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Abstract—We investigate faithful simulation of distributed
quantum measurements as an extension of Winter’s measurement
compression theorem. We characterize a set of communication
and common randomness rates needed to provide faithful simu-
lation of distributed measurements. To achieve this, we introduce
binning and mutual packing lemma for distributed quantum
measurements. These techniques can be viewed as the quantum
counterpart of their classical analogues. Finally, using these
results, we develop a distributed quantum-to-classical rate distor-
tion theory and characterize a rate region analogous to Berger-
Tung’s in terms of single-letter quantum mutual information
quantities.

I. INTRODUCTION

MEasurements are the interface between the intricate
quantum world and the perceivable macroscopic clas-

sical world. A measurement associates to a quantum state
a classical attribute. However, quantum phenomena, such as
superposition, entanglement and non-commutativity contribute
to uncertainty in the measurement outcomes. A key concern,
from an information-theoretic standpoint, is to quantify the
amount of “relevant information” conveyed by a measurement
about a quantum state.

Winter’s measurement compression theorem (as elaborated
in [1]) quantifies the “relevant information” as the amount
of resources needed to simulate the output of a quantum
measurement applied to a given state. Imagine that an agent
(Alice) performs a measurement M on a quantum state ρ and
sends a set of classical bits to a receiver (Bob). Bob intends
to faithfully recover the outcomes of Alice’s measurements
without having access to ρ. The measurement compression
theorem states that at least quantum mutual information
(IpX;Rq) amount of classical information and conditional
entropy (SpX|Rq) amount of common shared randomness are
needed to obtain a faithful simulation.

The measurement compression theorem finds its applica-
tions in several paradigms including local purity distillation [1]
and private classical communication over quantum channels
[2]. This theorem was later used by Datta, et al. [3] to develop
a quantum-to-classical rate-distortion theory. The problem
involved lossy compression of a quantum information source
into classical bits, with the task of compression performed
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by applying a measurement on the source. In essence, the
objective of the problem was to minimize the storage of
the classical outputs resulting from the measurement while
ensuring sufficient reliability so as to be able to recover
the quantum state (from classical bits) within a fixed level
of distortion from the original quantum source. To achieve
this, the authors in [4] advocated the use of measurement
compression protocol and subsequently characterized the so
called rate-distortion function in terms of single-letter quantum
mutual information quantities. The authors further established
that by employing a naive approach of measuring individual
output of the quantum source, and then applying Shannon’s
rate-distortion theory to compress the classical data obtained
is insufficient to achieve optimal rates.
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Fig. 1. The diagram of a distributed quantum measurement applied to a
bipartite quantum system AB. A tensor product measurement MA bMB is
performed on many copies of the observed quantum state. The outcomes of
the measurements are given by two classical bits. The receiver functions as a
classical-to-quantum channel β mapping the classical data to a quantum state.

In this work, we seek to quantify “relevant information”
for quantum measurements performed in a distributed fashion.
In this setting, as shown in Fig. 1, a composite bipartite
quantum system AB is made available at two separate agents,
named Alice and Bob. Alice and Bob have access only to sub-
systems A and B, respectively. Two separate measurements,
one for each sub-system, are performed in a distributed fashion
with no communication taking place between Alice and Bob.
Imagine that there is a third party (named Eve) who tries to
simulate the action of the measurements without any access
to the quantum systems. To achieve this objective, Alice and
Bob send classical bits to Eve at rate r1 and r2, respectively.
Eve on receiving these pairs of classical bits from Alice and
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Bob wishes to reconstruct the joint quantum state ρAB using a
classical-to-quantum channel. The reconstruction has to satisfy
a fidelity constraint characterized using a distortion observable
or a trace norm.

One strategy is to apply Winter’s measurement theorem
[5] to compress each individual measurements MA and MB

separately into M̃A and M̃B . As a result, faithful simulation
of MA by M̃A is possible when at least nIpX;Rq classical
bits of communication and nSpX|Rq bits of common ran-
domness are available between Alice and Eve. Similarly, a
faithful simulation of MB by M̃B is possible with nIpX;Rq
classical bits of communication and nSpY |Rq bits of common
randomness between Eve and Bob. The challenge here is that
the direct use of single-POVM compression theorem for each
individual POVMs, MA and MB , does not necessarily ensure
a “distributed” faithful simulation for the overall measurement,
MA bMB .

