta,k + da,k for k = 1, 2.... The condition under which such
a switch occurs may generally be expressed by a switching
function gi,j(x(t),R(t)) ≤ 0 associated with a transition
from node i to node j, which is a function of the overall
state consisting of all agents x(t) = [x1(t), . . . ,xN (t)] and
all targets R(t) = [R1(t), . . . , RM (t)]. Let us define a guard
function τ ja,k = inft≥ta,k

{gi,j(x(t),R(t)) = 0} and set

ta,k + da,k = min
j∈NG(i)

{τ ja,k}

so that the change in the agent’s node assignment occurs at
the earliest time that one of the switching functions satisfies
gi,j(x(t),R(t)) = 0. Thus, the task of the controller is to
determine optimal switching functions for all j ∈ NG(i)
whenever xa(t) = (i, 0) and then evaluate minj∈NG(i){τ ja,k}
to specify the optimal dwelling time d∗a,k. Therefore,

u∗a (t) =

i t ∈ [t∗a,k, t
∗
a,k + d∗a,k)

arg min
j∈NG(i)

{τ ja,k} t ∈ [t∗a,k + d∗a,k, t
∗
a,k+1)

(4)
The complete state of this system is defined by x(t) and

R(t) so that the control can be expressed as ua(x(t),R(t)).
In effect, whenever xa(t) = (i, 0), the state space defined
by all feasible values of [x(t),R(t)] is partitioned into
|NG(i)|+1 regions, denoted by Ri and Rj , j ∈ NG(i). The
controller keeps the agent at node i as long as [x(t),R(t)] ∈
Ri and switches to ua (t) = j ∈ NG(i) as soon as the state
vector transitions to a new region Rj . Thus, the optimization
problem consists of determining an optimal partition for all
i = 1, . . . ,M through g∗i,j(x(t),R(t)) for all j ∈ NG(i).

Parametric control. Designing an optimal feedback con-
troller for P1 is generally intractable where optimal partitions
of the state space must be determined whenever an agent
visits a node. An alternative is to seek a parameterization of
these partitions through parameters Θ so as to ultimately re-
place P1 by a problem requiring the determination of a finite
set of optimal parameters such that Θ∗ = arg min J(Θ).

We introduce threshold parameters associated with a node
i which, when compared to the actual value of Ri(t), provide
information about the importance of visiting this node next
so that an agent can evaluate the control in (4). We set
thresholds for each agent at each node, thus rendering our
control policy rich enough to include both node states and



Fig. 2: A 1-agent 4-target example. The node topology graph
is shown on the left and the threshold matrix is on the right. A
threshold parameter is set to ∞ when there is no direct path between
the corresponding nodes. An agent located at node 1 uses a state
space partition parametrized by θ11, θ12 and θ14. The agent index
(superscript) is omitted for this single agent case.

agent states. We organize the node thresholds associated with
agent a into an M ×M matrix Θa where a row represents
the current node visited by the agent and a column represents
a potential next node to visit (see Fig. 2). We then define the
specific threshold-based controller family considered. The
starting point is to define a state space region forcing the
agent to remain at node i. This is expressed through the
condition Ri(t) > θaii. When this is no longer met, i.e., the
uncertainty state at node i is sufficiently low with respect
to θaii, the agent may be assigned to a new node j 6= i
as long as its uncertainty state exceeds another threshold,
i.e., Rj(t) ≥ θaij . Since there may be several nodes in the
neighborhood of i whose uncertainty states are high relative
to their associated thresholds, we prioritize nodes in the
neighborhood of i by defining an ordered set for agent a
as follows:

N a
G(i) = {jk ∈ Ni : j1, . . . , jk, . . . , jDi

} (5)

where Di is the degree of vertex i. The prioritization used
may depend on several factors (e.g., importance of a target,
node proximity, travel distance, etc). We now define the
threshold-based control to specify ua(t; Θ) in (4) as follows:

ua(t; Θ) =


i if Ri(t) > θaii or

Rj(t) < θaij for all j ∈ N a
G(i)

arg min
k

s.t.jk∈Na
G(i)

