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ABSTRACT

We propose a framework and specific algorithms for screening a large (perhaps countably infinite) space
of feasible solutions to generate a subset containing the optimal solution with high confidence. We attain
this goal even when only a small fraction of the feasible solutions are simulated. To accomplish it we
exploit structural information about the space of functions within which the true objective function lies, and
then assess how compatible optimality is for each feasible solution with respect to the observed simulation
outputs and the assumed function space. The result is a set of plausible optima. This approach can be
viewed as a way to avoid slow simulation by leveraging fast optimization. Explicit formulations of the
general approach are provided when the space of functions is either Lipschitz or convex. We establish both
small- and large-sample properties of the approach, and provide two numerical examples.

1 INTRODUCTION

Screening procedures, as we use the term here, eliminate sub-optimal feasible solutions, ideally with some
assured level of statistical confidence, in a simulation optimization problem. Screening has been employed
as the initial step in ranking-and-selection procedures to prune solutions; as a “clean up” step at the end
of heuristic searches to discard inferior solutions; and as the objective in and of itself (Boesel et al. 2003;
Gupta 1965; Nelson et al. 2001). This is solution screening rather than factor screening, the latter of which
eliminates some components of all solutions because their effect on the simulation response is insignificant
(Bettonvil and Kleijnen 1997; Wan et al. 2006).

The idea of this work is to locate plausible optima which enables screening a large, possibly unaccountably
infinite, feasible space based on simulating a (perhaps very small) number of feasible solutions; see the
illustration in Section 4. In traditional ranking-and-selection procedures that employ a screening step,
the screening process is largely based on exhaustive simulation at every feasible solution. Simulation
optimization methods, e.g., Andradóttir (1996), Chang et al. (2013), Salemi et al. (2018), and Wang et al.
(2013), simulate only a small number of feasible solutions, but offer guarantees about a single returned
solution after the algorithm completes. Compared to ranking-and-selection-type screening, our method
provides similar inference without being exhaustive; compared to simulation optimization search methods,
plausible optima provide global information about the feasible solution space, not just about the final
selected solution.

Simulation, when viewed as a function of feasible solutions, often has underlying properties that can
be thought of as structural information about the function. Examples include convexity or bounds. Existing
screening methods have largely abstained from leveraging structural information, perhaps because when
comparing a small number of solutions the difficulty of incorporating structural information can outweigh
the potential benefits. However, if the goal is to screen hundreds, thousands or more feasible solutions,
we show that structural information can improve screening by eliminating solutions with fewer runs of the
simulation. This article proposes a method that leverages this type of structural information. Moreover, the
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proposed method can eliminate solutions that were not simulated at all. Although this article presents the
framework generally, we will illustrate the method by considering structural information of the Lipschitz
and convex type.

Simulation optimization algorithms frequently employ structural information as they explore the space
of feasible solutions, and after some stopping condition is satisfied they return a single solution that can
be viewed as the approximation of the optimum. For instance, random search methods are predicated on
some version of clustering of good solutions near the optimum; e.g., Andradóttir (1996). However, random
search has no natural screening feature. There has been a recent surge in simulation optimization methods
that can broadly be described as metamodel-based procedures; examples include regression-based methods
such as STRONG (Chang et al. 2013) and R-SPLINE (Wang et al. 2013)—that assume the response
function is locally linear or quadratic in the solutions—and Gaussian-process-based procedures that treat
the unknown response as a realization of a random function (Salemi et al. 2018). A common feature of
metamodel-based approaches is that data are collected, a metamodel is fit, and the metamodel is used to
select the next approximation of the optimum. In principle the metamodel approach could be used for
screening, but the production of good screening sets is quite difficult using these methods because of the
potentially strong assumptions supporting the metamodel construction. Moreover, estimation uncertainties
are not always quantified, making some assured level of statistical confidence difficult to attain. Thus,
metamodel-based simulation optimization procedures have primarily been used for optimum seeking and
no screening analog has been developed.

As a new direction, we introduce a framework for screening that returns a subset of feasible solutions
that will include the optimal solution with a prespecified probability, even when far fewer than the total
number of feasible solutions are simulated. We accomplish this by leveraging the structure of a space of
functions where the true simulation response lies. In brief, our approach assesses how compatible optimality
is for each feasible solution with respect to the observed simulation outputs over the assumed function
space. Therefore we call our subset plausible optima. The general framework can accommodate discrete
or continuous-valued decision variables.