One can further reduce the amount of classical communica-
tion by exploiting the statistical correlations between Alice’s
and Bob’s measurement outcomes. The challenge here is that
the classical outputs of the approximating POVMs (operating
on n copies of the source) are not IID sequences — rather
they are codewords generated from random coding. Therefore,
standard classical source coding techniques are not applicable
here. This issue also arises in classical distributed source
coding problem which was addressed by Wyner-Ahlswede-
Körner [6] by developing Markov Lemma and Mutual Packing
Lemma.

Building upon these ideas, we developed a quantum-
classical counterpart of these lemmas for the multi-user
quantum measurement simulation problem. We characterize
a set of sufficient communication and common randomness
rates in terms of single-letter quantum information quantities
(Theorem 2). To prove this theorem, we develop binning of
quantum measurements. This technique can be viewed as the
quantum counterpart of its classical analogues. The idea of
binning in quantum setting has been used in [7] and [8]
for quantum data compression involving side information.
However, in this paper we introduce a novel binning technique
for measurements which is different from these works. The
binning in this work is used to construct measurements for
Alice and Bob with fewer outcomes compared to the above
individual measurements, i.e., M̃A and M̃B .

Secondly, we use our results on the simulation of distributed
measurements to develop a distributed quantum-to-classical
rate distortion theory (Theorem 3). For the achievability part,
we characterize a rate region analogous to Berger-Tung’s [6] in
terms of single-letter quantum mutual information quantities.

II. PRELIMINARIES

We here establish all our notations, briefly state few nec-
essary definitions, and also provide Winter’s theorem on
measurement compression. Let BpHq denote the algebra of
all bounded linear operators acting on a finite dimensional
Hilbert space H. Further, let DpHq denote the set of positive
operators of unit trace acting on H. By I denote the identity

operator. The trace distance between two operators A and B is
defined as }A´B}1 “∆ tr|A´B|, where for any operator Λ we
define |Λ| “∆

?
Λ:Λ. The von Neumann entropy of a density

operator ρ P DpHq is denoted by Spρq. The quantum mutual
information and conditional entropy for a bipartite density
operator ρAB P DpHA bHBq are defined, respectively, as

IpA;Bqρ “
∆ SpρAq ` SpρBq ´ SpρABq,

SpA|Bqρ “
∆ SpρABq ´ SpρBq.

A positive-operator valued measure (POVM) acting on a
Hilbert space H is a collection of M “

∆
tΛxu of positive

operators in BpHq that form a resolution of the identity:

Λx ě 0,@x,
ÿ

x

Λx “ I.

Let ΨRA
ρ denote a purification of a density operator ρ P

DpHAq. Given a POVM M “
∆
tΛAx u acting on ρ, the post-

measurement state of the reference together with the classical
outputs is represented by

pidbMqpΨρ
RAq “

∆
ÿ

x

|xyxx|b trAtpIR b ΛAx qΨ
ρ
RAu, (1)

where Ψρ
RA is a purification of ρ. Consider two POVMs MA “

tΛAx u and MB “ tΛ
B
x u acting on HA and HB , respectively.

Define MA bMB as a the collection of all operators of the
form ΛAx b ΛBy , for all x, y. With this definition, MA bMB

is a POVM acting on HA bHB . By Mbn denote the n-fold
tensor product of the POVM M with itself. Consider a POVM
M “ tΛxuxPX with classical outputs X . Given a mapping
β : X ÞÑ Y , define βpMq as a new POVM with operators
Γy “

∆
ř

x:βpxq“y Λx for all y P Y . For this POVM equation
(1) can be written as

pidb βpMqqpΨρ
RAq “

ÿ

yPY
|yyxy|b trAtpIR b

ÿ

x:βpxq“y

ΛxqΨ
ρ
RAu

“
ÿ

xPX
|βpxqyxβpxq|b trAtpIR b ΛxqΨ

ρ
RAu

A. Quantum Information Source

Consider a family of quantum states ρi, i P r1,ms acting on
a Hilbert space H. For each state assign a priori probability pi.
We denote such a setup by the ensemble tpi, ρi, i P r1 : msu.
For such an ensemble, a quantum source is a sequence of
states each equal to ρi with probability pi, i P r1,ms. Each
realization of the source, after n generations of states, is
represented by ρxn “

∆
Ân

j“1 ρxi , where xn is a vector with
elements in r1,ms. Let ρ “∆

ř

i piρi, then the average density
operator of the source after n generations is ρ

Â

n.

