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Abstract— This paper presents an approach for modeling
new soft robotic materials which possess the ability to control
directional stiffness. These materials are inspired by biological
systems where movements are enabled by variable stiffness
tissue and contraction of localized muscle groups. Here a low-
melting-point (LMP) material lattice embedded in an elastomer
serves as a rigid skeleton that may be locally melted to allow
bending at selectable joint locations. The forward kinematics of
the lattice has been modeled using the product of exponentials
method with the incorporation of bending axis selectivity. In this
paper, we develop this model to account for torques imposed by
tendons, and we model the elastomer’s resistance to bending as
a torsional spring at the selected joints. Thus we obtain a two-
way relationship between tendon forces and joint angles/axes.
The concept of applying traditional robot modeling strategies
to selectively compliant robotic structures could enable precise
control of dexterous soft robots that satisfy stringent safety
criteria.

I. INTRODUCTION

Several novel approaches to soft robotics actuation have
been innovated in the last several years as researchers explore
the soft robotics alternative to traditional rigid robots. With
the growing demand for at-home healthcare and the push
for industrial co-robots, safety and adaptability are a high
priority for modern robots [1]. The intrinsically soft nature of
the soft robotics approach offers solutions to safety concerns
and shows great promise for mimicking human abilities
[2]-[4]. Unlike traditional robots, soft robots can deform
upon impact to prevent injuries. Several approaches have
been developed to address the strength/flexibility trade-off
introduced by the soft robotics approach [1], [5].

In an effort to maintain the structural integrity of tradi-
tional robots, variable stiffness actuators operate by varying
the stiffness transmitted to joints between rigid links. An-
tagonistic arrangements of actuators mimic human muscle
configuration and can exhibit a nonlinear relationship be-
tween input torque and angular joint deflection [6]—-[8]. Other
methods use advanced control systems to enable variable
stiffness. Although these methods offer high-level precision
and reliability, their practicality is limited by size, weight and
bandwidth, and they are generally not suitable for material
actuators with multiple degrees of freedom [9], [10].

Variable stiffness structures are comprised of prestressed
struts and cables that hold the structure in a configuration; by
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selectively releasing and re-tensioning cables within a robotic
system, a variety of predictable motions may be activated
[11]-[13]. Similarly, the application of 4D printing to soft
robotics has enabled assemblies that self-bend when exposed
to light, heat, electricity, or other means of stimulation. A pat-
terned deposition of ink causes heating/shrinkage at folding
sites or localized swelling of media within polymer matrices
under infrared exposure [14], [15]. Other researchers have
designed robotic structures using origami techniques [16],
[17]. Soft robotic actuators for specific applications are
often designed to meet the compliance requirements of the
system at hand [18]. Many soft actuators are fabricated with
geometrically patterned pneumatic chambers that deform the
elastomer when pressurized [19]-[23]. Although elastomers
are inherently weak, fiber reinforcement and high pressure
supplies offer surprisingly high strength capabilities [4], [24],
[25].

Research similar to the work in this paper is driven by a
need for soft robotic structures/materials that can exhibit both
high strength and compliant behavior. The impressive capa-
bilities of biological systems such as muscular hydrostats
and catch-connective tissue inspire the design of soft robotic
materials whose stiffness can be precisely controlled [26],
[27]. Some researchers have explored the use of low-melting-
point (LMP) materials to enable stiffness variability [28]—
[33]. Heating of these materials causes the internal skeleton
to melt and allow compliant behavior when desired.

These concepts are expanded to enable directional stiffness
control by locally melting the skeleton at designated loca-
tions [34]. In this work, we propose a method for modeling
the configuration such an element with selectable bending
axes.

4 L 4
; 1 + 2 + 3 1 Heating wires x
01 q2 q3 )
[ [ |
. {
S T
/// Tendon loops
wi,1 w21 W31 ?
L . — e
wi,2 w2,2 w3, 2
w1,3 W23 W33 o

Fig. 1. Design of 3-link soft robotic element with internal LMP lattice
that can be selectively melted to allow bending about 9 different axes.
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Fig. 2. A few unique configurations achievable through selective melting
and deformation of soft robotic element.

A 3-link soft robotic element has been proposed with
an internal rigid skeleton that may be selectively melted
to allow bending about specified axes as shown in Fig. 1.
The element consists of a low-melting-point (LMP) metal
or polymer lattice encased in silicone rubber with nichrome
heating elements arranged to allow selection of bending axes.