The paper is organized as follows: We more fully describe the setting in which we do screening in
Section 2. Section 3 presents our method for discovering plausible optima, and a stylized example in
Section 4 illustrates it. Small- and large-sample properties are established in Section 5, followed by the
computational methods needed to support them in Section 6. We close with two numerical examples in
Section 7 and some concluding remarks in Section 8.

2 SETTING AND GOALS

This section outlines the mathematical setting for our approach. The feasible-solution space X ⊆ ℜd

represents all solutions, labeled x, from which we would like to discover the unique optimal x?. In this
article we take “optimal” to imply minimum with respect to the objective function µ : X →ℜ; Thus, there
exists x? ∈X such that µ(x?)< µ(x) for all x 6= x?. As a technical condition, we assume µ(·) is bounded
over X .

We seek to extract a subset of X that includes x? with a prescribed confidence by querying the simulation.
This means we run the simulation model at x and observe a random variable Y (x) = µ(x)+ e(x), where
e(x) is a mean-zero random variable with finite variance whose distribution depends on x. We assume
that only a finite set of feasible solutions are simulated. We call this the experimental set, denoted by
X= {x1,x2, . . . ,xK}, and it has cardinality K. The experimental set may or may not cover all of X . The
number of simulation replications at each xk is nk, which is assumed strictly larger than 1 and may differ
by solution. Thus, for each xk ∈ X there are simulation-generated replications Y1(xk),Y2(xk), . . . ,Ynk(xk).
The associated sample mean and variance are

µ̂k =
1
nk

nk

∑
i=1

Yi(xk) and σ̂
2
k =

1
nk−1

nk

∑
i=1

(Yi(xk)− µ̂k)
2
.
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The total simulation budget for replications is N, therefore ∑
K
k=1 nk = N. For the purpose of examining

performance as N gets large, the experimental set X remains fixed and nk/N is bounded away from 0 as N
grows. We assume all K solutions are simulated independently; i.e., we do not employ common random
numbers.

Our set should guarantee some statistical properties, specifically the notions of confidence and consis-
tency. A random set that depends on our data attains confidence if the probability of it containing x? is
sufficiently large. That is, let SN ⊂X be a subset of feasible solutions based on N simulations. We would
like this set to contain the optimal x? with at least a prescribed probability 0 < 1−α < 1:
Definition 1 A subset SN attains finite-sample confidence 1−α if for all N ≥ 2K, with nk > 1 for all
k = 1,2, . . . ,K, we have P(x? ∈ SN)≥ 1−α .

Finite-sample confidence is a difficult goal whose attainment is, for the most part, limited to situations
in which our simulation produces random variables from specific distributions. The common case is when
the outputs from the simulation are normally distributed, then µ̂k and σ̂k have known distributions and are
independent. A more widely achievable notion enables us to employ the Central Limit Theorem that lets
µ̂k be approximated as normally distributed.
Definition 2 A subset SN attains asymptotic confidence 1−α if for any δ > 0 there exists an N0(δ ) such
that P(x? ∈ SN)≥ 1−α−δ for all N > N0(δ ).

Confidence alone is not sufficient to distinguish good and bad screening procedures since an absurdly
large subset could achieve confidence as defined above. Screening methods should also shrink the subset
as the sample size N increases. We formalize this concept with the notion of consistency:
Definition 3 A subset SN attains consistency if for all x0 ∈ X such that x0 6= x? we have
limN→∞P(x0 ∈ SN) = 0.

However, consistency is fundamentally unachievable in the prescribed setting when only X ⊂ X
solutions are simulated. Thus, we allow for a relaxed version of consistency:
Definition 4 Given some ε > 0, a subset SN achieves ε-consistency when for all x0 ∈ X such that
µ(x0)≥ ε +µ(x?) we have limN→∞P(x0 ∈ SN) = 0.

In other words, a subset achieving ε-consistency eventually excludes all solutions that are suboptimal
by at least ε .