B. Measurement Compression Theorem

Here, we provide a brief overview of the measurement
compression theorem [5].

Definition 1 (Faithful simulation [1]). Given a POVM M “
∆

tΛxuxPX acting on a Hilbert space HA and a density operator
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ρ P DpHAq, a POVM M̃ acting on HbnA is said to be ε-faithful
for ε ą 0, if the following holds:

}pidbMbn
A qpΨρ

RnAnq ´ pidb M̃qpΨ
ρ
RnAnq}1 ď ε, (2)

where Ψρ
RnAn is the n-fold tensor product of the state Ψρ

RA,
which is a purification for ρ.

Theorem 1. [5] For any ε ą 0, any density operator ρ P
DpHAq and any POVM M acting on the Hilbert space HA,
there exist a collection of POVMs M̃ pµq for µ P r1, N s, each
acting on HbnA , and having at most 2nR outcomes where

R ě IpU ;Rqσ ` δpεq, and
1

n
log2N ě SpU |Rqσ ` δpεq

such that M̃ “
∆

1

N

ř

µ M̃
pµq is ε-faithful, where σUR “

∆
pidb

MqpΨρ
RAq, and δpεq % 0 as ε % 0.

III. APPROXIMATION OF DISTRIBUTED POVMS

We provide our extension to the Winter’s measurement
compression protocol for a distributed setting. Consider a
bipartite composite quantum system pA,Bq represented by
Hilbert Space HA bHB . Let ρAB be a quantum information
source on HA b HB . Imagine that three parties, named
Alice, Bob and Eve, are trying to collectively implement two
measurements, one applied to each sub-system. Eve has no
access to the quantum system; while Alice and Bob have
access to sub-system A and B, respectively. Alice and Bob
perform a measurement MA and MB on sub-systems A and B,
respectively. The measurements are performed in a distributed
fashion with no communication taking place between Alice
and Bob. In this context, the overall measurement is charac-
terized by the tensor product measurement MA bMB . The
objective of Eve is to reconstruct an asymptotically faithful
simulation of MA bMB when it is performed on ρAB . For
that, Alice and Bob send a number of classical bits to Eve.
Then, Eve applies a decoding map to the received bits and
reconstructs the original measurement outcomes. The design
objective is to minimize the amount of the classical bits that
Eve needs to simulate the measurements. The problem is
formally defined as in the following.

Definition 2. For a given Hilbert space HA b HB , a dis-
tributed protocol with parameters pn,Θ1,Θ2, Nq is charac-
terized by a collections of POVM-pairs M̃ pµq

A and M̃ pµq
B , µ P

r1, N s, each 1) acting on HbnA and HbnB , and 2) having at
most Θ1 and Θ2 outcomes, respectively.

In the above definition, pΘ1,Θ2q determines the amount
of classical bits communicated from Alice and Bob to Eve.
The amount of common randomness is determined by N , and
µ can be viewed as the common randomness bits distributed
among the parties. In the following, we define a measure for
faithful simulation.

Definition 3. Given a POVM MAbMB acting on HAbHB

and a density operator ρAB P DpHA b HBq, a distributed

protocol with POVM-pairs pM̃ pµq
A , M̃

pµq
B q, µ P r1, N s is ε-

faithful, if there exist a collection of mappings βpµq such that
the average POVM M̃AB “

∆ 1
N

řN
µ“1 β

pµqpM̃
pµq
A b M̃

pµq
B q is

ε-faithful according to Definition 1.

In the above definition, the mappings βpµq represent the
action of Eve on the received classical bits.