Rjk ≥ θaijk otherwise

(6)
Under (6), the agent first decreases Ri(t) through (1) below
the threshold θaii before moving to another node in the neigh-
bor set N a

G(i) with the minimum index k whose associated
state uncertainty value exceeds the threshold θaijk . If no
such neighbor exists, the agent remains at the current node
maintaining its uncertainty state under the given threshold
level. All agent behaviors are therefore entirely governed by
Θ through (6), which also implicitly determines the dwell
time of the agent at each node.

Remark 1. The controller in (6) is designed to be distributed
by considering only the states of neighboring nodes and not
those of other nodes or of other agents. As such, it is limited
to a one-step look-ahead policy. However, it can be extended
to a richer family of multi-step look-ahead policies.

Through (6), P1 is reduced to a parametric optimization
problem of determining the optimal thresholds in Θ? under

which the cost function in (3) is minimized. Moreover, the
resulting agent and node behavior defines a hybrid system:
the node dynamics in (1) switch between the mode where
Ṙi(t) = 0 and Ṙi(t) = Ai−BiNi(t), while the agent control
in (4) switches whenever there is a sign change in some
expression of the form (Rj(t)− θaij) as seen in (6). We use
τk to denote the time instant when any of the state variables
experiences a mode switch (these will be explicitly defined as
“events” later) and τ0 = 0, τK = T to denote the beginning
and the end of the time horizon. After rewriting the cost
in (3) as the sum of costs over all intervals [τk, τk+1) for
k = 0, . . . ,K − 1 as shown in (7), we have transformed
the optimal control problem P1 into a simpler parametric
optimization problem P2 as follows:

P2 : min
Θ≥0

J(Θ) =
1

T

M∑
i=1

K−1∑
k=0

∫ τk+1(Θ)

τk(Θ)

Ri(t) dt (7)

subject to target uncertainty dynamics (1), agent controls (6).

Remark 2. Using the optimal thresholds Θ?, the optimal
dwell times and target visiting sequences can both be deter-
mined online while executing the control policy (6).

III. INFINITESIMAL PERTURBATION ANALYSIS (IPA)
Infinitesimal Perturbation Analysis (IPA) specifies how

changes in the parameter Θ influence event times τk(Θ),
k = 1, 2, . . ., the agent trajectories x(Θ,x0,R0), and ulti-
mately the cost (7). Let {τk(θ)}, k = 0, . . . ,K − 1, denote
the occurrence times of all events in the state trajectory of a
hybrid system with dynamics ẋ = fk(x, θ, t) over an interval
[τk(θ), τk+1(θ)), where θ ∈ Θ is some parameter vector and
Θ is a given compact, convex set. We set τ0 = 0, τK = T ,
and use the Jacobian matrix notation: x′(t) ≡ ∂x(θ,t)

∂θ and
τ ′k ≡

∂τk(θ)
∂θ , for all state and event time derivatives. It is

shown in [11] that

d

dt
x′(t) =

∂fk(t)

∂x
x′(t) +

∂fk(t)

∂θ
, (8)

for t ∈ [τk, τk+1) with boundary condition:

x′(τ+k ) = x′(τ−k ) + [fk−1(τ−k )− fk(τ+k )]τ ′k (9)

for k = 1, ...,K . In order to complete the evaluation of
x′(τ+k ) in (9), we need to determine τ ′k. If the event at τk
is exogenous (i.e., independent of θ), τ ′k = 0. However,
if the event is endogenous, there exists a continuously
differentiable guard function gk : Rn × Θ → R such that
τk = min{t > τk−1 : gk (x (θ, t) , θ) = 0} and

τ ′k = −[
∂gk
∂x

fk(τ−k )]−1(
∂gk
∂θ

+
∂gk
∂x

x′(τ−k )) (10)

as long as ∂gk
∂x fk(τ−k ) 6= 0 (details can be found in [11]).