In the next section we provide a framework for generating subsets of plausible optima that have
confidence and consistency.
Remark 1 There is a large literature on subset selection when X is finite, all feasible solutions are
simulated, and the solutions are treated as categorical. The foundation is the work of Gupta (1965), but
there have been many variations and extensions in statistics and simulation (Bechhofer et al. 1995; Kim
and Nelson 2007). The objective described in this paper aligns closely with this literature. Subset selection
inference may also be derived from multiple comparisons inference. For instance, multiple comparisons
with the best (Hsu 1984) provides 1−α simultaneous confidence intervals on

µ(xi)−min
j 6=i

µ(x j), i = 1,2, . . . ,K.

Therefore the optimal x? is the single solution whose interval is entirely below 0, or is one of the solutions
whose interval contains 0 and therefore cannot be distinguished from the best, with confidence 1−α . Due
to the connection between some ranking-and-selection procedures and multiple comparisons with the best,
ranking and selection procedures may also provide screening inference (Matejcik and Nelson 1995).

The methods described above are often based on the assumption of normally distributed output, and
always assume that all feasible solutions are simulated. To the best of our knowledge there are no other
methods designed to yield subset inference when X is not exhaustively simulated.
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3 PLAUSIBLE OPTIMA

The proposed screening method will return what we term a subset of plausible optima, achieving either
finite-sample or asymptotic confidence and ε-consistency even when some (typically most) feasible solutions
are not simulated. This goal requires exploiting information about the structural link between simulated
and not-simulated solutions.

We adopt structural information in the form of a known space of functions M that contains the mean
function µ(·). That is, the unknown mean function is an element of this space. The space M should
contain relevant structural information about the mean function; we assume this is known a priori and is
not extracted from the simulation output data. Importantly, M is not a prior distribution on µ(·); instead
it characterizes properties that µ(·) has.

Now for any x0 ∈X and our chosen space of functions, consider the smaller set of functionsM(x0)⊂M
which attain their optimum at x0. If M(x0) is empty then there are no plausible functions in M with x0 as
the optimum, and thus x0 can be removed from our set. Of course, for any reasonable space of functions
M , no feasible solution x0 can be eliminated in this way. But in light of simulation data obtained at X we
may be able to remove feasible solutions with some confidence.

For a given m(·) ∈M , a standardized empirical discrepancy between this function and the simulation
output data is

K

∑
k=1

nk

σ̂2
k
(m(xk)− µ̂k)

2
.

One could interpret this standardized discrepancy as a constant away from twice the negative log-likelihood
of m(·) when µ̂k is Gaussian with mean m(xk) and variance σ̂2

k /nk. If m(·) is quite far away from the
observed data at X, then it should have a high discrepancy. The standardized discrepancy can be associated
with x0 by measuring the minimum standardized discrepancy among the x0-optimal functions:

L(x0) = min
m∈M(x0)

K

∑
k=1

nk

σ̂2
k
(m(xk)− µ̂k)

2
. (1)

Thus, L(x0) can be used to measure the agreement between our data and the hypothesis that x0 is the
optimal: An extremely large L(x0) presents evidence that x0 is not the optimum. We therefore let the set
of plausible optima be

S = {x ∈X : L(x)≤ L} .

The choice of L is based on the prescribed confidence. We let L be the 1− α quantile of the
sum of K independent F-distributed random variables each with numerator degrees of freedom 1 and
denominator degrees of freedom n1−1,n2−1, . . . ,nK−1, respectively. Computationally, we adopt Monte
Carlo simulation to find this quantity. We will show this choice can achieve finite-sample confidence when
the outputs from the simulation are normally distributed, and always achieves asymptotic confidence. Thus,
with some loss of generality, we take this choice of L as the standard with the acknowledgment that other
selections are available.

For illustrative purposes, this paper will consider three spaces of mean functions. The first, MA is any
mapping from X to ℜ; MA is clearly the most general. Second, we consider ML, the space of functions
that are c-Lipschitz, with c > 0 being some upper bound on the Lipschitz constant of the unknown function
µ(·). Specifically:
Definition 5 The function m(·) ∈ML if we have |m(x)−m(x′)| ≤ c‖x− x′‖ for all x,x′ ∈X .

