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In this article we describe secondary school practising teachers’ professional noticing expertise, which
includes (a) attending to the details of students' written or verbal responses, (b) interpreting students'
mathematical understandings, and (c) deciding how to respond to students based on their
understandings, with a focus on algebraic-pattern generalisation. Quantitative results indicated that
the majority of teachers in our study provided evidence that they could attend to the mathematical
details of students' thinking. However, the practising secondary school teachers provided less
evidence of interpreting students' understandings, and even less of deciding how to respond to
students based on those understandings. We present qualitative trends to help mathematics
professional developers prepare for the teachers they will support and discuss how these trends might
influence work with secondary school practising teachers on noticing student thinking in pattern-
generalisation tasks.
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For more than two decades, the mathematics education community has recognised that
instruction to respond to and build on student thinking is potentially beneficial for both students
and teachers (Franke, Carpenter, Levi, & Fennema, 2001; Gearhart & Saxe, 2004; Kazemi, Franke,
& Lampert, 2009; National Council of Teachers of Mathematics, 2014; Sowder, 2007; Wilson &
Berne, 1999). However, implementing such instruction is challenging for many reasons. For one,
this type of instruction requires students to actively engage with the teacher and with one another.
With more students participating and sharing their thinking, teachers must sift through an
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overwhelming amount of information to effectively respond to and support their students (Jacobs
& Empson, 2016; Kazemi et al, 2009). These acts of filtering and making sense of classroom
events have been conceptualised as acts of teacher noticing (for a summary, see Sherin, Jacobs,
& Philipp, 2011). In classrooms where students regularly share ideas, the skill of noticing is a
crucial part of effective teaching. Thus, we believe that teacher noticing merits further
investigation.

Unlike other researchers who have investigated group differences in, changes in, or the effects
of a particular intervention on teachers’ professional noticing expertise, we investigate teachers’
initial professional noticing expertise (cf. Lesseig, Casey, Monson, Krupa, & Huey, 2016; Simpson
& Haltiwanger, 2016). Reasoning behind this decision has been summarised as follows:

Just as teachers need to first determine what children understand so that they can use that
understanding as a starting point for instruction, we argue that professional developers can use an
understanding of teachers’ reasoning in deciding how to respond to inform their professional
development. (Jacobs, Lamb, Philipp, & Schappelle, 2011, p. 111)

In essence, we focus on providing mathematics professional development leaders with
information about teachers from which they can build. In particular, our findings provide a
window into practising secondary school teachers’ sense-making and decision-making skills in
the mathematical content-domain of pattern generalisation.

Background

Professional noticing of students’ mathematical thinking is an expertise consisting of three
component skills (Jacobs, Lamb, & Philipp, 2010). When a teacher engages with a student’s
thinking expressed in verbal or written form, the teacher

1. attends to the mathematical details of the student’s explanation;

2. interprets the student’s mathematical thinking; and

3. decides how to respond to that student on the basis of the student’s thinking.

In the third component skill, professional noticing differs from other characterisations of
teacher noticing, those focused solely on attending (e.g., Star & Strickland, 2008), or on attending
and interpreting (e.g., Sherin & van Es, 2005). For an extensive examination of the affordances of
this third component-skill of professional noticing, see Jacobs et al. (2011).

Elementary Versus Secondary Teachers®

We found no studies of practising secondary teachers' professional noticing of students’
mathematical thinking? (i.e,, attending, interpreting, and deciding how to respond). Most studies
of professional noticing were focused on elementary rather than secondary school teachers (e.g.,
Schack et al, 2013), and in these studies participants were prospective teachers (e.g., Ding &
Dominguez, 2016; Lesseig et al.,, 2016; Simpson & Haltiwanger, 2016). Hence, as a field we lack

2 Flementary school teachers teach students aged 5-10 and secondary school teachers teach students ages 11-18.
3 Some researchers (e.g., Fernandez, Llinares, & Valls, 2012) collected data on all three component skills but shared findings
on only the first two. We did not consider such studies to be of professional noticing.
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documentation regarding the degree to which practising secondary school teachers
professionally notice students’ mathematical thinking.

We argue that extrapolating results from studies of elementary school teachers’' professional
noticing expertise to secondary school teachers is inappropriate for two main reasons. First,
elementary and secondary school teachers have differing experiences with students’ mathematical
thinking. Whereas in most elementary schools, one teacher has a class of 30 students, most
secondary schools are departmentally organised whereby teachers teach one subject to several
classes (Blatchford, Basset, & Brown, 2011; Ferguson & Fraser, 1998). Consequently, elementary
school teachers spend a great deal of time with the same students but not with the same subject,
the opposite of secondary school teachers' experiences. Second, elementary and secondary
school teachers tend to differ in their orientations toward teaching. For example, Weinstein (1989)
found that secondary school preservice teachers cited strong mathematical knowledge most
frequently as a good teacher quality, whereas elementary school preservice teachers cited capacity
for caring. Doig, Groves, Tytler, and Gough (2005) found similar results: on average, secondary
school teachers felt more confident in supporting mathematical understandings and less
confident in supporting a culture of respect than elementary school teachers. These differences
led us to wonder whether professional noticing expertise may be influenced differentially by
elementary school teachers’ predominant focus on students versus secondary school teachers’
predominant focus on mathematics.

For these reasons we address this gap in the literature and investigate practising secondary
school teachers’ professional noticing of students’ mathematical ideas. In addition, we recognise
that the difference between secondary and elementary levels is not the only salient difference to
consider; teachers’ professional noticing expertise appears different across different mathematical
content domains as well. We elaborate on the domain specificity of professional noticing of
students’ mathematical thinking in the next section.