Differentiating the cost J(Θ) in P2, we obtain

∇J(Θ) =
1

T

M∑
i=1

K∑
k=0

∫ τk+1(Θ)

τk(Θ)

∇Ri(t) dt (11)

where ∇ is the gradient operator. We first derive the in-
tegrand ∇Ri(t) in (11) for all i and then integrate over
[0, T ] to obtain ∇J(Θ). The following lemma shows that



the integrand ∇Ri(t) remains constant between any two
consecutive events and can be updated only at event time.
This establishes the fully event-driven nature of our IPA-
based gradient algorithm. Due to space limitations all proofs
are omitted but can be found in [13].

Lemma 1. ∇Ri(t) remains constant for t ∈ [τk, τk+1), k =
0, . . .K − 1.

In the following, we will specify the discontinuities of
∇Ri(t) at each event time τk. We first define four types of
“target events” (labeled Event 1 to 4) in this hybrid system
corresponding to Ri(t) crossing some threshold value from
above/below, or reaching the value Ri(t) = 0 from above or
leaving the value Ri(t) = 0. Since each agent’s movement is
governed by the target thresholds, a target event may induce
an agent departure, denoted by DEP, occurring at ta,k+da,k
in (6). In turn, this event will induce this agent’s arrival event
at the next node visited, denoted by ARR. The process of
how events can induce other events is detailed next and is
graphically summarized in Fig. 3.

For notational simplicity, we use ↓= as an operator indi-
cating that the value on its left-hand-side reaches the value on
its right-hand-side from above. Similarly, ↑= means reaching
from below, and =↑ means increasing from the value on the
right-hand-side. In addition, since the derivative with respect
to Θ is updated differently at different entries, we use p, q, z
to indicate the pq-entry of Θz , and the operator (·)zpq to
indicate the pq-entry of a matrix indexed by superscript z,
i.e., (τ ′k)zpq = ∂τk

∂Θz
pq

.
Event 1: Ri(τk) ↓= θaii . In this case, Ri(t) reaches the

threshold θaii from above. It is an endogenous event and the
guard condition is gk = Ri− θaii = 0 in (10). Therefore, the
event time derivative with respect to the pq-th entry of the
parameter Θ of agent z is as follows:

(τ ′k)zpq =


−
−1+(R′i(τ

−
k ))

z

pq

Ai−BiNi(τ
−
k )

if p = q = i, and z = a

−
(R′i(τ

−
k ))

z

pq

Ai−BiNi(τ
−
k )

otherwise
(12)

Based on (6), this event may induce an agent departure from
its current node which we denote as event DEP1. Through
this event, the value of the event time derivative in (12) will
be transferred to R′i(t) as shown next.

DEP1: Agent departure event 1. If Event 1 induces
DEP1, then using (9) and (12), we can obtain the perturbation
on node i after the agent’s departure as follows:(

R′i(τ
+
k )
)z
pq

=
(
R′i(τ

−
k )
)z
pq
−Bi · (τ ′k)

z
pq (13)

where the time perturbation (τ ′k)zpq is given by (12).
This agent departure event will induce an arrival event

in the future at another target. The event time derivative in
(12) will be transferred to the future arrival event, such that
τ ′k+l = τ ′k for some integer l > 0. In other words, the agent
arriving at node j at τk+l carries with it the perturbation
information τ ′k.

ARR1: Agent arrival event 1. This is induced by the
earlier DEP1 at node i, which is again induced by the target

Fig. 3: Event inducing scheme and the corresponding process
of perturbation generation and propagation. Blue arrows indicate
instantaneous transitions if they ever occur. Green arrows indicate
delayed transitions due to an agent’s travel time over an edge.

event Ri(τk) ↓= θaii (Event 1) and we transfer the value of
the event time derivative to obtain(

τ ′k+l
)z
pq

= (τ ′k)
z
pq (14)

and through (9), we obtain the perturbation on node j after
the agent’s arrival as follows:(

R′j(τ
+
k+l)

)z
pq

=
(
R′j(τ

−
k+l)

)z
pq

+Bj ·
(
τ ′k+l

)z
pq

(15)

where (τ ′k+l)
z
pq is given by (14) and (12).