The nine selectable bending axes represented by w; ;, are
shown in Fig. 1, where 7 refers to the segment number
and j is the axis direction. For this problem, up to 3 of
the 9 bending axes may be selected at once (up to one
axis per segment) by localized melting of the lattice. As
shown in Fig. 3, a tendon is attached to each side of the
element to induce bending about the selected compliant
axes. The forward kinematics of this element have been
constructed using the product of exponentials method to
determine the configuration of the piece based on the selected
axes and corresponding joint angles [34]. A variety of unique
configurations may be achieved as shown in Fig. 2 with
minimal complexity.

For this paper, we take this model a step further by relating
the forces applied on tendons to the deformation of the piece.
This involves modeling the joints (melted axes) as torsional
springs with some constant stiffness. By relating the tendon
forces and the elements configuration, we may determine
what configurations are possible for any given set of selected
axes.

Each set of equations is derived as a function of w, the set
of selected axes which may include a single axis or up to
3 of the 9 possible bending axes (one axis per segment).
Each time that a segment is deformed and then cooled,
the reference configuration of the model changes and must
be updated. By successively melting different joints and
controlling tendon forces, a vast range of configurations may
be achieved by this simple element.

Selective melting drastically improves the work space of
the device as compared to simultaneous melting by allowing
for finer control using only a single tendon. When individual
joints may be selected to melt on their own, or even in pairs
rather than all three, then the shape of the device may be
more precisely controlled.

Simultaneous melting only allows for the bending of
all selected joints at once, with each joint experiencing
approximately the same angular displacement. This provides
both little control and limited workspace. Selective melting

Fig. 3. Tendon routing diagram for 3-link soft robotic element.

allows for configurations and tool tip positions that would not
otherwise be achievable by allowing for the manipulation of
individual joints while the other joints are fixed.

II. MATERIALS AND METHODS

A. Extension Functions for Tendons

The torque applied on the joints by the tendons depends
on the tendon routing configuration and the axes that have
been selected. For example, if the tendon does not lie
perpendicular to the selected bending axis, a larger tendon
force will be required to achieve the same torque about the
joint. These geometric relationships between tendon force
and joint torque are derived as a function of each possible
axis selection, joint angle, and tendon offset.

The joint torques 7 may be directly related to the forces
applied to the tendons by developing extension functions for
each tendon. This method of analyzing inelastic tendons is
described by Murray et al. [35]. This method involves deriv-
ing the extension function for each tendon, which expresses
the length of the tendon as a function of the joint angles. In
our case, since the axis directions may vary, the extension
functions are a function of both the joint angles and the
selected axes.

For a simple planar problem, developing these extension
functions may be done by simply analyzing the geometry.
For example, if the axes wy 3,ws 3, and w3 3, are selected,
the geometric relationships may be extracted by inspection
of Fig. 3. However, when different axes are selected, the
problem is no longer planar, and these geometric relations
become nontrivial.

Rather than developing complicated, three-dimensional
geometric relationships for each bending axis combination,
the forward kinematics exponential may be used to express
the length of each tendon for any set of selected axes and
joint angles. The length of tendon 1, as shown in Fig. 3,
is simply the sum of the distances between tendon fixation
points 1 and 2, 2 and 3, 3 and 4. These distances are already
known from the forward kinematics for this element, which
have been previously developed [34]
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where &1 (wq) is the twist used to represent the rotation
and translation of points due to bending about the selected
axis wj. Here the second subscript indicates the frame of
reference, so 2 1 represents the homogeneous coordinates of
point 2 relative to frame 1. The matrix exponential 1% used
to transform points from frame 1 to 2 has been previously
developed as a function of w in the construction of the
forward kinematics relationships for this element [34]. The
reference configuration g; o, is the transformation between
frames 1 and 2 when 6; = 0. For this case,
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where /; is the length of link 1. The distance between z; 1
and x5 ; may then be computed as:

da(0n,w1) = /(@] 200)? + (422002 (4)