Domain Specificity: Figural-Pattern Generalisation

One assumption on which we base this study is that teachers’ professional noticing expertise is
domain specific (Jacobs & Empson, 2016; Nickerson, Lamb, & LaRochelle, 2017; Walkoe, 2015).
We situate our teachers’ professional-noticing expertise in the context of algebraic thinking,
specifically, figural-pattern generalisation. We chose generalisation because of its foundational
nature in the domain of algebraic reasoning (Kaput, 1998; Lee, 1996; Mason, 1996; Sfard, 1995;
Smith, 2003; Stacey & MacGregor, 2001). Kaput (1998) even claimed that the act of generalising
acts as a kernel from which all other forms of algebraic reasoning grow. We narrow our focus to
figural-pattern generalisation (vs. numerical-pattern generalisation), which involves a sequence of
figures that change in predictable ways because related tasks support students to build on and
generalise their arithmetic knowledge, develop their quantitative-reasoning skills (Smith &
Thompson, 2008), grapple with functional concepts, and develop meanings for algebraic symbols.
Developing meanings for algebraic symbols and using them to represent situations is prominent
in the U. S. secondary school standards (National Governors Association Center for Best Practices
(NGA) & Council of Chief State School Officers (CCSSO), 2010). Therefore, we believe that teachers
who develop proficiency in professionally noticing students’ ideas in this content domain can
support their students’ development of a wide range of algebraic concepts.
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In the next two sections we describe the strategies students employ in figural-pattern-
generalisation tasks and the problems that influence students’ strategies. We organise this section
around these two areas because they align with professional noticing: Teachers attend to and
interpret students’ strategies and decide on next tasks to appropriately challenge students given
their current mathematical understandings.

Students’ generalisation strategies. We assume that figural-pattern tasks are designed to help
students develop meanings for symbols by supporting the making of connections between
symbolic expressions and quantities in the pattern. Hence, we describe strategies that involve
reasoning with the figural pattern (Becker & Rivera, 2005; Healy & Hoyles, 1999; Lannin, Barker, &
Townsend, 2006; Stacey & MacGregor, 2001) rather than, say, creating a formula to fit a table of
input and output values (Becker & Rivera, 2005).

To illustrate these strategies, we provide examples of ways to find Stage 9 in the pattern in
Figure 1.

1. Students draw pictures of successive stages and count the number of squares in Stage
9.

2. Students notice the recursive pattern and add the differences between two stages
several times to reach the desired stage (e.g., Stage 4 has two more squares on the
right than Stage 3, so to reach Stage 9 from Stage 4, first add two more squares for
Stage 5, then two more for Stage 6, two more... and two more for Stage 9, getting
19).

3. Using the recursive pattern, students chunk (Lannin et al., 2006) the stage-number
differences to reach the desired stage (e.g., Stage 9 is five more than Stage 4, so we
add 5 x 2 to 9 to get 19 for Stage 9).

4. Students identify a functional relationship between pattern and stage number and
use this relationship to create the pattern for any stage number (e.g., each figure has
one square on the left and columns of two squares, with the number of columns equal
to the stage number, so Stage 9 has 1 + 9x2, or 19 squares).

Stage 1 Stage 2 Stage 3 Stage 4

Figure 1. Example pattern in a figural-pattern-generalisation task (Jurdak & EI Mouhayar, 2014).

Each of these strategies involves reasoning with the figural pattern in a certain way and, thus,
elevates specific understandings of the relationships embedded in the pattern and the symbols
representing these relationships (Lannin et al., 2006). For example, the second strategy is an
abstraction of the first strategy that enables students to mentally visualise which objects are added
next. Lannin et al. noticed that their two participants often used recursive strategies before
developing other strategies to make sense of a pattern. Using the third strategy, students chunk
several instances of the second strategy and coordinate these chunks with the difference in stage
numbers. The last strategy, creating a functional relationship between the stage number and
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number of objects in the pattern, usually emerges after the student has worked some time with
the pattern. Functional relationships may emerge from chunking strategies, but if they do not,
Lannin et al. noted that developing a strong visual image of the problem situation is an important
precursor to creating a functional relationship.

Types of generalisation tasks. We distinguish figural-pattern-generalisation tasks along two
dimensions. In the first, the distance of the generalisation is varied: immediate tasks, near tasks,
far tasks, and finding the general rule (Jurdak & ElI Mouhayar, 2014; Becker & Rivera, 2005;
Swafford & Langrall, 2000). Immediate tasks require the student to find the number of objects in
the next stage of the pattern (e.g., Stage 4 with three stages drawn). In near tasks one finds a
stage further than the next stage but close enough to solve by drawing a pattern and counting
(e.g., Stage 9). For far tasks, for which drawing and counting are unproductive (e.g., Stage 100),
teachers might ask students to create a function (or rule) that gives the number of objects for any
stage number 7). Immediate, near, and far tasks provide useful scaffolds for students to develop
a meaningful general rule (Lannin et al., 2006).

The second dimension on which figural-pattern-generalisation tasks vary is the type of pattern
exhibited (Friel & Markworth, 2009). For example, a pattern may or may not include a constant
term. In Figure 1, the pattern always has one block on the left, but except for this block, the
number of blocks and the figure number are directly proportional (i.e., the number of blocks is
twice the stage number). Including this extra block on the left makes the pattern more difficult
for students to generalise. Alternatively, one can distinguish between patterns that grow linearly
(e.g., pattern in Figure 1) or nonlinearly (e.g., quadratic or exponential functions), which can be
more challenging for students because the differences between successive terms change, making
the chunking strategy difficult to use.

Overall, knowledge of students’ strategies and of the ways figural-pattern tasks vary is an
important aspect of teachers’ professional noticing expertise. Understanding the connection
between the two can help a teacher provide next tasks that appropriately challenge students and
support their understandings. We refer to these strategies and task variations in our analysis of
our teachers’ responses and again in the discussion section. In the next section, we summarise the
literature about teachers’ professional noticing of students’ mathematical thinking in the domain
of algebra, a superset of figural-pattern generalisation.