Event 2: Rj(τk) ↑= θaij . This event occurs when an agent
is at node i and Rj(t) at j 6= i exceeds the threshold θaij .
The event is endogenous and the guard condition in (10) is
gk = Rj − θaij = 0. The corresponding event time derivative
is obtained from (10) as follows:

(τ ′k)
z
pq=


−
−1+(R′j(τ

−
k ))

z

pq

Aj−BjNj(τ
−
k )

if p = i, q = j, and z = a

−
(R′j(τ

−
k ))

z

pq

Aj−BjNj(τ
−
k )

otherwise
(16)

Looking at (6), this event can induce an agent departure event
depending on whether Ri(τk) > 0 or not: in the former
case, the event is denoted by DEP2-1 and in the latter it is
denoted by DEP2-2. The latter departure event DEP2-2 again
has two sub-cases DEP2-2-1 an DEP2-2-2 depending on the
node’s dynamics after the agent’s departure. The derivative in
(16) will be transferred to R′i(t) through one of these agent
departure events.

DEP2-1: Agent departure event 2-1. In this case,
Ri(τk) > 0. Using (9) and the event time derivative in (16),
we obtain(

R′i(τ
+
k )
)z
pq

=
(
R′i(τ

−
k )
)z
pq
−Bi · (τ ′k)

z
pq (17)

where the time perturbation (τ ′k)
z
pq is given in (16).

DEP2-2: Agent departure event 2-2. This event is
complementary to DEP2-1 where the agent departure is
induced by Event 2 but Ri(τk) = 0. Based on (1), the
target dynamics after this event either remain Ṙi(t) = 0
or switch to Ṙi(t) = Ai−BiNi(τ+k ) depending on whether
Ai > BiNi(τ

+
k ) or not. Thus, there are two sub-cases to

consider as follows.



DEP2-2-1: Ai > BiNi(τ
+
k ). In this sub-case, the target

dynamics switch from Ṙi(t) = 0 for t ∈ [τk−1, τk) to
Ṙi(t) = Ai − BiNi(t) for t ∈ [τk, τk+1). We know
R′i(τ

−
k ) = 0 because Ri(τk) = 0 before the agent departure

and the value R′i(t) = 0 holds as long as Ri(t) = 0. Using
(9) and the event time derivative in (16), we obtain(

R′i(τ
+
k )
)z
pq

= −(Ai −BiNi(τ+k )) (τ ′k)
z
pq (18)

where (τ ′k)
z
pq is again given by (16).

DEP2-2-2: Ai ≤ BiNi(τ
+
k ). In this sub-case, the target

dynamics remain Ṙi(t) = 0 before and after τk. Therefore,
the state dynamics in (9) remain unchange and we have

R′i(τ
+
k ) = 0 for all p, q, z (19)

Remark 3. Note that DEP2-2-1 induces another target event
(Event 4) since Ri(t) increases after the agent’s departure.
Moreover, both DEP2-1 and DEP2-2 will induce an agent
arrival event at the next visiting target.

ARR2: Agent arrival event 2. This is induced by an
earlier agent departure event at a target i which is again
induced by the previous Event 2 Rj(τk) ↑= θaij . Similar
to the derivation in ARR1, we transfer the prior event time
derivative at τk to the current arrival time derivative at τk+l
for some integer l > 0:(

τ ′k+l
)z
pq

= (τ ′k)
z
pq (20)

Through (9) we obtain(
R′j(τ

+
k+l)

)z
pq

=
(
R′j(τ

−
k+l)

)z
pq

+Bj ·
(
τ ′k+l

)z
pq

(21)

where (τ ′k+l)
z
pq can be obtained by (20) and (16). Notice

that the derivatives R′j(τ
−
k+l) and R′j(τ

−
k ) may be different

since R′j(t) may change due to arrivals or departures of other
agents during [τk, τk+l).