Definition 4. Given a POVM MA b MB acting on HA b

HB , and a density operator ρAB P DpHA b HBq, a triplet
pR1, R2, Cq is said to be achievable, if for all ε ą 0 and for
all sufficiently large n, there exists an ε-faithful distributed
protocol with parameters pn,Θ1,Θ2, Nq satisfying

1

n
log2 Θi ď Ri ` ε, i “ 1, 2

1

n
log2N ď C ` ε.

Theorem 2. Given a POVM MA bMB acting on HA bHB

and a density operator ρAB P DpHA b HBq, the following
triplet pR1, R2, Cq is achievable

R1 ě IpU ;RBqσ ´ IpU ;V qσ, (3a)
R2 ě IpV ;RAqσ ´ IpU ;V qσ, (3b)

R1 `R2 ě IpU ;RBqσ ` IpV ;RAqσ ´ IpU ;V qσ, (3c)
C ě maxtSpU |RAqσ, SpV |RBqσu, (3d)

where the information quantities are computed for the auxil-
iary state

σUV RAB “
∆
ÿ

u,v

|u, vyxu, v|b
`

pIR b ΛAu b ΛBv qΨ
ρAB
RAB

˘

,

where ΨρAB
RAB is a purification of ρAB , and pU, V q represents

the output of MA bMB .

Proof. The proof is provided in a more detailed version of the
paper [9].

Fig. 2 demonstrates the region in Theorem 2 in terms
of the quantum information quantities. It also shows the
gains achieved by employing such an approach as opposed
to independently compressing the two sources ρA and ρB .

A. Proof Techniques

Binning for POVMs: We introduce a quantum-
counterpart of the classical binning technique used to prove
Theorem 2. Here, we describe this technique.

Consider a POVM M with observables tΛα1 ,Λα2 , ..,ΛαN u.
Given K for which N is divisible, partition r1, N s into K
equal bins and for each i P r1,Ks , let Bpiq denote the ith bin.
The binned POVM M̃ is given by the collection of operators
tΛ̃β1

, Λ̃β2
, .., Λ̃βK u where Λ̃βi is defined as

Λ̃βi “
ÿ

jPBpiq

Λαj .

Using the fact that Λαi are self-adjoint and positive @i P r1, N s
and

řN
i“1 Λαi “ I , (which is because M is a POVM); it

follows that M̃ is a valid POVM.
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Fig. 2. Figure shows the achievable rate region with two different schemes.
The Naive compression scheme is where each quantum source is indepen-
dently compressed, while the other scheme, in order to exploit the correlation
among the measurement outcomes, bins the POVMs before applying the
measurements. As a result, the rate achieved by the latter is lower than the
naive compression which translates into a larger rate region.

Mutual Packing Lemma for POVMs: Another technique
used to prove Theorem 2 is a quantum version of mutual
packing lemma. In what follows, we describe the mutual
packing lemma for quantum measurements. For a Hilbert
Space HAB consider a POVM of the form MAbMB , where
pMA,MBq are two POVMs each acting on one sub-system.
The observables for MA and MB are denoted, respectively,
by ΛAu P BpHAq, u P U and ΛBv P BpHBq, v P V , where U
and V are finite sets. Fix a joint-distribution PUV on the set
of all outcomes U ˆ V . For each l P r1, 2nr1s, let Unplq be a
random sequence generated according to

śn
i“1 PU . Similarly,

let V npkq be a random sequence distributed according to
śn
i“1 PV , where k P r1, 2nr2s. Suppose Unplq’s and V npkq’s

are independent. Define the following random observables:

Aun “
∆
|l : Unplq “ un|ΛAun , Bvn “

∆
|k : V npkq “ vn|ΛBvn

where ΛAun “
Â

i ΛAui and ΛBvn “
Â

i ΛBvi .

Lemma 1. For any ε ą 0 and sufficiently large n, with high
probability

}
ÿ

pun,vnqPT pnq

δ pU,V q

Aun bBvn}8 ď ε (4)

provided that r1 ` r2 ă IpU ;V q ´ δpεq.

Proof. From the triangle-inequality and the definition of Aun
and Bvn , the norm in the lemma does not exceed the following

ÿ

l,k

ÿ

pun,vnqPT pnq

δ pU,V q

1tUnplq “ un, V npkq “ vnu}ΛAun b ΛBvn}8

ď
ÿ

l,k

PtpUnplq, V npkqq P T pnqδ pU, V qu

where the last inequality holds since ΛAunbΛBvn ď I . The proof
completes from the classical mutual packing lemma.