Professional Noticing of Students’ Algebraic Thinking

We found only two studies (Lesseig et al, 2016; Simpson & Haltiwanger, 2016) in which
researchers examined secondary school teachers’ professional noticing of students’ thinking in
the domain of algebra. Lesseig et al. (2016) created an interview module to support their
prospective teachers’ professional-noticing expertise of students’ mathematical thinking about
linear equations and analysed pre-post differences. They found that the interview module, in
which teachers interviewed students regarding their mathematical thinking about linear
equations, supported their teachers in attending and interpreting but not in deciding how to
respond. Simpson and Haltiwanger (2016) compared the professional-noticing expertise of
groups of prospective teachers on the basis of their year in the teacher education program and
found that students who had more time with students than their peers exhibited more evidence
of considering the students’ mathematical thinking. Overall, both studies (Lesseig et al., 2016;
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Simpson & Haltiwanger, 2016) provided evidence that experiences working with students support
teachers' professional noticing expertise.

On the basis of the Lesseig et al. (2016) and the Simpson and Haltiwanger (2016) studies, we
identified three gaps that we address in our investigation. First, in both studies, participants were
prospective teachers rather than practising teachers. Thus, the influence of teaching experience,
a feature that has been shown to be influential for practising elementary school teachers (Jacobs
et al., 2010), was not captured in either study. Second, we focus on the content domain of figural-
pattern generalisation, not a focus of either study. Finally, researchers in both studies examined
differences in the degree to which teachers professionally noticed students’ mathematical
thinking, either within a particular group of teachers over time (Lesseig et al., 2016) or between
groups of teachers (Simpson & Haltiwanger, 2016). In addition to focusing on the degree to which
teachers professionally noticed students’ mathematical thinking, we contribute to a
characterisation of practising teachers' professional-noticing expertise, which may be used to
support professional developers’ knowledge base related to their teachers’ understandings
(Jacobs et al,, 2011). In particular, we identified two research questions:

1. Prior to sustained professional development on students’ mathematical thinking, to
what degree do practising secondary school teachers in our study professionally
notice students’ mathematical thinking in the context of figural-pattern
generalisation?

2. Prior to sustained professional development on students’ mathematical thinking,
what is the nature of the practising secondary school teachers' professional noticing
expertise in the context of figural-pattern generalisation?

Methods

In the next three sections we describe our participants, our data-collection methods, and our
analysis of their professional-noticing expertise.

Participants

We studied 16 mathematics teachers who were about to begin a professional development
project focused on (a) improving their practices and (b) becoming leaders of their respective
teaching communities. The teachers’ years of experience ranged from 2-30 years, averaging 13
years. One participant had two years experience; the others had five or more years experience.
All teachers came from high-needs school districts* in the Southwestern United States. Seven
teachers taught students aged 11-14, and nine teachers taught students aged 14-18. At the time
of data collection, teachers were becoming familiar with the Common Core State Standards (NGA
& CCSSO, 2010) but had not begun teaching curricula to address these standards.

4 In the No Child Left Behind Act (2002) a high-needs school is defined as within the top quartile of elementary and
secondary schools statewide in the number of unfilled, available teacher positions or as located in an area with at least
30 percent of students from families with incomes below the poverty line, a high percentage of out-of-field-teachers,
high teacher-turnover rate, or a high percentage of teachers not certified or licensed.
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Because the purpose of the professional development was to support teachers to both enrich
their teaching practices and become teacher leaders, we selected the top third of the applicants
on the basis of their knowledge of mathematics, effective teaching practices, and positive
dispositions toward learning and growing in their practices. In addition, teachers were required
to be teaching either a prealgebra or an algebra course, in which figural-pattern-generalisation
tasks tend to be used.

Data Collection

In this study, we were interested in our teachers’ professional noticing of students’ mathematical-
thinking expertise (Jacobs et al., 2010). Hence, similar to Jacobs and her colleagues, we used a
video-based classroom artefact that exhibited student thinking and asked teachers to respond to
noticing prompts related to the artefact. Prior to watching the video, teachers solved the task so
were familiar with it. After watching the 8-minute video, they completed a written assessment in
response to three writing prompts, detailed further on in this section Because the data reported
here were collected prior to the teachers’ engagement with the professional development project,
we hope to provide mathematics professional developers a starting point from which to build
understanding of the degree and nature of practising secondary school teachers’ professional
noticing of students’ pattern-generalisation thinking.

Beams Task video. To provide teachers opportunities to notice several features of a
mathematics lesson, we sought a classroom video in which students worked together, creating
multiple representations and using multiple strategies to solve a generalisation task. On the basis
of these criteria, we chose the Beams Task video clip from the Research-Based Practices for
Teaching and Learning (Carpenter & Romberg, 2004).

The video shows students engaging with a task called "Building Formulas” (National Center
for Research in Mathematical Sciences Education (NCRMSE), 2003, p. 26). Students in the clip are
13-14 years of age. In the clip, the teacher presents a visual of the beams (Figure 2), and students
share in small groups any patterns they notice. This pattern grows linearly because it increases
by four each time and has a constant term because the number of rods is always one less than a
multiple of 4 (Friel & Markworth, 2009). Next, students share with the class the patterns they
found. Some students share recursive patterns and identify a recursive formula; a common
strategy students use to explicate figural patterns (Jurdak & El Mouhayar, 2014). The teacher
builds on the recursive formula to pose the main task: to create an explicit formula for the total
number of rods needed, given any length. The video then shows two student groups working on
the main task.

At the end of the video, two students, Tristian and Beverly, each share their group’s solutions
(Figure 3). Tristian describes her group’s solution as separating the beams pattern into a top, a
middle, and a bottom portion. Using L for the number of bottom rods, she notes that the top
portion has one rod fewer than the bottom portion, and the middle (diagonals) portion has twice
as many rods as the bottom portion. Thus, her group's formula for the sum of the three portions
is (L) + (2L) + (L — 1). According to the literature, this formula is a functional rule because it
describes an explicit relationship between the length £ and the total number of rods (Lannin et al,,
2006).
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Length of | Number
Beam of Rods

A 1 3

Figure 2. Beams Task (NCRMSE), 2003).