Finally, when the joint angles are all positive, the extension
function for tendon 1 may then be computed by summing
the distances between each tendon fixation point:

hi(0,w) = dy_o 4 da—3 + d3_4, (5)

where do_3 and d3_4 are computed using the matrix
exponential for rotation about wy and ws. The extension
function for tendon 2 may simply be expressed as

hg(@,w) =41 +ab1 + U5 + aby + {3 + abs (6)

when the joint angles are all positive. In theory, there
are 8 different cases for these extension functions based on
different combinations of positive and negative joint angles.
For example, if 6; and 0, are positive while 63 is negative,
the extension functions would behave differently than if all
the joint angles were positive. Thus, extension functions are
different for each of the 8 cases of positive/negative joint
angle combinations. However, for this project we only have
two tendons, so if we consider only simultaneous melting,
the only possible joint angle combinations are case 1 (all
joint angles are positive) and case 8 (all joint angles are
negative). For case 8, the joint angles are all negative (i.e.
tendon 2 is activated instead of tendon 1), and the extension
functions are reversed as follows:

hl(e,w) =01 —aby + ly — abs + €3 — abs, (7)

ha(0,w) = ds_¢ + de—7 + d7_s. (8)
B. Coupling Matrix

According to Murray et al. [35], by applying the conser-
vation of energy, the joint torques can be expressed as

T=PO,w)f, (9)

where f is a vector containing the forces on each tendon:

_|h
f_ |:f2:|,

and where P(0,w) is the coupling matrix computed from

(10)

_ OhT(0,w)

PO,w) = o8 (11)

where h is a vector containing the extension functions
for the appropriate case of positive/negative joint angle
combinations:

(12)

0= [0

The computation of P(f,w) is non-trivial. Since the
extension functions & depend on the joint angles and selected
axes, and they involve matrix exponentials and square roots,
taking the derivatives for P(f,w) by hand would be tedious
and nearly impossible. The extension functions were entered
into Mathematica for the analytical computation of these
derivatives. These derivatives were computed for all 8 cases
of positive/negative joint angle combinations. The resulting
coupling matrix for each case, expressed as a function of
0,w,a,l, s, and £3, was then converted to MATLAB using
the ToMatlab package.

C. Measuring Joint Stiffnesses

The joint stiffness modeled by the torsional springs is
dependent on the geometry of the element at the joint and the
material properties of the elastomer. By assuming Hooke’s
Law behavior, the torque exerted by the spring (joint) can
be expressed as

T = kb, (13)

where 6 is the resulting joint angle relative to the equilib-
rium configuration, and % is the spring constant which may
be determined experimentally. The spring constant k£ should
be proportional to the elastic modulus of the material and the
area moment of inertia of the joint cross-section. £ may be
determined experimentally for a simple geometry and then
scaled to find k£ for other joint geometries (with different
area moments of inertia).

For this particular project, there are only two different
cross-sections for the nine different allowable bending axes.
There is a cross-section for the straight (transverse) axes,
and a slightly wider cross-section for the diagonal axes. A
primitive experiment setup shown in Fig. 4 was used to
measure the effective spring constants of these melted joints



on the soft robotic element. The desired axis was heated to
60°C to melt the polycaprolactone (PCL) polymer lattice
along the axis, then the tendon was pulled with a load
cell to measure the perpendicular force required to incur
a 90° bend at the axis; average force measurements from
3 identical repeated tests were then converted to torsional
spring constants listed in the table below.

Fig. 4. Experimental testing of effective torsional spring constants
representing resistance to deformation at selectively melted joints.

TABLE I
MEASURED TORSIONAL SPRING CONSTANTS FOR STRAIGHT AND
DIAGONAL AXES

Measured
Axis Type Spring Constant Variable Name
Straight (melted) 21.7 £ 1.4 N-mm/rad || kstraight
Diagonal (melted) || 27.0 £ 1.0 N-mm/rad || Kdiagonal
Straight (solid) 115 £+ 11 N-mm/rad Ksolid

The appropriate stiffness value (Ksiaight, Kdiagonal, OF Ksolia)
is selected in MATLAB based on the input axis selections
using if statements. For example, using the conventions we
have chosen, k; represents the joint stiffness for segment ¢
of the robotic element. If the input w; is 1 or 2, this indicates
bending about the axis w; 1 or w; o which are diagonal axes,
so k; is set to be kgiqgonal. If w; is 3, this indicates bending
about w; 3, the transverse axis, so k; is set to be Ksraight-
Finally, if w; is O, this indicates an unmelted joint, so k; is
set to be ksorid-

The bending resistance at the joints will appear in the po-
tential energy terms in the derivation of the system dynamics
using the Lagrange-Euler method.

D. Euler-Lagrange Method to Relate Potential Energy to
Joint Torques

The Euler-Lagrange method may be used to develop the
equations of motion for the robotic element. Since we are
only dealing with the statics of this problem, the higher order
terms in this method may be neglected. In other words, we
can neglect the effects of kinetic energy and rotational inertia
on the system. We will also choose to neglect gravity for this
paper. By simplifying the problem in this way, the resulting
governing equation will take the form:

—0L(0,w)
00
where £(0,w) is the Lagrangian, 6 is the joint angles, and
T is the joint torques vector.