Lastly, we consider MC, the space of all convex functions on X . Because we may have a discrete
X , we must pay careful attention to our definition of convexity. While convexity over discrete sets has a
lengthy history (Murota 1998), we sidestep historical digressions in favor of the following definition:
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Definition 6 The function m(·) ∈MC if for all x ∈X there exists a corresponding d-dimensional vector
ξ (x) such that

m(x′)≥ m(x)+ξ (x)>(x′− x) for all x′ ∈X .

We employ this definition of convexity from here on. Notice that the more intuitive definitions of
convexity satisfy this characterization. Namely, if λ is between zero and one, and x,x′ and λx+(1−λ )x′

are all in X , then for all m(·) ∈MC we have

m(λx+(1−λ )x′)≤ λm(x)+(1−λ )m(x′).

4 ILLUSTRATION

Consider a situation where solutions take values on the real line. We conduct an experiment by simulating
n replications at two solutions x1 and x2, with x1 < x2, and receive data for which µ̂1 < µ̂2. For illustrative
purposes, suppose also σ̂2

1 = σ̂2
2 = 1.

The traditional, exhaustive approach to screening implies we cannot eliminate any solutions other
than one of these two. However, we can eliminate more solutions if we consider structural information.
Functions that achieve the minimum standardized discrepancy for both the Lipschitz and convexity cases
are drawn in Figure 1, but it should be noted that they are not unique. In the figure, each panel shows the
standardized discrepancy minimizing function among all functions that have x0 as their minima. The left
panel shows this function for both the convex and Lipschitz cases when x0 is chosen in the middle of the
two solutions in the experimental set. Since the function interpolates the sample means corresponding to
each solution, the standardized discrepancy is zero for the left panel.

In the right panel of Figure 1, where x0 > x2, there is a non-zero discrepancy for both function spaces.
In the Lipschitz case, if x0 is the optimum, then m(x1) ≥ m(x2)− c|x0− x2|; and if µ̂1 < µ̂2− c(x0− x2)
then there must be a discrepancy associated with x0. In the convex case, for x0 to be optimal and to the
right of x2 requires m(x1)≥ m(x2). Thus, when we leverage ML then

L(x0) =

{
0 if |x0− x2|> c−1(µ̂2− µ̂1),
n
2(µ̂1− µ̂2 + c|x0− x2|)2 if |x0− x2| ≤ c−1(µ̂2− µ̂1),

while when we leverage MC then

L(x0) =

{
0 if x0 < x2,
n
2(µ̂1− µ̂2)

2 if x0 ≥ x2.

These closed forms are not generally available when more solutions are included in the experiment.
For these two function spaces, there is some evidence that x0 is not optimal when it is either near x2 in

the Lipschitz case or to the right of x2 in the convex case. The decision to include x0 in the set is controlled
by the cutoff, L, to the set. But since L is decreasing in n, we will eventually be able to eliminate everything
within a c−1(µ̂2− µ̂1) ball around x2 for the Lipschitz case, and equal to or larger than x2 for the convex
case. Thus even a very limited experiment can eliminate an infinite number of feasible solutions if we
properly use information about the true mean function.

5 CONFIDENCE AND CONSISTENCY

In this section we present results on confidence and consistency; only the proof of Theorem 1 is included
to illustrate the main ideas. The fact that S attains both finite and asymptotic 1−α confidence is an
immediate consequence of the construction of S .
Theorem 1 If outputs from the simulation are normally distributed, then S achieves finite-sample confi-
dence.
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Figure 1: Illustration of plausible optima for the K = 2 case where solutions lie on the real line.

Proof of Theorem 1. Recall that we assume that the true mean function µ ∈M(x?). Thus,

L(x?) = min
m∈M(x?)

K

∑
k=1

nk

σ̂2
k
(m(xk)− µ̂k)

2 ≤
K

∑
k=1

nk

σ̂2
k
(µ(xk)− µ̂k)

2

which implies

P(x? ∈S ) = P(L(x?)≤ L)≥ P

(
K

∑
k=1

nk

σ̂2
k
(µ(xk)− µ̂k)

2 ≤ L

)
.

For each k, nk
σ̂2

k
(µ(xk)− µ̂k)

2 follows an F1,nk−1 distribution. Therefore, by construction of L,

P

(
K

∑
k=1

nk

σ̂2
k
(µ(xk)− µ̂k)

2 ≤ L

)
= 1−α.

