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ABSTRACT
Top-k selection retrieves the k highest ranking tuples from
a given relation by utilizing a user-defined monotone func-
tion. Efficient query processing entails skipping evaluation
of low ranking tuples by leveraging on early termination.
Achieving this goal is possible using sophisticated data or-
ganization schemes combined with random access to resolve
score ambiguity. Although these practices have proven to be
successful for CPU based systems operating on disk-resident
data, they have yet to be tested on modern in-memory sys-
tems utilizing GPU based processing. This problem is hard
to tackle because random accesses are necessary for enabling
high algorithmic efficiency (i.e. low number of object evalu-
ations), while at the same time being inherently detrimental
for GPU based processing. Existing solutions that rely on
data re-ordering support sequential access at the expense of
higher object evaluations. In our work, we investigate the
effects of data preordering when combined with intelligent
partitioning to enable efficient early termination on GPUs.
We concentrate on evaluating the proposed solutions when
data reside either in device or host memory. Our experimen-
tal results demonstrate the high potential of our methods for
a variety of query parameters and data distributions. We
showcase between 2× to 200× better query latency (execut-
ing on device or host memory respectively) when compared
against state-of-the-art solutions that necessitate evaluation
of all tuples in a given relation.

1. INTRODUCTION
Identifying interesting objects from a large database col-

lection is a fundamental problem in multi-criteria decision
making. Top-k queries present a widely accepted solution to
this problem, indicated by their prevalence in the areas of
information retrieval [9] and database systems [14]. Top-k
selection involves retrieval of the k highest ranking tuples
from a relation R using a user-defined monotone function
F . Typically, this problem implies ranking tuples consid-
ering only a subset of their attributes. With the advent
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of cyber-physical systems [18] and IoT [21], Top-k selection
on high-dimensional data has become increasingly impor-
tant for supporting applications related to anomaly detec-
tion [22], data exploration [21] and visualization [17].

A straightforward approach for answering Top-k queries
involves two steps: (1) calculating the score of each tuple
by summing their weighted attributes (also known as tu-
ple score aggregation), (2) utilizing sorting or k-selection
algorithms to identify those tuples having the k highest
scores/rankings. The most expensive part of Top-k query
evaluation is score aggregation because during that phase
data movement dominates the total execution time. This
observation motivated the development of different meth-
ods, designed to avoid evaluating the complete data col-
lection. Such methods often rely on threshold-based early
termination [8, 16, 19] combined with data preordering [10]
or layering [12] strategies.

Increasing memory capacity and decreasing memory costs
motivated the development of in-memory database systems.
Although the process of migrating in-memory has created
several opportunities for improved query latency, their po-
tential has been severely limited by the growing gap be-
tween processor and main memory speed. Further improve-
ments in processing throughput and query latency can be
obtained utilizing multi-core [2] processing or hardware ac-
celeration [1, 15]. Related work has demonstrated the im-
mense potential of GPU accelerated processing for filter-
ing [24], and complex selection [4] operators. This body
of work has revealed that caring about practices geared to-
wards high throughput (i.e. coalesced memory access, min-
imal thread divergence) is as important as designing algo-
rithmically efficient solutions.

GPU accelerated Top-k selection with support for early
stopping has not been studied in previous work. It is a very
challenging problem to tackle for two reasons: (1) Tradition-
ally, Top-k query processing methods leverage on indexed
based random access to resolve score ambiguity during tuple
evaluation [3,19], a practice that is inherently incompatible
with GPU processing, (2) the immense compute capabilities
of GPUs make it hard to justify the additional work that
is required for enabling early termination. The latter point
is concerned with avoiding intricate query evaluation strate-
gies which might lead to higher query latency, despite en-
abling less tuple evaluations. Unless a satisfactory trade-off
can be obtained there is no motivation to avoid evaluating
the complete relation. Data preordering [10, 11] and lay-
ering [12, 16] are popular methods geared towards efficient
sequential access. Despite being cheap to implement, their
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pruning abilities are severely affected for queries on relations
with high number of attributes.

In this work, we investigate the suitability of data pre-
ordering and intelligent partitioning in order to enable ef-
ficient GPU based Top-k selection with support for early
termination. We examine Top-k selection queries that in-
volve high number of attributes and focus on techniques that
utilize clustered indices to enable early termination. These
techniques involve a single initialization step to build the
underlying index (preordering step), after which multiple
sub-queries can be efficiently executed on top of it. As estab-
lished from previous work, such indices can function in a dy-
namic environment enabling low cost insertions/updates [12,
16]. Our ultimate goal is to improve query latency by devel-
oping solutions suitable for massively parallel architectures.
The main contributions of this work are summarized below:

• We develop the skeleton of a parallel threshold algo-
rithm (see Section 3.2) that is designed to enable effi-
cient GPU Top-k selection with support for early ter-
mination.

• We consider two different data partitioning strategies
and evaluate their effectiveness when combined with
data preordering (see Section 3.3).

• We study the performance characteristics of GPU-based
Top-k selection and evaluate our proposed solutions for
a variety of parameters, including result size, attribute
number, and variable preference vectors.

The rest of the paper is organized as follows: In Section 2,
we discuss the GPU architecture and the details of previous
work on GPUs, while Section 3 contains a thorough dis-
cussion of the proposed framework. Section 4 describes the
experimental evaluation and Section 5 concludes the paper.

2. BACKGROUND
This section is devoted towards formally defining the Top-

k problem, reviewing GPU architectural characteristics and
programming practices, and presenting the details of a state-
of-the-art GPU based k-selection algorithm. Our analysis
concentrates on showcasing the shortcomings of that algo-
rithm when used to solve the Top-k selection problem.