Beverly shares the formula 4. — 1, which she shows is correct for a beam of length six. To
explain the formula components, she identifies a 4-rod unit as a triangle and a horizontal beam
on top with the beam as a composition of these 4-rod units, explaining multiplying £ by 4. She
notes that the last unit lacks a top beam, explaining the — 1 in their formula. This formula relates
to two strategies in the literature: (@) a chunking strategy in repeated addition of 4-rod units in
their formula and 4-rod units derived from the difference between successive terms and (b) a
functional rule expressing the explicit relationship between the length £ and the total number of
rods (Lannin et al., 2006).

AAAN

| |
Tristian's Solution
L+2L+(L-1)

JAVAVAVAS

Beverly's Solution
4 -1

Figure 3. Tristian’s and Beverly's ways of seeing the beams.
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Writing prompts. The professional noticing of students’ mathematical thinking assessment
consisted of three prompts, developed by Jacobs and her colleagues (2010). Each prompt
addressed a different component skill of noticing:

1. Please describe in detail what the students who shared their formulas at the white
board said and did in response to this problem. (We recognise that you had the
opportunity to view this video only one time, so please just do the best you can.)

2. Please explain what you learned about these students’ understandings.

3. Pretend that you are the teacher of these students. What problems might you pose
next? (We are interested in how you think about selecting problems, but we do not
believe that there is ever a “best” problem, and we recognise that as the teacher of
these students you would have more information to inform your selection.)

Time for responding to the prompts was not restricted, and, as in other professional noticing
studies (Jacobs et al., 2010; Jacobs et al., 2011), teachers could not rewatch the video because
professional noticing is an in-the-moment classroom practice.

Data Analysis

To reduce bias during the coding process, all responses were blinded. To answer the first research
question, the first three authors followed Jacobs et al.'s (2010) coding process and scored
responses indicating the evidence for participants’ levels of engagement with the students’
mathematical thinking as robust evidence, limited evidence, or a lack of evidence. Although we
recognise that teachers might have more robust professional noticing expertise than a written
assessment captures, we had access only to the professional noticing expertise evidence
demonstrated in the written responses. We independently coded first the attending responses,
then the interpreting responses, and finally the deciding-how-to-respond responses and then
resolved any discrepancies in scores through discussions. Interrater reliability for each prompt
was greater than 80%.

To answer the second research question, we grouped responses with the same level of
evidence and looked for patterns within each grouping to understand the nature of each level of
our teachers’ professional-noticing expertise. We next describe our scoring of responses to assess
the degree to which participants considered the students’ thinking.

Attending responses. We followed Jacobs and her colleagues’ (2010) three steps for coding
the attending responses. First, we identified the mathematical details for each student’s solution.
For Tristian,

1. Her formula had three components, namely L, (L - 1), and 2L.

2. She could name the referent in the picture for each component.

3. She articulated that twice as many beams were in the middle as in the bottom.
For Beverly,

1. She decomposed the beam into a succession of 4-rod units made up of a triangle

with a horizontal rod on top (a picture sufficed).

2. She subtracted 1 because the final “shape” was missing the horizontal rod.

3. She wrote, "4L -1 = Total.”

4. She showed that the formula gave the correct result for a beam of length six.
We counted the number of mathematical details the teacher attended to in each student's
solution and scored each response as lack of (0 — 1 details), limited (2 details), and robust evidence
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(3 — 4 details) of attention to the details in the student’s solutions. For each teacher's single score,
if the scores for the two students differed by two levels, we gave the average score; if the scores
differed by one level, we used the higher score because they had provided evidence of attending
to student thinking at that level. Note that Jacobs et al. used only two levels of attending, whereas
we used three.

Interpreting responses. We scored /nterpreting responses on the basis of the extent to which
the response reflected a consideration of the students’ understandings and were consistent with
the students’ strategies (Jacobs et al,, 2010). Strong indications of such interpreting included
providing specific details of understandings that were consistent with the students’ strategies, and
differentiating understandings between students. A response in which a teacher simply
redescribed the students’ strategies without making inferences about the students’
understandings, or made inferences inconsistent with the students’ strategies, lacked evidence of
the teachers' interpreting the students’ understandings. Using these criteria, we scored responses
using the same three levels that Jacobs et al. (2010) used: /ack of evidence, limited evidence, and
robust evidence of interpreting students’ understandings.

Deciding-how-to-respond responses. We scored deciding-how-to-respond responses on the
basis of the extent to which the teacher considered the students’ mathematical understandings
(Jacobs et al., 2010). Hence, our focus was on both the problem posed and the rationale provided.
Rationales that included recognising how a particular problem could enable these students to
build on the understandings demonstrated in the video, or anticipating how the students in the
video might respond to the problem, earned higher scores than responses inconsistent with the
students’ understandings. Specific details, insightful comments, and individualised problems and
rationales were strong indications of considering the students’ understandings when deciding
how to respond. A teacher's posing a task and expressing curiosity for how students might
complete the new task showed openness toward learning about the students’ understandings
(Jacobs et al,, 2011). In contrast, a response designed to force a particular strategy indicated that
a teacher was not open to the students’ individual understandings. Using these criteria, we scored
responses using the same codes as Jacobs and her colleagues: /ack of evidence, limited evidence,
and robust evidence of considering the students’ understandings when deciding how to respond.

Findings

We structure our findings on the basis of our two research questions. First, we share the degree
to which the participants considered the students’ solutions and ideas when attending,
interpreting, and deciding how to respond. Then, for each component skill, we describe qualitative
trends among the responses we observed and present illustrative examples of responses receiving
high and low scores along with other responses that received the same score within that
component-skill.