Theorem 2 If outputs from the simulation have a bounded variance, S achieves asymptotic confidence.
As noted previously, consistency is difficult in the fixed experimental setting where data are only

observed at K feasible solutions. Instead, we will look to ε-consistency to evaluate the method. Let G be
the space of functions within M that interpolate the true function on the experimental set X, i.e.

G= {m ∈M such that m(xk) = µ(xk) for k = 1,2, . . . ,K} .

The set G is non-empty because µ must lie in it. Consider now the set of all solutions such that there is
an interpolating function that is also an x-optimal function

So = {x ∈X such that G∩M(x) is non-empty} .

Then define
εo = max

x∈So
µ(x)−µ(x?).

The fundamental consistency result is then:
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Theorem 3 S has εo-consistency.
Remark 2 Deriving specific values of, or bounds on, εo requires joint analysis of X , X, and M . But
there is at least one transparent result about εo. If X is a finite set of discrete points and X = X , then
εo = 0 since S = {x?}. Thus, if we are in an exhaustive simulation setting then our method produces the
stronger version of consistency. Further research is needed to explore the properties of εo for other settings.
Remark 3 Although beyond the scope of this article, we conjecture that the set of plausible optima can
be consistent if the experimental set X gets larger with N. The trade-off between the number of solutions
in the experimental set and the replications at each solution is expected to play a critical role in developing
such a consistency result (Ensor and Glynn 1997).

6 COMPUTATIONAL METHODS

If we are only interested in the theoretical construction of sets, then the framework underlying plausible
optima is complete. However, the construction thus far is not practical: there needs to be some way to
compute L(x0) for a feasible solution x0, simulated or not. Since L(x0) is the result of an optimization
problem, we view this as trading simulation for optimization at x0. The relative computational burdens of
simulation versus optimization are, of course, problem dependent. However, since we will potentially solve
this optimization problem for each feasible x0, speed of optimization is a critical consideration. The three
function spaces we have considered are all large enough that optimization to compute L(x0) takes place
over an infinite set; see (1). Moreover, the number of constraints in (1) is on the order of the cardinality of
X , which can also be infinite. This naturally evokes the question: can we actually compute these plausible
optima sets?

We now show that our three function spaces lead to a formulation for L(x0) that is a quadratic program
with a finite number of decision variables and constraints. The simplest version of this occurs when we
have the most general function information:
Theorem 4 Suppose M = MA. Then for all x0 /∈ X, L(x0) = 0. Further, for all l ∈ {1,2, . . . ,K},

L(xl) = min
m1,...,mK

K

∑
k=1

nk

σ̂2
k
(mk− µ̂k)

2

subject to ml ≤ mk for all k = 1,2, . . . ,K.

Thus, when no function information is used we revert to something analogous to the exhaustive
simulation case: No feasible solutions outside of the experimental set X can be eliminated. More elegant
reformulations exist in the latter two cases.
Theorem 5 Suppose M = ML. Then

L(x0) = min
m0,m1,...,mK

K

∑
k=1

nk

σ̂2
k
(mk− µ̂k)

2

subject to mk−ml ≤ c‖xk− xl‖ for k, l = 1,2, . . . ,K (2)

mk−m0 ≤ c‖xk− x0‖ for k = 1,2, . . . ,K

m0 ≤ mk for all k = 1,2, . . . ,K.
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Theorem 6 Suppose M = MC. Let ξ1,ξ2, . . . ,ξK be d dimensional decision variables. Then

L(x0) = min
m0,m1,...,mK ,ξ1,...,ξK

K

∑
k=1

nk

σ̂2
k
(mk− µ̂k)

2

subject to mk−ml ≤ ξ
>
k (xk− xl) for k, l = 1,2, . . . ,K,

mk−m0 ≤ ξ
>
k (xk− x0) for k = 1,2, . . . ,K.

m0 ≤ mk for k = 1,2, . . . ,K

We now offer a proof of the first result. Our proof of the second result is quite similar.