2.1 Problem Description
Let R be a relation consisting of N tuples with D at-

tributes each (t = {a0, a1, ...ad−1}) in range (0, L]. A user-
defined ranking function F (t), also known as a preference
vector, maps the objects inR to values in the range (−∞,∞).
In related work, it is common to assume that the given func-
tion is monotone [7, 13, 26, 28] and linear [6, 7, 13]. A linear
function is defined formally as:

F (t) =

m∑
i=0

(wi · ai) (1)

The variable wi is the corresponding weight for each one of
the m attributes of the user subquery. A monotone ranking
function satisfies the:

if tu(ai) ≥ tv(ai), ∀i ∈ [0, d− 1]

then F (tu) ≥ F (tv)
(2)

Hence, our goal is to discover a collection S of tuples
[t1, t2, ...tk] such that ∀j ∈ [1, k] and ∀ti ∈ (R− S), F (tj) ≥
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Figure 1: A simplified view of the GPU architecture
showcasing the hierarchy of different memory levels
accessible to the associated multi-processors.

F (ti). Following the majority of previous work [14], our
work is applicable for every possible monotone function.

2.2 GPU Architecture & Organization
A simplified depiction of the GPU architecture and mem-

ory hierarchy is shown in Fig. 1. GPUs consist of multi-
core processing units known as Streaming Multiprocessors
(SMs), each one containing their own set of registers, L1
cache and a software programmable cache (i.e. shared mem-
ory). In addition, each SM has direct access to a shared L2
cache and a dedicated RAM often designated as global or
device memory. Programs execute on the GPU in the form
of kernels. Each kernel utilizes thousand of active threads,
typically grouped into thread blocks. Thread blocks share
access to L1 cache and shared memory, while each thread
within a block has private access to their own set of regis-
ters. Blocks are split further into warps which take turns
executing in lock-step using any available SM. The threads
within a warp should access data stored in global memory
sequentially to ensure maximum bandwidth utilization. In
addition, a sufficient number of active warps is necessary
to effectively mask the latency associated with instruction
dependencies (i.e. data access, synchronization).

Although the device memory offers high bandwidth its ca-
pacity is limited to only few GBs (i.e. 12 − 24 GBs). For
this reason, GPUs may rely on the host memory for stor-
age, retrieving (across PCIe) the necessary data on-demand
during processing. In modern GPUs, this is made possible
through the use of a unified virtual memory space that is
managed seamlessly either by the GPU driver or the pro-
grammer. The GPU driver facilitates data exchange across
PCIe utilizing two types of memory declarations: (1) Zero
copy memory initiates data transfers each time a GPU ker-
nel is executed, (2) Managed memory utilizes heuristics and
hints during runtime to prefetch the necessary data into de-
vice memory. The latter method works also as a caching
mechanism being able to retain data and re-use it in future
kernel calls.

2.3 Bitonic Top-k Selection
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Figure 2: Different stages associated with Top-3 se-
lection using Bitonic Top-k.

Typically, GPU enabled algorithms operate on data that
reside in device memory. In this environment, it is important
to take advantage of the immense GPU memory bandwidth
by enabling coalesced data accesses when reading from and
writing to the device memory. When the associated data are
used multiple times during computation, it is commonplace
to avoid unnecessary memory transactions by storing and
operating on them through registers or shared memory.

A simple implementation of Top-k selection on GPUs, re-
quires first aggregating the scores of all tuples in a given
relation using the user-defined monotone function, and then
utilizing a k-selection algorithm to identify those tuples with
the k-highest scores. Bitonic top-k [23] is the state-of-the-
art k-selection algorithm for GPUs. Its main goal is to avoid
completely sorting the key-value pairs that are generated af-
ter the aggregation step. In order to achieve this, it executes
bitonic sort to create k-sized groups of data which are sorted
in alternating order. Consecutive groups are combined using
bitonic merge, and the process repeats until a single group
with the k-highest scoring tuples is created. An example of
this process to calculate the Top-3 query is shown in Fig. 2.
The bitonic top-k algorithm operates on the key-value pairs
generated by summing all attributes of the input relation.
Bitonic sort (a.k.a local sort) and bitonic merge execute in
sequence by repeatedly sorting and extracting the maximum
values until the 3-highest scoring tuples remain.

Despite its higher complexity (i.e. O(N log2 k), bitonic
top-k performs better than sorting or previous k-selection
algorithms based on radix-sort because it avoids expensive
scatter operations while also considerably reducing the total
amount of data being written back to global memory [23].
Nevertheless, the performance of Top-k selection based on
bitonic top-k drops when the target relation contains a large
number of attributes. In that scenario, the aggregation
phase dominates the total execution time because process-
ing is limited by how fast the data can be read from device
memory. In addition, for very large relations that cannot fit
in device memory, the required attributes need to be fetched
from host memory at the moment of query evaluation. In
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Figure 3: An example of mapping a base relation
(left) to a collection of per attribute sorted-lists
(right).

both, circumstances evaluating all the tuples is detrimental
to query latency. Hence improving performance is connected
to reducing the overall number of tuples being evaluated.

In relational databases the proven way to achieve this is to
utilize a threshold based indexing scheme [3,8,10,12,19] able
to support sub-queries and variable preference vectors. Typ-
ically, such solutions require an initialization step where the
index is build, after which many queries can be executed on
top of the existing data structure. Such methods also sup-
port data schemes which can be easily updated in a dynamic
environment. However, these early termination solutions are
not directly applicable to the GPU environment because
they are known to incur too many random accesses [3, 8].
Methods optimized for sequential access [10,12,19] exist but
operate at the expense of higher number of tuple evaluations.
In the next section, we review TA, a threshold based early
termination solution, and describe a generic framework for
developing efficient threshold based algorithms for the GPU
using data preordering and layering.