Degree to Which Teachers Considered Students’ Mathematical Thinking

See Table 1 for a summary of the descriptive statistics for each component skill of professional
noticing. Our teachers showed moderate evidence that they could attend to the mathematical
details of the students’ strategies, with 75% providing at least some evidence of attending to the
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details and two thirds of that 75% demonstrating robust evidence. Hence, prior to professional
development, many of our secondary school mathematics teachers were able to attend to the
mathematical details of students’ solutions to the figural-pattern-generalisation task.

The teachers provided less evidence of both being able to interpret the students’
mathematical understandings and considering the students’ mathematical understandings when
deciding how to respond. In particular, none of our teachers provided robust evidence of
considering the students’ mathematical understandings, only half provided some evidence of
interpreting the students’ mathematical understandings, and only a quarter provided some
evidence of considering the mathematical understandings when deciding how to respond. As we
describe later, many teachers in this study focused on ideas other than the students’ mathematical
understandings when responding to Prompts 2 and 3.

Table 1

Degree of Professional Noticing of Secondary Teachers (TotalN = 16)

Component skill Lack of evidence Limited evidence Robust evidence

Attending 4 4 8
(25%) (25%) (50%)

Interpreting 8 8 0
(50%) (50%) (0%)

Deciding how to 12 4 0

respond (75%) (25%) (0%)

Attending to students’ strategies

Half of our teachers provided robust evidence of attending to the mathematical details of the
students’ strategies, a quarter provided some evidence, and a quarter provided little evidence of
attending to the details. In the following subsections, we characterise responses that
demonstrated robust evidence and responses that demonstrated a lack of evidence. See Table 2
for representative examples of attending responses. The participants’ names have been replaced
with pseudonyms.

g% MErRGA
14



Teachers' Professional Noticing of Pattern Generalisation La Rochelle, Nickerson, Lamb, Hawthorne, Philipp & Ross

Table 2

Examples of Attending to the Details of Beverly's Strategy
Lack of evidence (Alana) Robust evidence (Betty)
She also presented her formula and connect ~ She stated that she viewed the problem as
[sic] the symbols with the model they had groups of 4 [image in Figure 4] that were
built. joined together. She said you have a group

of 4 rods for every 1 beam (the bottom piece)
so you multiply 4 by the # of beams. She
then said that the last group of 4 lacked the
4t rod so you subtract 1. She showed on the
board what made a group of 4 [see image in
Figure 4] and drew rod 4 on the last group to
show where the -1 is depicted.

AN

Figure 4. Betty's picture of Beverly’s groups of 4.

Robust evidence. Betty's response is representative of other responses that included robust
evidence of attending in that she provided specific details about Beverly's strategy and included
three of the four mathematically significant details we described in the methods section. Pictures
were not required for a robust-evidence score, but Betty's picture confirmed her attention to the
mathematical details.

In general, responses to the attending prompt scored as robust did not vary in significant
ways. All responses in this group tended to be as specific as Betty's and provided observable
details of each student’'s response. The content of their responses did not deviate from the
mathematical details we had selected.

Lack of evidence. Alana's response is representative of other responses that lacked evidence
of attending to the details of Beverly’'s strategy. Notice that Alana included general statements
such as “She ... connect[ed] the symbols with the model they had built,” which although true does
not provide evidence that Alana attended to Aow Beverly connected the symbols to the model,
important mathematical details.

The four responses that lacked evidence of teachers attending to students’ ideas included
other general statements. One participant wrote, “She [Tristian] was able to articulate what each
part of the formula represented.” Although true, this statement provides no evidence that the
teacher attended to how Tristian explained her solution. Additionally, two teachers provided
vague inferences rather than details about what the students said and did. For example, one
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participant claimed, “Beverly saw the connection in a simpler way,” without explaining the “simpler

"

way.

Interpreting students’ understandings

Half of our teachers provided evidence of interpreting students’ mathematical understandings in
ways consistent with the students’ strategies, but none of these teachers provided robust
evidence. Hence, we describe qualitative trends among responses that provided limited evidence
or lacked evidence of interpreting the students’ mathematical understandings. See Table 3 for
representative examples of interpreting responses.

Limited evidence. Betty's response provided limited evidence of interpreting the students’
understandings. Notice that Betty's claims were mostly consistent with the students’ solutions and
that she described understandings rather than simply redescribing the students’ solutions. For
example, the claims “these students understand properties of operations” and “these students
use[d] pictures to check if a pattern always works” were both understandings consistent with the
students’ strategies, and both were beyond the students’ observable actions.

However, Betty's response demonstrated limited evidence, not robust evidence, of
interpreting the students’ understandings because her claims were vague, and she tended to
overattribute understandings to the students in writing that the students understood “the
definition of ‘variable,... [and] independent and dependent variables,” although the video lacked
evidence for either claim. If Betty had written instead that “the students in the video were
comfortable using a letter to represent a varying quantity and then using that symbol in an
expression to capture its relationship to other quantities,” the response would have been specific
and consistent with the students’ strategies, providing robust evidence that the teacher
interpreted understandings on the basis of the students’ strategies.
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Table 3
Examples of Interpreting Responses

Lack of evidence (Carina)

Limited evidence (Betty)

| can see that students can solve a problem
given the correct amount of time and
resources. | really appreciated how they can
discuss and collaborate with one another on
how to solve the problem. | hope to be able
to do more structured tasks like this,
especially in the linear functions unit.
Sometimes, we teachers are so crunched for
time that we simply “tell” the students the
information they need to know whereas if we
allow them the time to explore, they can

These students (especially those that
presented) generally understand properties
of operations, generalising patterns, making
tables to track data, use of variables and the
definition of “variable,” use pictures
(manipulatives) to check if a pattern always
works, [and] independent and dependent
variables. | do wonder about Tristian’s group
and if they could see the like terms in their
pattern. Could the teacher have pushed this
thinking?

come up with not only multiple ways to solve
a problem, but are also able to comprehend
& remember the content well; and be able to
translate this knowledge to other parts of the
curriculum.