Proof of Theorem 5. Consider (2) the “new problem” and (1) the “original problem.” Let ṁ(·) be a
feasible solution to the original problem. This maps to a feasible solution in the new problem with the same
objective function value with m̈k = ṁ(xk) for k = 0,1, . . . ,K. Clearly, (m̈0, m̈1, . . . , m̈K) is feasible for the
new problem. Conclude the new problem has a solution that is less than or equal to the original problem.

Now let ṁ0, ṁ1, . . . , ṁK be a feasible solution in the new problem. We show that this maps to a feasible
solution to the original problem with the same objective function value. Consider

m+(x) = min
k=0,1,...,K

ṁk + c‖x− xk‖, m−(x) = max
k=0,1,...,K

ṁk− c‖x− xk‖,

k+(x) = argmin
k=0,1,...,K

ṁk + c‖x− xk‖, and k−(x) = argmax
k=0,1,...,K

ṁk− c‖x− xk‖.

Construct m̈(x)= (m+(x)+m−(x))/2.We first observe that m+(xk)= ṁk and m−(xk)= ṁk for k = 1,2, . . . ,K,
and thus the objective function is unchanged. Also, m̈(·) is Lipschitz. Lastly, we need to demonstrate
preservation of the optimality of x0 in the new construction. We have by construction that for any x ∈X
m̈(x0) = ṁ0 ≤ ṁk+(x) = m̈(xk+(x)). Also by construction

1
2

m̈(xk+(x))−
c
2
‖x− xk+(x)‖ ≤

1
2

m̈(xk−(x))−
c
2
‖x− xk−(x)‖.

Adding these inequalities together gives

m̈(x0)≤
1
2
(
m̈(xk+(x))+ m̈(xk−(x))+ c‖x− xk+(x)|− c‖x− xk−(x)‖

)
= m̈(x).

Therefore, we conclude m̈(·) is feasible for the original problem and thus the original problem’s value is
less than or equal to the new problem’s value.

The two reformulations in Theorems 5–6 yield convex quadratic programs. For the Lipschitz case,
there are K +1 scalar decision variables and order K2 inequality constraints. For the convex case, there
are K + 1+ dK scalar decision variables and also order K2 inequality constraints. Thus, these will not
be large problems for modern quadratic programming algorithms unless we simulate a huge number of
feasible solutions or the dimension of the feasible-solution space is large.
Remark 4 At present we are unsure what other versions ofM might yield tractable optimization formulations
for L(x0). Certainly the intersection of ML and MC would produce nice formulations. Slight modifications
would also yield nice formulations for Hölder spaces and strongly convex functions. These can be considered
somewhat trivial extensions. There are many other function spaces that have not been considered here.
If we generalized the function spaces, perhaps the constraints would not be linear, creating additional
computational concerns.
Remark 5 Since many quadratic programs will have to be solved over many feasible solutions, it may
prove useful to investigate the computation of these quadratic programs in a sequential form, perhaps using
ideas from Wright and Nocedal (1999).
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7 NUMERICAL EXAMPLES

This section presents the results after implementation of the proposed screening approach on classical
simulation optimization problems. The two examples are designed to highlight the potential for the method
when there are many solutions available and limited simulation budget.

7.1 M/M/x Staffing Problem

Consider a first-come-first-served x-server queue staffing problem. The variant we consider has a Poisson
arrival process with an arrival rate of 1 and exponentially distributed service times with mean 1000. Our
objective is to minimize the sum of the cost of staffing the queue, 0.01x, and the average square root of the
total time in system. This square root transformation is designed to emulate a concave utility function with
respect to time in system. Our simulation was run for 10,000 time units and initialized from the steady
state conditions of the queue. The optimal solution can be analytically computed as x? = 1036.

We obtain the subset S of plausible optima by simulating n replications at solutions X =
{1020,1025, . . . ,1115}. For our numerical illustration we take n = 5,10,25, implying total budgets of
N = 100,200,500, respectively. We exploit either convexity information or Lipschitz information with
c = 0.03. As a comparison, we also applied a classical subset selection algorithm that uses an exhaustive
simulation at all 100 feasible solutions x between 1020 to 1119; specifically, Boesel et al. (2003). For all
methods, we used α = 0.05. We generated 100 macroreplications of the entire experiment and recorded
the number of times a solution is in the subset for all three approaches.