3. GPU THRESHOLD ALGORITHMS
List-based algorithms utilize a collection of per attribute

sorted lists to enable efficient Top-k query processing. These
lists present a simple data abstraction that is resilient to
different query parameters (e.g. variable preference vec-
tors, result size, attribute number) and can be easily re-
alized in a dynamic environment using self-balancing trees
(i.e. B/B+trees). An example of those sorted lists build
upon a toy relation is shown in Figure 3. The majority
of list-based methods follow a similar execution model to
the one that was established by the Threshold Algorithm
(TA) [8]. The main idea is to iterate over the sorted lists
in round robin order and calculate the score of each seen
tuple through random access to every other list. The seen
tuples with highest scores are maintained using a priority
queue that is updated periodically as new tuple-score pairs
are generated. Algorithm 1 summarizes the steps associ-
ated with TA’s execution. We start by initializing an empty
priority queue (Line 1) and set the threshold value to zero
(Line 3). As stated before, we iterate through all lists in
round robin order (Line 4) retrieving one tuple (i.e. tuple-
id, attribute value) at a time from each sorted list (Line 5).
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We use the retrieved key-value pairs to update the current
threshold value (Line 6). Unless the tuple was evaluated in
the past (Line 7), we continue by inserting the tuple-id into
a hash-table (to keep track of evaluated tuples) and initial-
ize the score of the associated tuple equal to the value of the
retrieved attribute (Line 11). An index is used to retrieve
the remaining attributes of the given tuple from every other
list (Line 13) which are then aggregated to the total score of
that tuple (Line 14). We update the priority queue with the
new tuple if its score is greater than the minimum or less
than k tuples have been discovered (Lines 16 - 23). Query
processing continues until k items have been discovered and
the minimum scoring item has a ranking greater than or
equal to the threshold of the current list level (Line 25).

Algorithm 1 Threshold Algorithm

L = Sorted list collection.
W = Preference vector.
k = Result size.

1: Q = {} . Initialize empty priority queue.
2: do
3: T = 0 . Initialize threshold value.
4: for i ∈ [1, d] do
5: (Tid, Ai) = getNextObjectFromList(Li)
6: T = T +Wi ·Ai . Update threshold.
7: if Tid ∈M then . Check if object seen before.
8: continue
9: end if

10: M.push(Tid)
11: S = Wi ·Ai

12: for j ∈ [1, d] AND j 6= i do
13: Aj = getV alueByKeyFromList(Tid, Lj)
14: S = S +Wj · Vj

15: end for
16: if Q.size() < k then
17: Q.push (Tid, S)
18: else
19: if Q.top() < S then
20: Q.popMin()
21: Q.push (Tid, S)
22: end if
23: end if
24: end for
25: while Q.size() < k AND Q.top() < T

Ignoring memory accesses associated with updating the
hashtable (in order to avoid duplicate tuple evaluations),
for every tuple evaluation, TA performs 1 sequential access
(Line 5) to the corresponding sorted list and d − 1 random
accesses (Line 13) to find the remaining attributes from ev-
ery other list. The number of tuple evaluations increase
rapidly with respect to increasing query attributes [10], a
behavior that affects proportionally the total number of ran-
dom accesses. Random accesses are not compatible with
GPU based processing which often relies on coalescing to
fully utilize the available memory bandwidth. Data lay-
ering [12, 16] or tuple preordering strategies [10] are used
to eliminate random accesses at the expense of higher tu-
ple evaluations. In fact, their performance degrades rapidly
for high dimensional relations with extreme data variabil-
ity (i.e. correlated, independent, and anti-correlated data
distributions [5]). As opposed to data re-ordering, data lay-
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Figure 4: An example of mapping a base relation
(left) to multiple ODT tables (right) by preorder-
ing tuples based on the maximum attribute value
(indicated in gray).

ering incurs a higher initialization cost, therefore the former
method is a better candidate for GPU based processing.

In order to resolve the above issues, we present a simplistic
data layout scheme based on data preordering that can be
adopted to enable efficient GPU based processing. In addi-
tion, we describe the major components of a generic frame-
work for developing efficient GPU Threshold Algorithms
(GTA). Utilizing this framework, we concentrate on develop-
ing and evaluating two algorithms which use different par-
titioning schemes when assigning work to distinct thread
blocks, namely, GTA with random partitioning (GTA-RP)
and GTA with angle space partioning (GTA-ASP). We show
empirically and experimentally that intelligent partitioning
contributes towards high algorithmic efficiency.

3.1 Ordered Data-Threshold Table
Designing GPU-friendly threshold algorithms necessitates

preordering the tuples of a relation to enable coalesced data
access. This practice is often detrimental for queries that
execute only on a subset of all available attributes (i.e. sub-
queries). Queries on skewed distributions (i.e. anti-correlated
data) or those evaluated on relations with high number of
attributes become very challenging to process. Such behav-
ior is related to the number of possible tuple orderings which
grow exponentially to the number of query attributes. It is
possible to overcome the aforementioned issues by restricting
the value range of the associated attributes for a collection
of tuples, through intelligent partitioning. Creating these
range boundaries limits the number of possible tuple order-
ings within a partition, thus enabling a better total ordering
that is beneficial for early termination.