In the eight responses that provided limited evidence for interpreting the students’
understandings, participants tended to make correct but vague statements about the students’
understandings, with some overattributions. Specifically, many teachers commented that students
could make connections between the formulas and the visual pattern, such as “They were also
able to understand how a formula could be used to describe a pattern” (n = 6). Teachers also said
that the students “understood variables,” or “could use a variable in a formula” (7 = 5). Four
teachers commented that students saw the patterns in different ways, and three commented that
students could verbally describe the patterns they saw.

Lack of evidence. Carina's response provided no evidence that her interpretation of either
student’'s mathematical understandings was based upon consideration of the students’
understandings. Notice that Carina focused on other aspects of the classroom: the students'
discussing and collaborating to solve the problem. In particular, Carina commented on general
pedagogical issues with which she grapples in her instruction rather than on the students’
mathematical understandings evident in the video, and so her response was scored as providing
a lack of evidence of interpreting the students’ mathematical understandings. That said, Carina’s
orientation to the video (for example, her appreciation for the students’ abilities to collaborate
and her desire to use tasks like the one shown in the video) may provide a starting point for
professional developers; we address this point in the discussion.

In the eight responses that lacked evidence of interpreting students’ understandings, three
were focused on general pedagogy and described other aspects of the class that intrigued them
rather than on the students’ mathematical thinking. For example, one teacher commented, "I
learned that it is incredibly difficult to really know how our students think through a problem
when all we do is evaluate their written work.” Another trend was to make claims about the
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students’ understandings for which no evidence appeared in the video (7 = 3). For example, one
teacher claimed, "Beverly... would do well with fractions because she was able to visualise a unique
whole.” Teachers also tended to redescribe what Beverly and Tristian did at the board (n = 3).
Finally, four teachers' claims were too vague to provide any evidence of interpreting the students’
understandings; one response, for example, included the claim that “Beverly’s approach was
global.”

Deciding how to respond on the basis of students’ understandings

A quarter of our teachers provided evidence that they were deciding how to respond to these
students on the basis of the students’ understandings, and three quarters did not. As for the
interpreting responses, no response in this component skill demonstrated robust evidence of
considering the students’ mathematical understandings. Hence, for the following subsections we
describe qualitative trends by comparing responses that provided limited evidence with those
that lacked evidence of considering the students’ mathematical understandings when deciding
how to respond. See Table 4 for representative examples of deciding-how-to-respond responses.

Table 4.
Examples of Deciding-How-to-Respond Responses

Lack of evidence (Ellen)

Limited evidence (Felisha)

Problem: Any problem that demonstrates a
linear growth pattern incorporating a
different rate (either decreasing (m = -3) or
other increasing rate that is rational (m =
3/2)).

Rationale: Students can gain a sharp sense of
linear relationships when given opportunity
to discover constant rates of increase and
decrease in one quantity with respect to
another. They can then apply this to slopes

of lines when working with abstract functions.

Problem: Given this pattern [image in Figure
5] draw the next two figures and write the
equation for the pattern if x represents the
figure number and y represents the number
of tiles.

Rationale: I'd give them [this] problem to see
how they would apply their knowledge from
the first problem in answering the next one.
I'd also be interested in seeing if students
would connect it to the graph on their own,
or create one.

Figure 5. Pattern posed by Felisha.
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Limited evidence. Felisha's response is one of the four responses that provided limited
evidence for deciding how to respond on the basis of the students’ understandings. Notice that
Felisha focused her rationale on seeing Aow these students could use their knowledge to solve a
similar problem, indicating that Felisha held an orientation toward having students use their own
ways of reasoning and building on these ways of reasoning. Consistent with the coding scheme
of Jacobs et al. (2011), expressing an interest in understanding and providing space for students’
mathematical ideas indicated that the teacher considered the students’ mathematical
understandings when deciding how to respond.

However, Felisha's response was not coded as robust because wondering how Beverly or
Tristian would apply their knowledge to the next task is a vague inquiry. In addition, the inquiry
about graphs, in particular, appears to reflect the teacher’s curricular goals rather than a decision
based on the students’ understandings. Alternatively, if Felisha had wondered if Beverly's group
would respond to this new problem by looking at what is added on from one stage to the next
and using this difference to generalise the pattern, consistent with what Beverly’s group did in the
beams task, her response would have provided robust evidence instead of limited evidence that
she decided how to respond on the basis of the students’ understandings.

Four participants demonstrated limited evidence of considering the students’ understandings
when deciding how to respond: Felisha posed a new generalisation task, two others asked
students to compare the two formulas presented, and one suggested giving students a new
length to consider. All four teachers demonstrated limited evidence because they built on
Beverly's and Tristian's thinking, or they expressed a curiosity and openness for new ways of
reasoning. For example, one who posed a comparison problem shared the following question in
the rationale: "Do the students in the other groups understand how each group came to the
formula?” This question provided evidence that the teacher was curious about what other
students understood from Beverly's and Tristian's presentation and thus demonstrated some
evidence of considering the students’ mathematical thinking.

Lack of evidence. Ellen’s response is representative of other responses that lacked evidence
for deciding how to respond on the basis of the students’ understandings. Notice that Ellen did
not connect her rationale to Beverly's or Tristian's solution to the problem but instead mentioned
“students” in general, and outlined a progression of mathematical topics to present without
explaining why these topics were appropriate next steps for these students. Ellen’s decision seems
to have been driven by mathematical goals that did not necessarily relate to what she saw Beverly
or Tristian do. We acknowledge that this progression of topics or problems may be appropriate
for some students; however, this response did not provide evidence that the teacher considered
Beverly's or Tristian's mathematical understandings when deciding how to respond.