Event 3: Ri(t) ↓= 0. This event corresponds to the target
uncertainty state reaching zero from above, therefore from
(1) the target state dynamics switch from Ṙi(t) = Ai −
BiNi(t), t ∈ [τk−1, τk) to Ṙi(t) = 0, t ∈ [τk, τk+1). It is
an endogenous event that occurs when gk(x, θ) = Ri = 0.
According to (10),

(τ ′k)
z
pq = −

(
R′i(τ

−
k )
)z
pq

Ai −BiNi(τ−k )
(22)

Replacing τ ′k in (9) with the result in (22), we have(
R′i(τ

+
k )
)z
pq

=
(
R′i(τ

−
k )
)z
pq

+
(
Ai −BiNi(τ−k )

)
(τ ′k)

z
pq = 0

for all p, q, z (23)

This indicates that ∇Ri(t) is always reset to zero whenever
the target’s uncertainty state is reduced to zero. This is an
uncontrollable event and does not induce any other event.

Event 4: Ri(t) =↑ 0. This event occurs when the target
value leaves zero and the dynamics in (1) switch from
Ṙi(t) = 0 to Ṙi(t) = Ai − BiNi(t). It is induced by an
agent departure event (DEP2-2-1) which is in turn induced
by Event 2. This is an exogenous event functioning only as
an indicator of Ri(t) increasing from zero. Therefore, τ ′k = 0
and the derivative R′i(t) will not be affected.

Remark 4. The analysis of Events 1 to 4 shows that all
non-zero gradient values are caused by target events and
propagated through agent departures and arrivals (see Fig.3).

IPA-based gradient descent algorithm. Using the gra-
dient ∇J(Θ) in (11), we update Θ based on a standard
gradient descent scheme as follows.

Θ(l+1) = Π
[
Θ(l) − β(l)∇J(Θ(l))

]
(24)

where the operator Π ≡ max{·,0}, (l) indexes the number
of iterations, and β(l) is a diminishing step-size sequence.

IV. ONE-AGENT CASE ANALYSIS

Recalling our control policy in (6), the diagonal entries
of Θ control the dwell times at nodes, whereas the off-
diagonal entries control the feasible node visiting sequence.
We ignore the superscript agent index in single-agent cases
and show that the optimal values of diagonal entries are
always zero. This structural property indicates that the agent
visiting a node should always reduce the uncertainty state to
zero before moving to the next node.

Assumption 1. For any ε > 0, there exists a finite time
horizon T > tK − c

1−ε where tK is an instant such that
‖∇Ri(t1)−∇Ri(t2)‖ ≤ ε/M , i = 1, . . . ,M for all t1, t2 >
tK and c is a finite constant.

Assumption 2. The node visiting sequence is fixed.

The first assumption is a technical one which ensures that
the optimization problem is defined over a sufficiently long
time horizon to allow the gradient to converge so as to obtain
Θ∗d in Theorem 1 below. The second assumption allows us
to reduce the parameter matrix Θ to a vector of its diagonal
elements only Θd = [θ1, θ2, . . . , θM ]

> ≥ 0M×1.

Theorem 1. Consider M targets and a single agent under
the parametric control Θd. Under Assumptions 1 and 2, the
optimal thresholds satisfy Θ?

d = 0M×1.

Remark 5. The result of Theorem 1 is consistent with, but
more general than, a similar result in [12] where homoge-
neous targets are assumed. Moreover, our proof in [13] shows
that if T is sufficiently large and ε is arbitrarily small,∇Ri(t)
will converge to: ∂Ri/∂θi = 1 and ∂Ri/∂θj = 0 for j 6= i
for every node i = 1, . . . ,M and limT→∞ ∂J(Θd)/∂θi = 1.