Investigating this hypothesis requires first describing the
central component of our broader data organization scheme,
henceforth referred to as Ordered Data-Threshold (ODT)
table. ODT tables are formulated by rearranging/layering
the tuples of a target relation so as to ensure early evaluation
of those with the greatest likelihood to score high. Different
preordering strategies are possible including those based on
skyline layering [12] or first seen position using list-based
ordering [10]. In order to simplify discussion and construc-
tion of ODT tables, we order the tuples according to their
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insert 𝑡07 insert 𝑡08 split 2nd block

Figure 5: Example depicting insertion of a new tu-
ples in a given ODT table.

largest attribute as shown in Fig. 4. In that example before
creating each ODT table, we partition the data into two
distinct collections. Although different partitioning strate-
gies are possible (see Section 3.3), we group tuples based on
their insertion order just for demonstration purposes. An
ODT table is logically split into ordered data blocks, each
one containing several tuples from the original relation plus
one extra tuple (depicted in grey), known as the the thresh-
old tuple. In the general case, where a relation is divided
into p partitions, and b data blocks per ODT table, a sin-
gle data block contains a set of relation tuples (Cij) and a
threshold tuple (Hij), where i ∈ [0, p− 1], j ∈ [0, b− 1]. Let
Cij [n, d] be the d-th attribute of the n-th tuple in Cij then
the threshold tuple Hij is calculated as follows:

Hij = {am|am ≥ arg max
r∈[j+1,b−1]

Cir[n,m]} (3)

The threshold tuple (Hij) contains the maximum attribute
values among those in the tuples of any subsequent data
block. It is useful for determining when to safely stop query
processing because it provides information about the max-
imum possible score of the tuples which are yet to be pro-
cessed. When constructing the associated ODT tables, the
threshold tuples are computed inexpensively by keeping track
of the maximum attribute values during the assignment of
every tuple to its corresponding data block. Consider the ex-
ample of Fig. 4, for a Top-2 query on all attributes, in ODT0

tuples t2 = 29 and t3 = 24 will be evaluated and processing
will stop at the first data block because the threshold tuple
h00 = 16 guarantees that no tuples exist with higher score.
Note that the chosen block size is independent of the query
result size k. In a real life application, our method would
operate on hundreds of partitions containing thousands of
blocks each with variable query parameters including vary-
ing query attributes (m), result size (k), and tuple number
(n). Note that the threshold attributes can be updated iter-
atively by examining only the attribute values of neighboring
blocks to those where new tuples are being added or existing
ones deleted (see Construction & Maintenance).

ODT Construction & Maintenance. ODT tables
possess similar properties to that of data layering strate-
gies [10, 12]. However, they are simpler to build and inher-
ently well structured for coalesced data access. They can
be constructed in batch using simple highly parallel GPU
primitives (i.e. sort, parallel reduction). In addition, ODT

delete 𝑡01
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Figure 6: Example depicting deletion of an object
from a given ODT table.

tables can be easily maintained in a dynamic environment
by retrofitting them to support insert and delete operations
using a self-balancing tree structure (i.e. B/B+ tree). In
that environment the data blocks of a given ODT table,
correspond to the leaf pages of the associated tree structure
(think of a clustered index). These leaf pages are created
by indexing the maximum attribute of each tuple and are
augmented with a threshold tuple as described previously.
Any insert, update or delete operation will be managed on
the CPU side, allowing the GPU to operate on a read-only
instance of the transformed relation. Efficient GPU based
processing is contingent on enabling coalesced access within
any given data block, thus linking randomly pages in main
memory will not degrade performance.

Below we demonstrate the capability of ODT tables to
support insert and delete operations using two examples in-
dicating their behavior during such scenarios. For these ex-
amples, we assume a minimum and a maximum block size
of 2 and 3 respectively. In Figure 5, we showcase how an
ODT table is updated during several consecutive tuple in-
sertions which lead to a block split operation. A new tu-
ple tv = {a0, a1, ..ad−1} is inserted into an ODT table by
utilizing binary search to discover block B having a thresh-
old tuple hij = {t0, t1...td−1} such that ∃am ∈ tv where
am > tm where m ∈ [0, d − 1]. In our example, t07 will
be inserted in the second block because at least one of its
attributes is greater than the equivalent attributes of h01.
The same happens for tuple t08 after the insertion of which
a split operation occurs due to the current block size being
larger than the maximum (3). For a block that is being
split into two new ones, we preorder the tuples according to
their maximum attribute value and group them into blocks
of size equal to the minimum. In the previous example, this
will result in two groups, one containing t01 and t07 and the
other t08 and t06. For the first group, the threshold tuple
is calculated by finding the maximum attributes of the sub-
sequent block (third block). The second group retains the
threshold tuple of the original block, as it was before the
split, since no changes occurred below that block.

Figure 6 showcases what happens when a delete operation
causes the merging of two blocks. There tuple t01 is deleted
resulting in the second block having less tuples than the
minimum allowed. When merging two ordered blocks Bi

and Bj , where Bj comes after Bi, we create a new block
with all their tuples combined and a threshold tuple equal
to that of Bj . In our example, the first and second blocks
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combined together utilizing the threshold tuple of the latter
for that of the new block.

Algorithm 2 Aggregate-Heap Building (hbuild)

C = ODT collection.
S = Tuple-id, scores buffer.
Q = Tuple-id, scores heap.
W = Preference vector.
k = Result size.

1: for i ∈ [1, p] in parallel do
2: for j ∈ [1, b] do
3: for (t ∈ Cij) & (h ∈ Hij) in parallel do

4: Sit =
∑d

m=1 (wm · tm) . Score aggregation.