=Kw)f=r1", (14)

Beginning with the equation for the potential energy of the
system, we account for the torques generated by the bending
at the joints:

PE = lklef + 1k29§ + lkgag, (15)
2 2 2
with k; being the stiffness of the joint and 6; being the
angular displacement at that joint. Given that only potential
energy is being considered in the system, the Lagrangian is
simply

1
L= 5(—&9% — ko3 — k303). (16)

Differentiating the Lagrangian with respect to 6 yields
oL
— = |—ki1601 —kols —ks3b3].
90 [ 101 202 3 3}
Applying the Euler-Lagrange equation to the simplified
static model yields the following relationship

(17)

TT = ——=" = [/{3101 k‘292 k‘393] . (18)
By applying the relationship from (9), the joint torques

may be expressed in terms of the tendon forces and coupling

matrix. Combining (9) and (22) produces the relationship

K@) = P(0,w)], (19)
where K (w) is the joint stiffness matrix:
kl (OJ) 0 0
Kw)=1] 0 ko (w) 0 (20)
0 0 k‘3 (OJ)

In our system, we want to be able to determine 6 given a
particular f and w. We also hope to be able to determine f
for a given # and w. To determine § from a given f and w,
we can left-multiply each side of (19) by the inverse of the
stiffness matrix to yield

61
0| = K 1 (w)P(6,w)f.
03

0= (21)

The joint angles 6 cannot be solved for analytically in
this expression since the coupling matrix P is a complicated
function of 6. Since 6 appears on both sides of (21),
numerical analysis must be applied. This equation can easily
be solved using fixed point iteration to determine the joint
angles that result from a given set of selected axes w and
tendon forces f. To find the forces required to produce a
desired set of joint angles, we simply left multiply (19) by
P-inverse to obtain:

f= [f 1] — P8, w) K ()6, (22)

f2



III. RESULTS AND DISCUSSION
A. Configuration Computation

By activating different heating elements and applying
different tendon forces, a wide variety of configurations may
be achieved. A relationship has been developed that enables
computation of the joint angles that result from application
of a given tendon force. For example, Fig. 5 (a) shows the
computed equilibrium configuration when a 4-Newton force
is applied to the upper tendon, and the heating elements are
activated to allow bending along axes w1 ; (diagonal axis
on first link) and ws 3 (transverse axis on third link). Other
unique configurations may be achieved by applying different
tendon forces and selectively melting different axes along
the lattice, as seen in Fig. 5 (b) and (c).

Various configurations may be used to perform intelligent
tasks. For example, applying a 14-Newton force to the upper
tendon while melting parallel diagonal axes could allow the
robot to grab a pen as shown below in Fig. 6.

B. Workspace Limitations

It is interesting to note that (21) fails to compute realistic
joint angles if a joint angle exceeds 90° along a diagonal
axis. At first glance, this may appear to be a computational
error, but in reality, this computational limitation perfectly
represents a physical limitation. Careful inspection of the
tendon routing shown in Figs. 1 and 3 reveals the reason
for this limitation. For this particular arrangement of tendon
fixation points, the tendon length across a diagonal joint
reaches a minimum when the joint angle is 90°. Bending a
diagonal joint beyond 90° would actually require elongation
of the tendon, so the physical model would never actually
bend more than 90° along a diagonal axis. However, along
the transverse axes, the physical element can bend beyond
90°, up to the point of folding on itself. This concept is again
modeled perfectly by the mathematical model, which allows
bending beyond 90° along transverse axes.

C. Force Computation

The ability to compute the tendon forces required to
achieve a configuration is desirable for implementing ad-
vanced control and maneuverability with the soft robotic
element. The relationship from (22) enables this computa-
tion. For example, the configuration shown in Fig. 5 (a) was
achieved by applying a 4-Newton force to the upper tendon
while melting axes w;; and ws 3. Applying (21) revealed
that this load/axis combination results in joint angles of
21.7°, 6.0°, and 93.9°, respectively. We can then test the
validity of the force computation function by solving this
problem backwards and comparing the force results with the
original input force values. To do this, we use 21.7°, 6.0°,
and 93.9° as the 6 input in (22), along with the axis selection
wi,1 and w33 to determine the forces needed to achieve
these joint angles. The forces computed should theoretically
be 4 Newtons on the upper tendon and 0 Newtons on the
lower tendon. Application of (22) with these input values
indicated that forces of 3.9992 N and -0.0009 N on the
upper and lower tendons are required to achieve the particular

configuration shown in Fig. 5 (a). These results are not
perfect, but they show that (22) is useful for calculating the
tendon forces required to achieve a desired set of joint angles
with reasonable accuracy.