IV. QUANTUM-TO-CLASSICAL (Q-C) DISTRIBUTED RATE
DISTORTION THEORY

As an application to the above theorem on faithful simula-
tion of distributed measurements (Theorem 2), we investigate
the distributed extension of quantum-to-classical (q-c) rate
distortion coding [3]. This problem is a quantum counterpart
of the classical distributed source coding. In this setting,
many copies of a bipartite quantum information source ρAB P
DpHAbHBq are generated. Alice and Bob have access to the
partial trace of the copies denoted by ρA and ρB , respectively;
each performs a measurement on their copies and sends the
classical outputs to Eve. The objective of Eve is to produce a
reconstruction of the source ρAB within a targeted distortion
threshold which is measured by a given distortion observable.
To this end, upon receiving the classical bits sent by Alice and
Bob, a reconstruction state is produced by Eve.

We first formulate this problem as follows. For any quantum
information source ρ P DpHA bHBq, denote its purification
by ΦρRAB .

Definition 5. A q-c source coding setup is characterized by a
purified quantum information source ΦρABRAB P DpHRbHAb

HBq, a reconstruction Hilbert space HX̂ , and a distortion
observable ∆ P BpHR bHX̂q which satisfies ∆ ě 0.

Next, we formulate the action of Alice, Bob and Eve by the
following definition.

Definition 6. An pn,Θ1,Θ2q q-c protocol for a given input
and reconstruction Hilbert spaces pHAbHB ,HX̂q is defined
by POVMs M pnq

A and M
pnq
B acting on HbnA and HbnB with

Θ1 and Θ2 number of outcomes, respectively, and a set of
reconstruction states Si,j P DpHbn

X̂
q for all i P r1 : Θ1s, j P

r1 : Θ2s.

The overall action of Alice, Bob and Eve, as a q-c proto-
col, on a quantum source ρAB is denoted by the following
operation

NAnBn ÞÑX̂n : ρbnAB ÞÑ
ÿ

i,j

trtpΛAi b ΛBj qρ
bn
ABu Si,j , (5)

where tΛAi u and tΛBj u are, respectively, the operators of the
POVMs M pnq

A and M
pnq
B . With this notation and given a q-

c source coding setup as in Definition 5, the distortion of a
pn “ 1,Θ1,Θ2q q-c protocol is measured as

dpρAB ,NAB ÞÑX̂q “
∆ tr

 

∆
`

pidR bNAB ÞÑX̂qpΨ
ρAB
RABq

˘(

.

For an n-letter protocol, we use symbol-wise average distor-
tion observable defined as

∆pnq “
1

n

n
ÿ

i“1

∆RiX̂i
b I

brnszi

RX̂
, (6)

where ∆RiX̂i
is understood as the observable ∆ acting on the

ith instance space HRi b HX̂i
of the n-letter space HbnR b

Hbn
X̂

. With this notation, the distortion for an pn,Θ1,Θ2q q-c
protocol is given by

d̄pρbn,NAnBn ÞÑX̂nq “
∆ tr

!

∆pnqpidbNAnBn ÞÑX̂nqpΨ
ρAB
RnAnBnq

)
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where ΨρAB
RnAnBn is the n-fold tensor product of ΨρAB

RAB which
is the given purification of the source.

The authors in [3] studied the point-to-point version of
the above formulation. They considered a special distortion
observable of the form ∆ “

ř

x̂PX̂ ∆x̂b|x̂yxx̂| , where ∆x̂ ě 0

acts on the reference Hilbert space and X̂ is the reconstruction
alphabet. In this paper, we allow ∆ to be any non-negative and
bounded operator acting on the appropriate Hilbert spaces.
Moreover, we allow for the use of any c-q reconstruction
mapping as the action of Eve.