5: Th =
∑d

m=1 (wm · hm) . Threshold value.
6: end for
7: syncthreads()
8: Qi = hmerge ({Qi ∪ Si}, k) . Bitonic merge.
9: if Qi.min() >= Th then . Early stopping.

10: return Qi

11: end if
12: end for
13: end for

3.2 Heap Build & Reduction
GTA operates in two phases: (1) Aggregate-Build Heap

phase (hbuild), (2) Heap Merge phase (hmerge). Each phase
is implemented using a distinct GPU kernel. A simplified
description of the first phase is shown in Algorithm 2. Every
partition contains a single ODT table, assigned for process-
ing to a single thread block (Line 1). Threads within a block
are responsible for aggregating in parallel the scores of sev-
eral tuples (Line 3-5) and calculating the threshold value
(Line 5). At the end of every data block evaluation the cur-
rent collection of <tuple-id,score> pairs are combined with
the k highest scoring pairs identified from previous itera-
tions (Line 6). This heap is stored in shared memory and
is constructed using Bitonic Top-k. The code responsible
for merging is similar to that of the hmerge kernel (Algo-
rithm 3). At the end of the merge step, the minimum heap
score is compared to the associated threshold (Line 8) to
determine when the Top-k answer for a given partition be-
comes available. Unless this condition is false, we write the
corresponding pairs in global memory and terminate pro-
cessing. The hmerge operates on the individual heaps cre-
ated by hbuild. A fixed collection of ¡tuple-id, score¿ pairs
is assigned to distinct thread blocks for processing. Each
thread block reduces their input set to k pairs having the
highest score by combining bitonic sort (only the first k iter-
ations [23] Line 2) and parallel reduction (Line 4). Several
rounds of sort-reduce operations are executed in sequence
until only k pairs remain.

3.3 Data Partitioning Strategies
Data partitioning is crucial for achieving efficient GPU

based processing. The rationale is that good partitioning fa-
cilitates workload balance which is pivotal for masking data
access latency and maximizing throughput by using an ade-
quate number of operating threads. Likewise, in Top-k selec-
tion data partitioning influences algorithmic efficiency since
it restricts access to tuples that can effectively prune the
search space. Achieving a balance between these extreme
cases is possible using an intelligent partitioning scheme.

Algorithm 3 Heap Merge (hmerge)

S = Tuple-id, scores collection.
k = Result size.
n = Score buffer size.

1: while n > k in parallel do
2: bitonic sort (S, k, n) . Sort up to k.
3: Si = max (Si, Si+k) . Bitonic merge.
4: n = n/2
5: end while
6: return S0:k . Return k highest tuple-id, score pairs.

Random partitioning (RP) groups together tuples accord-
ing to their relative position within a target relation; an ex-
ample of RP is shown in Fig. 7 (left). This method of par-
titioning is beneficial for two reasons: (1) it incurs almost
zero initialization cost, (2) it constructs partitions having
approximately the same size, which supports workload bal-
ance during processing. However, this practice might con-
tribute to the creation of partitions that consist primarily
of anti-correlated data. In this case, algorithmic efficiency
and in turn query latency are adversely impacted by the fact
that an optimal query evaluation depends on different tu-
ple re-orderings dictated by variable query parameters (i.e.
attribute number, preference vector, result size).

tan(φ1) =

√
(Ãd)2 + (Ãd−1)2...+ (Ã2)2

Ã1

...

tan(φd−2) =

√
(Ãd)2 + (Ãd−1)2

Ãd−2

tan(φd−1) =
Ãd

Ãd−1

(4)

Angle space partitioning (ASP) formulates multiple data
collections by enabling grid partitioning on the polar coordi-
nates (Eq. 4) of every tuple in the target relation. Consider-
ing geometric symmetry and the fact that we are interested
in the highest ranked tuples, we compute the polar coordi-
nates of Ãi = (α−Ai) where Ai is the i-th attribute of each
tuple having values in range (0, α]. The number of result-
ing partitions is determined by the number of split points for
each angular dimension. Assuming s split points, the result-
ing number of partitions is sd−1, where d is the number of
attributes in the based table. Alternatively, there exist solu-
tions enabling equi-volume partitioning using ASP [27]. In
our experiments, we concentrate on regular grid partition-
ing since it incurs lower initialization cost without noticeable
difference in query latency.

A toy example indicating the different characteristics of
ASP vs RP is shown in Figure 7. In that example, each par-
tition consists of tuples indicated with similar point shape
and color. Compared to RP, ASP is better alternative when
partitioning the data for Top-k selection. This happens be-
cause the latter method creates partitions containing tuples
with correlated attributes which are inherently easier to lin-
early order for any monotone function utilizing the ODT
table concept. This conjecture is also applicable to relations
with more than 2 attributes and has been showcased to be

6



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Random Partitioning

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Angle Space Partitioning

Figure 7: Example of partition formulation (indi-
cated as points with same color and shape) when
using Random Partitioning (RP) vs Angle Space
Partitioning (ASP).

effective for skyline computation [27], where attaining a near
optimal linear order is critical for improving algorithmic ef-
ficiency.