Of the 12 participants who provided a /ack of evidence for deciding how to respond on the
basis of the student’s understandings, eight posed new patterns for students to generalise. Of
these eight, five participants posed a new pattern to repeat the generalisation process (e.g., “This
problem is generalizable, so they can be scaffolded to come up with a formula like the first
problem”). Although we agree with these teachers that practice is an important part of learning,
we saw no evidence that these teachers considered the students’ generalisation strategies other
than knowing that students should practise what they learn. The other three participants who
posed new generalisation patterns proposed introducing new mathematical concepts (e.g., y~
intercepts and slope). Again, we recognise that these may be logical directions for teachers to
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pursue, but we saw no evidence that these teachers connected their rationales to the
mathematical thinking of Beverly and Tristian, except possibly for the fact that Beverly and Tristian
wrote an explicit formula.

Another large majority of responses that lacked evidence included comparisons of the two
formulas presented (n = 4) or creation of a graph to represent the functional relationship (n = 3).
As a reminder, we focused on the rationales behind the problems posed to identify evidence of
teachers' considering the students’ understandings, and all seven of the tasks posed were focused
on new mathematical content without explicitly linking this content to the students’ mathematical
understandings. For example, one teacher asked students to compare Tristian's and Beverly's
formulas because doing so “teaches combining like terms.” Another teacher asked students to
graph the relationship because “graphing is important.” Suggesting new mathematical content
without relating it to Beverly's or Tristian’s thinking in the rationale did not demonstrate evidence
of considering the students’ mathematical understandings. The last two respondents suggested
extending the Beams Task to include "hourly labour costs” and checking formulas for a beam of
length seven.

Across the 16 responses to this prompt, we found six distinct categories of problems that
teachers posed: (a) prompts to generalise a new pattern (n = 9), (b) prompts to compare Beverly's
and Tristian's solutions (n = 6), (c) prompts to make a graph that represents the functional
relationship (n = 4), (d) one prompt to reason about a beam with a new length, (e) one prompt
for checking work, and (f) one extension of the problem to include labour costs and costs of the
beam. Because some participants posed two problems, the numbers sum to 21. Like Jacobs et
al. (2010), we scored the response based on the problem/rationale that would yield a higher score
when more than one problem/rationale was provided.

Discussion

Elementary school teachers who experience sustained professional development focused on
students’ mathematical thinking develop more sophisticated professional noticing skills than
teachers who lack such experience (Jacobs et al., 2010), but little research exists regarding these
skills for practicing secondary school teachers. In this study we investigated the professional
noticing skills of 16 secondary school mathematics teachers who were selected on the basis of
their teaching effectiveness. We situated the study of these teachers’ professional noticing in the
context of figural-pattern generalisation. To summarise, three fourths of the participants provided
either limited or robust evidence that they could attend to the details of students’ strategies. One
half of the participants provided limited evidence, and none provided robust evidence that they
could interpret students’ understandings. One fourth of the teachers provided limited evidence
(and none robust) that they could decide how to respond on the basis of students’ understanding.
We discuss these findings in the context of the literature on figural-pattern generalisation and
propose potential resources that professional developers might draw upon in their work with
teachers.
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Teachers' Responses as Resources

In this section we share our view of teachers’ responses as resources upon which professional
developers can draw when supporting teachers to develop their professional noticing of students’
mathematical-thinking expertise (Hammer, 1996; Smith, diSessa, & Roschelle, 1993; Whitacre &
Nickerson, 2016). We do so by relating the content of their responses to each prompt to the
literature on students’ mathematical thinking in figural-pattern generalisation (e.g., Jurdak & El
Mouhayar, 2014; Lannin et al, 2006; Rivera & Becker, 2008; Stacey & MacGregor, 2001). We
address first the attending component skill, then interpreting, and finally deciding how to respond.

Attending to students’ mathematical thinking. Our findings in regard to our teachers’
attending skills seem to indicate that many of these teachers may not need significant support in
this component skill, although still half of the teachers did not describe the mathematical details
of the students’ solutions. Because attending is most likely foundational for interpreting and
deciding how to respond (Jacobs et al., 2010), we entreat professional developers to not overlook
this component skill. As Jacobs et al. pointed out, attending “requires not only the ability to focus
on important features in a complex environment but also knowledge of what is mathematically
significant, and skill in finding those mathematically significant indicators” (p. 194). In our case,
knowledge that supports teachers’ attending skills might include knowledge of students’
strategies for solving these tasks and knowledge that students visually decompose patterns in
different ways (Healy & Hoyles, 1999; Lobato, Ellis, & Munoz, 2003). For example, Swafford and
Langrall (2000) provided evidence that different ways of counting a pattern led to different
symbolic generalisations. With such knowledge, teachers might become predisposed to attend
to plausible ways a student counted to create an expression rather than solely attending to the
expression. Professional developers might support teachers’ attending skills by discussing
research about the types of strategies students use when solving these tasks.

Interpreting students’ mathematical thinking. Overall, teachers interpreted many
mathematical understandings from the students’ strategies. One such understanding was that
the students saw the patterns in different ways, a notion that researchers have identified (Bishop,
2000; Swafford & Langrall, 2000). Professional developers could build on such teachers’ noticings
in attending to further explore implications for the multiple ways of seeing the pattern and thus
explore the specifics of students’ generalisation strategies and their relationship to students’
understandings (Lannin et al., 2006). For example, Lobato, Hohensee, and Rhodehamel, (2013)
shared that when students in one classroom focused on the growth of a pattern (i.e., the numeric
difference between one figure and the next), many students lost track of the relationship between
the figure number and the total number of objects in the pattern. By attending to the details of
strategies focused on additive growth, teachers can interpret these strategies as evidence of
recursive thinking. Providing teachers with explicit opportunities to reflect on students’ strategies
and how the strategies may influence students’ understandings should be a hallmark of the
professional development.