Definition 7. For a q-c source coding setup, a rate-distortion
triplet (R1, R2, D) is said to be achievable, if for all ε ą 0
and all sufficiently large n, there exists an pn,Θ1,Θ2q q-c
protocol satisfying

1

n
log2 Θi ď Ri ` ε, i “ 1, 2,

d̄pρbn,NAnBn ÞÑX̂nq ď D ` ε,

where NAnBn ÞÑX̂n is defined as in (6).

Theorem 3. For a q-c source coding setup with a purified
source ΦρABRAB P DpHRbHAbHBq, and distortion observable
∆ acting on HRbHX̂ , any rate-distortion triplet pR1, R2, Dq
satisfying the following inequalities is achievable

R1 ě IpU ;RBqσ ´ IpU ;V qσ,

R2 ě IpV ;RAqσ ´ IpU ;V qσ,

R1 `R2 ě IpU ;RBqσ ` IpV ;RAqσ ´ IpU ;V qσ

for some POVMs tΛAu u, tΛ
B
v u acting on HA b HB , and

reconstruction states tSu,vu with each state in DpHX̂q such
that dpρAB ,NAB ÞÑX̂q ď D. The quantum mutual information
quantities are computed according to the state

σUV RAB “
∆
ÿ

u,v

|u, vyxu, v|b
`

pIR b ΛAu b ΛBv qΨ
ρAB
RAB

˘

,

where pU, V q represents the output of MA bMB .

Proof. The proof follows from Theorem 2. Fix POVMs
pMA,MBq and reconstruction states Su,v as in the statement
of the theorem. Let NAB ÞÑX̂ be the mapping correspond-
ing to these POVMs and the reconstruction states. Then,
dpρAB ,NAB ÞÑX̂q ď D` ε. According to Theorem 2, for any
ε ą 0, there exists an pn, 2nR1 , 2nR2 , Nq distributed protocol
for ε-faithful simulation of MA b MB on ρAB such that
pR1, R2q satisfies the inequalities in (3). For each µ P r1 : N s,
we use the q-c protocol with parameters Θi “ 2nRi , i “ 1, 2

and POVMs M̃ pµq
A , M̃

pµq
B , and reconstruction states Sβpi,jq and

the corresponding mappings N pµq

AnBn ÞÑX̂n
. With this notation,

for the averaged random protocols the following bounds hold

1

N

ÿ

µ

d̄pρbn, Ñ pµq

AnBn ÞÑX̂n
q

“
1

N

ÿ

µ

tr
!

∆pnqpidb Ñ pµq

AnBn ÞÑX̂n
qΨρ

RnAnBnq

)

“ tr
!

∆pnqpidbNbn

AB ÞÑX̂
qΨρ

RnAnBnq

)

` tr
!

∆pnqpidb pNbn

AB ÞÑX̂
´ ÑAnBn ÞÑX̂nqqΨ

ρ
RnAnBnq

)

ď tr
 

∆
`

pidR bNAB ÞÑX̂qpΨ
ρAB
RABq

˘(

` }∆pnqpidb pNbn

AB ÞÑX̂
´ ÑAnBn ÞÑX̂nqqΨ

ρ
RnAnBnq}1

ď D

` }∆pnq}8}pidb pNbn

AB ÞÑX̂
´ ÑAnBn ÞÑX̂nqqΨ

ρ
RnAnBnq}1

ď D ` ε}∆}8,

where ÑAB ÞÑX̂ is the average of Ñ pµq

AB ÞÑX̂
, and the second

inequality follows by the following lemma, and the last
inequality follows by Theorem 2.

Lemma 2. For any operator A and B acting on a Hilbert
space H the following inequalities hold.

}BA}1 ď }B}8}A}1, and }AB}1 ď }B}8}A}1.

One can observe that the rate-region in Theorem 3 matches
exactly with the classical Berger-Tung region when ρAB is a
mixed state of a collection of orthogonal pure states. Note that
the rate-region is an inner bound for the set of all achievable
rates. The single-letter characterization of the set of achievable
rates is still an open problem even in the classical setting.

V. CONCLUSION

We established a distributed extension of Winter’s measure-
ment compression theory. A set of communication rate-pairs
and common randomness rate is characterized for faithful
simulation of distributed measurements. We further investi-
gated distributed quantum-to-classical rate-distortion theory
and derived a quantum counterpart of Berger-Tung rate-region.
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