In order to demonstrate ASP’s superiority in a more in-
tuitive manner, we utilize the concept of “identical score
curve” (ISC) as proposed in [25]. ISC is the line corre-
sponding to equation f(t) = v, consisting of tuples (t) in
the data space whose scores are equal to v. Let tk be the
minimum scoring tuple in the priority queue at some point
during query evaluation, ISC(tk) the line defined by equa-
tion f(tk) = vk and Ti the corresponding threshold tuple.
Assuming the priority queue contains k tuples, query pro-
cessing terminates if and only if F (Ti) ≤ F (tk) has been sat-
isfied. This indicates that Ti must be on or below ISC(tk)
inside the half-space that is closer to the origin. In Fig-
ure 8, we concentrate on one partition from each partition-
ing method and plot the corresponding ISC, and threshold
tuples at various points during Top-2 query processing. The
example of Figure 8 derives from the partitions of the toy
dataset depicted in Figure 7. Our goal with this example
is to demonstrate how different partitioning strategies af-
fect early termination by influencing ISC(tk) and Ti respec-
tively. Note that because the tuples are reordered based on
their maximum attribute value, the order in which they are
visited during query processing is equivalent to performing
in succession a plane sweep of each axis.

In the RP example (Figure 8 left), the first two tuples
evaluated are t1 = (x1, y1) and t2 = (x2, y2). Query pro-
cessing will terminate if the corresponding threshold tuple
is below the halfspace defined by ISC(t1). In the worst case,
because of random partitioning the threshold tuple will con-
sist of attributes that are arbitrarily close to the maximum
from those in at least one of t1 and t2. When this happens, it
is very likely for the threshold tuple to reside in the halfspace
above ISC(t1). In fact, in our example the threshold tuple
T1 contains x3 from t3 = (x3, y3) which is very close to the
value of x1 from t1. Thus, in the first iteration query pro-
cessing does not terminate because the stopping condition is
not satisfied. Because the tuples within the given partition
are not restricted in any way, it takes several iterations and
evaluation of tuples t3, t4, t5, t6, before Top-2 selection can
safely terminate. This happens because T2 resides above the
halfspace defined by ISC(t4), and only after t5, t6 are eval-
uated, the new threshold T3 is available for consideration,
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Figure 8: Order of evaluation (1:cyan, 2:green,
3:red) of the points in a single partition when utiliz-
ing Random Partitioning (RP) vs Angle Space Par-
titioning (ASP).

indicating that no tuples exist with better score than that
of t4.

ASP creates partitions with tuples having attributes re-
stricted by the partition boundaries. This practice restricts
the value range of the threshold attributes, subsequently re-
ducing the threshold and enabling early termination with
fewer tuple evaluations. In the ASP example (Figure 8
right), after evaluating t1 = (x1, y1) and t2 = (x2, y2), t3
and t4 are combined to create T1 which is the current stop-
ping threshold. At this point, because T1 is in the half-
space below ISC(t2) processing can safely stop since we
have discovered the two highest ranking tuples and satis-
fied the stopping condition. Therefore, for a single partition
only 2 evaluations were required as opposed to 6 when using
RP. When the partition angle is small, the partition bound-
aries restrict the threshold attributes, resulting in rapidly
decreasing threshold score which contributes towards early
with few tuple evaluations.

3.4 GTA Complexity
In this section, we analyze the complexity of GTA and the

manner in which it is affected by the previously mentioned
partitioning strategies (i.e. RP and ASP). Let L be the max-
imum attribute value for all n tuples and m be the number of
query attributes. GTA evaluates each tuple within a given
partition in-order of their maximum attribute. Considering

1 − 𝛿1

1 − 𝑐 ⋅ 𝛿1

𝑐 ⋅ 𝛿1

𝛿1

𝑥1

𝑥2

𝑥1

𝑥2

1 1

11Random Partitioning Angle Space Partitioning

𝐶1
𝜃

𝐶2

Figure 9: Processed area indicated in green for vari-
able δi when utilizing different partitioning schemes
(i.e. Random Partitioning (RP) or Angle Space Par-
titioning (ASP).
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Figure 10: Expected processed area as function of
δ1 using RP and ASP(degrees).

that the tuples are mapped in multidimensional space, this
order of processing is equivalent to a plane sweep of the axes
that correspond to the actual tuple attributes.

Let [L,L− δj ] (i ∈ [1,m]), be the region processed by
GTA for some axis xi, at some point during query evalu-
ation. Due to the order in which tuples are visited dur-
ing processing, GTA would have evaluated some tuple ti
(i ∈ [1, n]), if and only if ti contains at least one attribute
aj ∈ [L,L− δj ]. In this case, it is possible to realize GTA’s
complexity as a function of δi by calculating the volume (or
area in 2D) of the polytope defined by hypercube [0, L]m

and the intersection of every “swept” region [L,L− δj ] (i ∈
[1,m]). Our analysis is applicable for uniformly distributed
points (tuples) in space and assume the existence of a single
data partition. However, it is a scenario that could arise
in the worst case with many partitions when RP is used
because there is no restriction on the attribute range when
tuples are assigned to distinct partitions.

In order to simplify the discussion and without loss of gen-
erality, we continue our analysis by concentrating on the 2D
case where L = 1. Figure 9 (left) provides an illustration
(depicted in green) of the area that has been processed af-
ter regions [1, 1− δ1] and [1, 1− c · δ1] have been ”swept” by
GTA. We correlate delta2 to δ1 through c ∈ [0, 1] in order
to emulate the different query parameters (e.g. preference
vector, result size) and data distributions that could possi-
bly affect how they evolve during processing. The expected
processed area when using RP as function of δ1 and c equals:

ERP = 1− (1− δ1) · (1− c · δ1) (5)

Following the same process, we showcase in Figure 9 (right)
the area of a partition defined by angle θ that has been
processed after some point during query evaluation. The
partition boundaries dictate the value of δi because no tu-
ple within the partition will have attributes outside that
range. In this case, we can represent the processed areas as
a function of δ1 and c using the following equation:

EASP δ
2
i · sin(θ) ·

(
3 + c2

)
4

(6)

The previous equation was calculated by finding the com-
bined area of triangles C1 and C2. Equation 6 indicates
that a smaller partition angle contributes towards the re-
duction of the total area that needs to be processed for a
given δ1 value. However, we cannot decrease the partition
angle indefinitely because it may result in evaluating more
tuples than necessary since from each partition at least k
tuple will be evaluated. This can be realized in Figure 10
where we plot the corresponding area values for increasing
δ1, c = 1 and varying angles. In this we observe that the
processed area value decreases less rapidly after 15 degrees.
Therefore, there is little benefit in having too many small
partitions. We discovered experimentally that utilizing ASP
by having 512 to 2048 partitions is enough to attain a good
trade-off between having enough work for the GPU to oper-
ate efficiently and reducing the number of tuple evaluations.

4. EXPERIMENTAL EVALUATION
In our experimental evaluation, we consider two GTA al-

gorithms: (1) GTA-RP which utilizes random partitioning,
(2) GTA-ASP which utilizes angle space partitioning. Due
to lack of existing solutions that support early termination
on GPU, we compare against Bitonic Top-k [23], henceforth
denoted as GFTE (GPU Full Table Evaluation).

In order to demonstrate the importance of early termina-
tion, we explore two different experimental paradigms (1)
where the data reside in device memory and are directly
accessible by the GPU Streaming Multiprocessors (SMs),
(2) where the data reside in host memory and are man-
aged explicitly by NVIDIA’s unified memory driver. The
latter form of data management has two modes of execution,
one where the driver retrieves the data during the kernel’s
first call (Zero Copy Mode), and another where it receives a
hint to prefetch the necessary data before query evaluation
(Prefetching Mode).

In addition to our comparison with state-of-the-art GPU
based algorithms, we implemented and evaluated the per-
formance of CTA-ASP, an equivalent solution to GTA-ASP,
that is optimized for CPU based processing using multi-
threading and AVX instructions. We provide discussion
comparing CTA-ASP and GTA-ASP against their corre-
sponding full table evaluation algorithms which are opti-
mized for CPU (CFTE) and GPU (GFTE) processing, re-
spectively.

Q0 (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

Q1 (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8)

Q2 (0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1)

Q3 (0.1, 0.2, 0.3, 0.4, 0.4, 0.3, 0.2, 0.1)

Q4 (0.4, 0.3, 0.2, 0.1, 0.1, 0.2, 0.3, 0.4)

Table 1: Query weight values for the given prefer-
ence vector configuration.

Our experiments were conducted using a single 12 GB
NVIDIA Titan V GPU attached to a single socket Intel Xeon
E5-1650 processor @ 3.5 GHz with 32 GB of RAM. All algo-
rithms were implemented using standard C++, CUDA 10.0
and NVIDIA’s CUB Library [20]. The CPU implementa-
tions utilize distinct priority queues for every thread, which
are combined towards the end of query evaluation. Our code
is publicly available in Github [29].
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Figure 11: Measured latency to enable data parti-
tioning and tuple preordering.

4.1 Dataset, Queries & Metrics
Following the example of previous work [12, 19, 30], we

conducted experiments using synthetic data and three types
of distributions, mainly correlated, independent and anti-
correlated, generated using the readily available data-set
generator [5]. Our experiments concentrate on measuring
query latency for variable attribute number (d ∈ [2, 8]) and
result size (k ∈ [4, 8, 16, 32, 64, 128, 256]) for a relation con-
taining 256 million tuples with 8 attributes each (8 GB of
raw data). For experiments with data that reside in host
memory, we generated a relation with 8 attributes and 512
million tuples (16 GB of raw data). Finally, we measured
the execution time on independent data utilizing variable
preference vectors as summarized in Table 1.

4.2 Initial Cost of Indexing
Figure 11 indicates the total cost of initialization which

includes partitioning and the host-to-device communication
when building the ODT tables. ASP incurs at most twice
the initialization overhead of RP while being 2× to 200×
faster in terms of query latency, as it will be come clear in
the following sections. Initialization occurs only once be-
fore any queries are executed and is commonplace for all
list-based early stopping algorithms [8,12,16,19]. Note that
regardless of the chosen partitioning strategy, ODT tables
can be constructed utilizing a “bulk loading” algorithm and
maintained using insert/delete operations as described in
Section 3.1. In addition, our methods are generic in that
they can be applied on an arbitrary number of attributes
and support queries only for a subset of them. This prop-
erty is demonstrated throughout our experimental evalua-
tion where we present the query latency for sub-queries on
2 to 8 attributes for a target totaling 8 attributes per tuple.

4.3 Variable Preference Vectors
As indicated in Fig. 12, there is no difference in execution

time when using random partitioning for every tested prefer-
ence vector and query parameters. On the other hand, ASP
experiences somewhat noticeable change in execution time
across different queries. This behavior is associated with
the way query weights influence the associated processing
workload of each partition. ASP operates on all attributes,
though it correlates them through angular coordinate calcu-
lations which consider fewer of them in ascending attribute
order (see Eq. 4). This ordering lessens the effects of other
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Figure 12: Measured query latency when utilizing
variable weights in the preference vector.

attributes in the corresponding angular coordinate calcula-
tions for those appearing at the end.