The results are shown in Figure 2. Each panel shows the frequency that a particular x value is included
in the set. The horizontal solid line at 0.95 in all panels represents the desired confidence level. The dashed
line shows the frequency of inclusion of the optimal solution x? = 1036.

All methods, as expected and by design, appear to have good confidence properties. The distinguishing
results are with respect to consistency. As a general trend, the classical subset selection algorithm does
worse than the plausible optima approach. We imagine this is because the classical approach does not
leverage structural information. The convex case provides better consistency properties compared to the
Lipschitz case. The most striking results happen when there is a small total budget, i.e., N ≤ 200. When
N = 100 the classical subset selection procedure cannot be applied because there is only a single observation
at each feasible solution, thus all solutions remain in the set. The plausible optima approach, by contrast,
does well in this small-data environment.

7.2 Inventory Problem

Consider an (s,S) inventory problem where we select the minimum inventory that triggers a new order s
and the amount we should be ordering up to, S, when an order is placed. There are costs associated with
stocking out or holding extra product, and the numerical values of these costs are exactly as in Koenig
and Law (1985). The simulation will take place over 100 months. We consider a design region where the
minimum inventory is in [10,80] and the order-up-to quantity is in [10,100]. Additionally, we assume the
order-up-to quantity is at least 15 more than the minimum inventory. In total, this gives us 2911 feasible
solutions.

Suppose we are limited to a total budget of N = 250 simulations. In this case exhaustive simulation
is not possible; we can only simulate fewer than 10% of the feasible solutions if we have one replication
per solution. We instead choose 25 solutions in the space to simulate n = 10 replications each. The mean
function is not convex, thus we will use the plausible optima approach leveraging Lipschitz information
with c = 3. We obtain 100 macroreplications of the entire experiment and record the occurrence of each
solution in the plausible optima subset.

The results are shown in Figure 3. The solid lines represent the boundaries of the feasible region. The
∗ marks the true optimal solution. The diamonds mark the experimental set X. The size of the circles
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Figure 2: Numerical results for the M/M/x experiment.

indicates how often in the 100 macroreplications that a solution remained in the set of plausible optima.
A circle of diameter 1 implies it was in the set every attempt and no circle implies it was never in the set.

The results show that we can eliminate roughly half of the feasible solutions using the proposed approach.
Given a larger simulation budget, an exhaustive approach with a generic subset selection algorithm would
give a similar result. Thus, there are two ways to assess the performance for this example. First, the
proposed plausible optima can be used to halve the number of feasible solutions before applying an exhaustive
simulation optimization algorithm. Alternatively, if one was limited to only these 250 simulations because
of a computational budget, the plausible optima can be used with the understanding that some poorer
solutions have been eliminated. In either case, it appears there is some advantage to considering plausible
optima.

8 CONCLUDING REMARKS

This article introduced the foundation for a new approach for constructing screening sets after a limited
simulation experiment. By using underlying structural function information we are able to eliminate
unsimulated solutions. The method was illustrated using two reasonable cases of structural function
information, Lipschitz bounds and convexity, and more cases are foreshadowed in Remark 4 at the end of
Section 6. The numerical examples demonstrate that even when the budget for simulation is much less
than the total number of feasible solutions, many solutions can be screened out, even those with no data
attached to them. The theory underpinning these sets relates to the classical notions of statistical confidence
and pointwise consistency.

We acknowledge there is currently a gap between the concepts in this work and the black box approach
to simulation optimization in modern software. To implement the method of plausible optima in practice,
one must address the assumption that the user knows the function space. In some cases it is reasonable that
convexity information is available. In other cases it is not known a priori if convexity holds. So perhaps
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Figure 3: Numerical results for the inventory experiment.

a separate investigation of convexity is required; an example of one such approach is Jian et al. (2014).
In the case of Lipschitz information, the user may not know the Lipschitz constant or a reasonable upper
bound on it. Practical methods should include some estimation of this constant. Initial experiments by
the authors’ have found that an overestimated Lipschitz constant still results in screening out very poor
performing regions of the design space but causes drastic reductions in screening power near the optima.
One idea is to leverage bounds on an estimated derivative (Fu 2006). Ideally there will be some type of
integrated approach that provides guidance on reasonable function spaces and the estimation of constants.
Research is ongoing on these matters.
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