V. SIMULATION EXAMPLES

One agent, two targets. We provide this simple example
to illustrate Theorem 1. Consider a controller with parameter
vector Θd = [θ1, θ2]

>. We track the evolution of ∇R(t) =[
∂R1

∂θ1
, ∂R1

∂θ2
, ∂R2

∂θ1
, ∂R2

∂θ2

]>
by events. The agent is initialized at

node 1. Its trajectory is cycles with each cycle consisting of
four stages: i) the agent’s departure from node 1, ii) arrival
at node 2, iii) departure from node 2, and iv) return to
node 1. Using the IPA results in Sec. III, we combine the
evolution of ∇R(t) from stage i) to iv) and use tk to denote
the beginning of the k-th cycle, and obtain

∇R(tk+1) = Λ∇R(tk) + U (25)



Fig. 4: Left: convergence of ∇R(t) to the equilibrium [1, 0, 0, 1]>.
Right: convergence of ∂J/∂Θd to [1, 1]>.

where Λ and U are the combined update matrix and vector
(see details in [13]). The only equilibrium of the system
defined by (25)is ∇Re = (I−Λ)−1U = [1, 0, 0, 1]>. ∇R(t)
converges to that equilibrium asymptotically. The results
(Fig.4) match our analysis in Remark 5. Through (24), Θd

is eventually reduced to [0, 0]>.
Multi-agent cases: a counterexample to Theorem 1.

The nice property in Theorem 1 does not generally apply to
multi-agent cases. This is because when agents are visiting
a node, the allocation of agents to nodes may be improved
if one agent leaves the node before reducing its uncer-
tainty to zero and allow other agents to complete the task.
Due to space limitations, settings of this counterexample
including the initial and final thresholds are listed in [13].
The diagonal entries of the final parameter matrices for
both agents are: Θ1∗

d = [0, 0, 7.25, 8.06, 0.23]> and Θ2∗
d =

[0.88, 19.27, 0.02, 0.01, 0]> which do not satisfy the structure
given in Theorem 1. The node visiting sequences and dwell
times are optimized on-line. However, since agents may
adjust their visiting sequences asynchronously, the cost in
multi-agent cases fluctuates during the optimization process.

Threshold-based policy versus dynamic programming.
We present an example consisting of 1 agent and 4 nodes
to compare the performance of the threshold-based policy
with a dynamic programming solution using value iteration.
Details can be found in [13]. Using dynamic programming,
the value function converges after 15 iterations and the final
cost J?DP = 31.15. However, the running time is about 16
minutes per value iteration using a computer with Intel(R)
Core(TM) i7-7700 CPU @3.60GHZ processor. On the other
hand, the solution obtained by the threshold-based IPA ap-
proach results in a slightly higher cost, but the computational
complexity is reduced by several orders of magnitude as
shown in Fig. 5. After about 30 seconds in total running time
on the same computer, the cost is reduced to J?IPA = 36.20.

VI. CONCLUSIONS

The multi-agent persistent monitoring problem involves
the planning of agent trajectories defined both by the se-
quence of nodes (targets) to be visited and the amount of time
spent at each node. We have considered a class of distributed
parametric controllers through which agents control their
visit sequence and dwell times at nodes using threshold
parameters associated with the node uncertainty. We have
used Infinitesimal Perturbation Analysis (IPA) to determine
online optimal threshold parameters through gradient descent
and thus obtain optimal controllers within this family of

Fig. 5: Cost versus computational time (in log scale). The blue
line shows the result of IPA with the final cost J?

IPA = 36.20 and
the orange line shows the result of dynamic programming with the
final cost J?

DP = 31.15 .

threshold-based policies. Compared with dynamic program-
ming solutions, our threshold-based parametric controller
reduces the computational time substantially by orders of
magnitude. In future work, richer families of threshold-based
controllers will be developed by considering multi-step-
look-ahead policies and by identifying structural properties
therein which show the trade-off between exploitation and
exploration in persistent monitoring tasks.
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