Hence, preference vectors that favor these attributes using
higher weights (see Q1, Q4) will naturally result in less work
to process the corresponding edge (those closer to the axes
in high-dimensional space) partitions. In contrast, symmet-
rically opposite preference vectors (see Q2, Q3) are respon-
sible for higher execution time since the angle coordinates

GFTE GTA-RP GTA-ASP
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Figure 13: Measured query latency when data are
accessed directly from device memory.
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Figure 14: Measured query latency when data are accessed through host memory using different data man-
agement policies.

are diluted more with irrelevant information from other at-
tributes. Although this behavior is inherent to ASP, its
effect on execution time are minuscule, as indicated by our
measurements. Henceforth, in our remaining experiments
we present results using Q0.

4.4 Device Memory Query Processing
In Fig. 13, we present the query latency for all developed

algorithms on different data distributions when the base re-
lation resides in device memory. Early stopping solutions are
very efficient when processing highly correlated data because
it is possible to order the tuples linearly without any am-
biguity. For this reason, both GTA-RP and GTA-ASP are
respectively 60× and 150× on average faster than GFTE.
Independent data are somewhat more difficult to process.
This happens because the likelihood of a tuple with one
high scoring attribute appearing early on during process-
ing increases dramatically. For this reason, GTA-RP ends
up evaluating almost 50% of the raw data, despite them
being irrelevant to the Top-k answer. This contributes to
higher query latency because of the additional synchroniza-
tion cost associated with the heap merge phase. GTA-ASP
remains work-efficient as it relies on ASP to restrict the an-
swer search space (i.e. variance of tuple attribute values)
within a partition. This technique enables stopping earlier,
reducing the associated processing workload and query la-
tency. Anti-correlated data are the most difficult to process.
Similar to before, the high variance in attribute values re-
sults in GTA-RP processing much more data that necessary
(up 90% from our measurements). Hence, its query latency
is almost comparable to that of GFTE for every experimen-
tal parameter. For the same reason as before, GTA-ASP
is able to adapt well exhibiting 1.7× to 4× better query
latency compared to GFTE.

4.5 Host Memory Query Processing
In Fig. 14, we depict the query latency measurements

for all developed algorithms on different data distributions
when the base relation resides in host memory. Due to

lack of space, we concentrate on the independent and anti-
correlated distributions since they are the most challenging
to process. For independent data, data prefetching as op-
posed to accessing them during evaluation is beneficial for
both GTA variants. However, it is occasionally worse when
accessing all the tuples (i.e. GFTE). We traced this behavior
back to an excessive number of GPU page faults. In fact, we
observed occasionally 2× the amount of the necessary data
(i.e. 16GB) being transferred across PCIe. We estimate that
the GPU driver is unsuccessful in detecting temporal locality
during query processing, so it resorts into moving data back
and forth from the host memory. On anti-correlated data,
we observe similar behavior with prefetching being the best
option to speed-up processing. GTA-RP requires processing
more data blocks to find the Top-k answer and outperforms
GFTE occasionally. GTA-ASP performs on average 22× to
40× better than GTA-RP. The reason is because it requires
fetching less data from host memory while most of it is al-
ready cached in GPU memory due to prefetching.

4.6 CPU Performance Comparison
In this section, we compare the performance of CPU Top-

k selection against GPU Top-k selection. We developed
two CPU methods; one that evaluates the score of all tu-
ple for the target relation (CFTE), and another that relies
on ASP and data re-ordering to enable early termination
during query processing (CPU-ASP). Both methods utilize
multi-threading and AVX instructions to improve processing
throughput. Every CPU thread keeps track of the k-highest
ranking tuples in a private priority queue, merging them
only towards the end of query evaluation.

In Figure 15, we summarize the results attained for vary-
ing query parameters and data distributions. Overall, early
termination methods using ASP and data re-ordering on
CPU and GPU outperform solutions that rely on full evalu-
ation because they require less tuple evaluations to compute
the query answer. In fact, early termination on CPU is able
to outperform the full table evaluation algorithm on GPU
despite the latter being heavily optimized and while having
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Figure 15: Comparison of measured query latency
(when data are stored in device memory) against
CPU-based implementations.

higher bandwidth and compute capabilities. This behav-
ior is consistent for our experiments with correlated and
independent data, showcasing improve query latency by a
factor of at least 100× and 30× respectively. On anticor-
related data, it is more challenging to enable early termi-
nation because every tuple contains at least one relatively
high ranking attribute. In this case, the performance of
early termination drops noticeably for both CPU and GPU
implementations because about 50% of all tuples are eval-
uated. Despite this behavior, early termination improves
query latency at least 2× for both CPU and GPU solutions
compared to full evaluation. In fact, subqueries referring to
2 or 3 attributes experience up to 10× lower query latency
in either architecture.

5. CONCLUSIONS
In this paper, we developed the skeleton of parallel thresh-

old algorithms that were optimized to enable GPU acceler-
ated Top-k selection with support for early termination. We
considered two different data partitioning strategies, evalu-
ating their effectiveness on various data distributions and
query parameters. Our empirical results showcased that
data preordering when combined with angle space parti-
tioning is superior in terms of tuple evaluations compared
against random partitioning. Experiments with queries that
were evaluated on device memory resident data showcased

2× to 100× better query latency against the state-of-the-
art solution that relied on evaluating the complete relation.
In addition, our experiments on queries that were evaluated
on host memory resident data showcased that our meth-
ods are very effective when combined with prefetching and
related caching strategies. For these experiments, we show-
cased 10× to 1000× better query latency as opposed to a
full table evaluation algorithm. Finally, we implemented
our methods on multi-core CPUs and demonstrated pro-
portional performance improvements compared to the cor-
responding state-of-the-art full table evaluation solution uti-
lizing priority queues.
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