D. Joint Space Limitations

It is important to note that in the case of this 3-segment
element with 2 opposing tendons, not all joint angle com-
binations are possible. The joint space is limited, and the
required force computation only works when the desired joint
angles lie within the allowable joint space. This detail is
evidenced by both the physical model and the mathematics
behind the force computation. From the physical model, we
can intuitively see that the angles of the 3 simultaneously-
melted joints cannot be controlled independently with the
use of only one tendon. Here we consider only one tendon
since it would be counter-productive to pull both tendons
simultaneously. Increasing the tendon tension increases the
joint angles of all three joints simultaneously in a specific
ratio that is proportional to the relative bending stiffnesses of
the three joints. In order to compute the tendon force required
to achieve a desired set of joint angles, these joint angles
must follow the proper ratio proportional to their bending
stiffnesses. Otherwise, no tendon force will be able to cause
joint angles that do not follow this ratio. For example, no
tendon force will be able to cause bending in only the
first joint if three joints are melted. Mathematically, this
concept is demonstrated in the form of the coupling matrix P.
Computing the required tendon forces involves multiplying
by the inverse of P, as seen in (22). Recall that P is a 3 x 2
matrix in this case. As such, the force computation only
works when

6 € Image[ K~ (w)P(0,w)]. (22)
However, the restriction on 6 for the force computation is
actually even more stringent due to the tendon antagonism.
Since one of the tendon forces is always zero, 6 must be a
scalar multiple of a single column of [K~!(w)P(#,w)] for
computation of the tendon forces to be possible.

E. Effects of Successive Melting

By successively melting joints, a larger number of more
complex configurations are made possible. Notably, it allows
for the combination of movements which require both the top
and bottom tendons to be pulled. As seen in Fig. 7 (a) and
(b), a single joint was melted to achieve a position by pulling
the top and bottom tendons, respectively. With successive
melting, these configurations can be combined to achieve
the configuration shown in in Fig. 7 (c). This combined
configuration is not achievable with simultaneous melting, as
both the top and bottom tendons must be pulled to achieve
the final form. If both axes were melted simultaneously and
each tendon pulled, the joints would not be able to bend in
opposite directions like they can when sequentially melted.
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Fig. 6. Melting parallel diagonal axes allows physical element to wrap
around a pen.

Fig. 7. Example of 2-directional bending enabled by successive melting.
(a) and (b) show individual steps; (c) shows resulting configuration from
successive deformation.

IV. CONCLUSION

Ultimately, a relationship has been obtained to relate ten-
don forces to resulting joint angles in the static equilibrium of
a 3-segment soft robotic element with selectable axes. With
some limitations, this relationship can be used both ways:
to compute joint angles given tendon forces and selected
axes, or to compute necessary tendon forces to achieve a
desired set of joint angles for a given set of selected axes.
Using (21) and (22), the joint angles are related to the
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Simulated configurations of 3-link element under different heating and tendon loads, where red lines indicate activated heating elements.

tendon forces required to produce a desired position using
the coupling matrix. The derivation of the application of
the coupling matrix is detailed in chapter 4 section 4.1
of A Mathematical Introduction to Robotic Manipulation
[35]. The joint stiffnesses were modeled as torsional springs
with spring constants that were measured experimentally by
melting a joint and pulling a perpendicular tendon using a
force meter.

The next step for this project would be to incorporate
the dynamics of the system. For this static model, we have
neglected the kinetic energy and rotational inertia compo-
nents. Including these elements in the model will allow us
to implement torque control in the future so that we may
accurately control the movement of the element and achieve
desired trajectories. In the future, it may be helpful to develop
an intelligent method of determining which axes need to be
melted in order to achieve a desired trajectory. This may be
done by determining which set of axes make the desired
trajectory lie within the image of the spatial manipulator
jacobian. However, for this work the selected axes are a
simple input.

Once these relationships are developed, they may then be
applied to larger scale robotic elements that include more
segments or even three-dimensional structures. We have seen
in this project the unique configurations enabled by the
selective melting of a small soft robotic element. With just
one set of tendons and 3 joints, a wide variety of movements
and configurations may be achieved, as evidenced by the
ability to grasp a pencil, curl into a tight ball or extend
out as a rigid arm. By applying these concepts into higher
dimensional structures, highly dexterous movements even
mimicking human gestures may be achieved.
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