The teachers also noticed that students made connections between their symbols and the
representation and that students verbalised these connections (Bishop, 2000; Ellis, 2007; Stacey &
MacGregor, 2001). Teachers can begin to see verbalisation in students’ solutions, an important
idea that deserves further investigation by professional developers and teachers. In fact, Stacey
and MacGregor (2001) found evidence that students who verbally described the patterns they saw
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created an explicit symbolic rule significantly more often than students who did not. Professional
developers might draw upon such teachers’ noticings to discuss how students develop meanings
for symbols, and the role of verbalisation.

Another category of responses that provided a lack of evidence of interpreting students’
understandings also emerged as a resource. Many teachers responded similarly to Carina, who
expressed a desire to use tasks similar to those she saw in the video and who appreciated students’
abilities to collaborate. Although such responses lack evidence of interpreting students’
understandings, they do provide evidence of the appreciation of student collaborations and
motivation to use the type of task shared in the video. These responses provide professional
developers with the knowledge that at least some teachers value having students collaborate and
desire to change their practices. Professional developers can use these common goals and values
as starting points for engaging deeply with students’ mathematical understandings.

Overall, our teachers noticed several mathematical understandings in the students’ solutions
but still made general claims when interpreting students’ understandings, tending to overattribute
the students’ mathematical understandings, a feature seen in prospective teachers’ professional
noticing expertise as well (Simpson & Haltiwanger, 2016). Hence, professional developers might
support teachers to develop more nuanced knowledge bases related to the students’ ways of
reasoning they notice in the students’ solutions. As a last example, noticing that the students
understood variables is vague and oversimplified, but it could be a starting point for discussing
the many meanings of variables, which are much more complex than educators might first expect
(Chazan & Yerushalmy, 2003; Philipp, 1992).

Deciding how to respond on the basis of students’ mathematical understandings. To identify
teacher resources in this component-skill, we focus on the types of problems teachers posed. We
believe that many of the problems posed by the teachers could be productive for supporting
student learning, but because the associated rationales were focused on introducing new
mathematical concepts (e.g., rate, slope, y~intercept, graphing, and combining like terms), they
lacked evidence of the teachers' considering the students’ mathematical understandings.
Similarly, Glassmeyer and Edwards (2015) found that teachers initially often fail to value
generalising and making sense of algebraic notation, important foci of figural-pattern-
generalisation activities. We conjecture that prior to professional development many teachers
believe that they need to address other mathematical topics rather than focus on the act of
generalising, a fundamental form of algebraic reasoning (Kaput, 1998).

We believe that many of the problems teachers posed are productive starts for professional
development. First, to highlight important differences between tasks such as linear and nonlinear
and near- versus far-generalisation tasks (Jurdak & El Mouhayar, 2014), professional developers
might build on the responses in which a new generalisation task is posed. We noticed that eight
participants posed linear patterns with constant terms, and one posed a nonlinear pattern (Friel
& Markworth, 2009). We wondered how many of the teachers recognised the affordances and
constraints of these types of patterns.

Additionally, we noticed that only one participant who posed a new pattern created a near
task and a far task (Jurdak & El Mouhayar, 2014). All other participants who posed a new pattern
provided a prompt only to find a rule for the pattern. We wondered how many teachers
recognised the usefulness of different kinds of tasks in scaffolding students’ mathematical
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thinking. Professional developers might aim to help teachers explore the affordances of choosing
particular numbers as a means for supporting this thinking.

Many teachers suggested that students compare two solutions, an inclination professional
developers might use to support exploring differences between the two. In particular, one might
expand teachers' focus on comparing the symbolic expressions to include comparing the ways
Tristian and Beverly reasoned about the figural pattern, which is often neglected (Friel &
Markworth, 2009). Just as our teachers seemed to hold the goal of correcting Tristian’s failure to
combine like terms, which might have been considered a limitation of Tristian’s group’s thinking,
Lesseig et al. (2016) found that many of their prospective secondary school teachers focused on
responding to the limitations they noticed in the students’ understandings. Professional
developers might support deeper explorations by pressing teachers to move beyond these
limitations and explore what understandings these students are exhibiting (rather than those they
are not exhibiting), to discuss the underlying mathematical concepts and connections between
solutions.

Next Steps

In this study we developed an image of secondary school in-service teachers’ professional
noticing of students’ mathematical-thinking expertise in the context of figural-pattern
generalisation. To conclude, we offer several routes for future research.

First, we focused our study on figural-pattern generalisation. Other researchers might
investigate secondary school practising teachers’ professional noticing of students’ mathematical
thinking in other important mathematical domains. These studies could provide researchers and
mathematics professional developers with starting points for supporting teachers in those
domains.

Second, we recognise that the artefact we selected shows two students who were able to
construct correct, explicit formulas representing the relationship between beams and rods. These
solution strategies are relatively sophisticated when compared with other strategies documented
in the literature (e.g., Lannin et al., 2006). Even though deciding how to respond to sophisticated
strategies is an important part of a teacher's practice (Jacobs & Ambrose, 2008), elsewhere
(Nickerson et al., 2017) we argued that the field of teacher noticing would benefit from collecting
more artefacts of both sophisticated and naive student thinking at the secondary school level.

Third, we offered ideas and directions for mathematics professional developers to take up
when supporting secondary school practising teachers to develop their professional noticing
expertise in the domain of figural-pattern generalisation. Researchers could explore these
directions with teachers and investigate their effectiveness in supporting this expertise. In
addition to our suggestions, one might take other directions to supporting teachers as seen in
the literature. For example, Walkoe (2015) found that providing prospective secondary school
teachers with a framework for students’ algebraic thinking supported her teachers in developing
their noticing expertise, whereas Lesseig et al. (2016) found that conducting interviews supported
their teachers’ expertise. Callejo and Zapatera (2016) found that collaboratively working on a
mathematical task and exploring different solutions to the task supported their teachers’ noticing
expertise. We suspect that the same would be true for practising secondary school teachers and
recommend further research in this area.
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