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ABSTRACT

Efficient Top-k query evaluation relies on practices that uti-
lize auxiliary data structures to enable early termination.
Such techniques were designed to trade-off complex work in
the buffer pool against costly access to disk-resident data.
Parallel in-memory Top-k selection with support for early
termination presents a novel challenge because computa-
tion shifts higher up in the memory hierarchy. In this en-
vironment, data scan methods using SIMD instructions and
multithreading perform well despite requiring evaluation of
the complete dataset. Early termination schemes that favor
simplicity require random access to resolve score ambiguity
while those optimized for sequential access incur too many
object evaluations. In this work, we introduce the concept of
rank uncertainty, a measure of work efficiency that enables
classifying existing solutions according to their potential for
efficient parallel in-memory Top-k selection. We identify
data reordering and layering strategies as those having the
highest potential and provide practical guidelines on how
to adapt them for parallel in-memory execution (creating
the VTA and SLA approaches). In addition, we show that
the number of object evaluations can be further decreased
by combining data reordering with angle space partitioning
(introducing PTA). Our extensive experimental evaluation
on varying query parameters using both synthetic and real
data, showcase that PTA exhibits between 2 and 4 orders of
magnitude better query latency, and throughput when com-
pared to prior work and our optimized algorithmic variants
(i.e. VTA, SLA).
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1. INTRODUCTION
Top-k queries retrieve the k highest ranking objects as de-

termined through a user-defined monotone function. Many
variations of this problem exist, including but not limited
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to, simple selection [15, 29, 18, 22], Top-k group-by aggre-
gation [28], Top-k join [31, 23], as well as Top-k query varia-
tions on different applications (spatial, spatiotemporal, web
search, etc.) [7, 11, 8, 26, 1, 5]. All variants concentrate on
minimizing the number of object evaluations while main-
taining efficient data access. In relational database manage-
ment systems (RDBMS), the most prominent solutions for
Top-k selection fit into three categories: (i) using sorted-
lists [15], (ii) utilizing materialized views [22], and (iii) ap-
plying layered-based methods (convex-hull [6], skyline [27]).
Efficient Top-k query processing entails minimizing object

evaluations through candidate pruning [29] and early termi-
nation [15, 2]. This can be achieved using intricate indexing
techniques and auxiliary information which are intended to
efficiently guide processing [18, 27, 3] and reduce the can-
didate maintenance cost [29]. Such approaches were devel-
oped primarily to enable efficient processing on disk-resident
data, addressing issues related to main memory buffering
and batch I/O operations. The premise was that using the
main memory buffer pool to store and operate on auxiliary
information is less costly than performing a full data scan.

The decrease in DRAM cost, coupled with higher capac-
ity and bandwidth guarantees, motivated the development
of in-memory database systems that leverage multicore pro-
cessing to maximize throughput and reduce latency. Ef-
ficient parallel in-memory Top-k selection should favor low
number of object evaluations while avoiding complex strate-
gies used to enable early termination. This is crucial for
main memory query evaluation because complicated pro-
cessing methods translate to excessive number of memory
accesses which count against query latency. In the same
context, the wide availability of SIMD instructions and mul-
tithreading make data scan solutions strong contenders for
high performance Top-k selection.

Enabling low cost early termination becomes increasingly
difficult for a number of reasons. Firstly, simple processing
strategies often rely on random accesses [15, 2, 3] to resolve
score ambiguity, a practice inherently detrimental for high
throughput. Secondly, techniques favoring sequential access
enable such behavior at the expense of more object evalu-
ations [20] or having to maintain too many candidates [29,
27], the end result of which is an increased number of mem-
ory accesses.

In this work, we study the related literature in order to
discover suitable practices for efficient parallel main mem-
ory Top-k selection. In order to identify these methods, we
establish a new measure of algorithmic efficiency called rank
uncertainty. As opposed to the number of object evalua-
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tions (a measure concentrating on memory accesses related
to score aggregation), rank uncertainty considers the propor-
tion of total accesses to that of object evaluation accesses.
Using the notion of rank uncertainty we empirically quantify
the cost of early termination and classify (Figure 2) disk-
based related work. This classification indicates that data
reordering and layering techniques bear the highest poten-
tial for efficient parallel in-memory execution.

We first adapt these practices to create their parallel in-
memory variants, thus creating VTA (Vectorized Thresh-
old Algorithm) and SLA (Skyline Layered Algorithm) ap-
proaches. VTA uses reordering while SLA applies reorder-
ing and layering. Nevertheless, we show experimentally that
they incur large number of object evaluations. To overcome
this limitation, we introduce PTA (Partitioned Threshold
Algorithm) which combines reordering and angle space par-
titioning. Our contributions are summarized below:

• We introduce (Section 4.2) the notion of rank uncer-
tainty, a robust measure of algorithmic efficiency, de-
signed to identify appropriate methods for efficient par-
allel in-memory Top-k selection.

• We provide practical guidelines geared towards effi-
cient adaptation of reordering (Section 5.2) and data
layering (Section 6.1) algorithms in a parallel environ-
ment (creating the VTA and SLA approaches).

• We develop a new solution (PTA) that relies on angle
space partitioning (Section 6.2) combined with data
reordering to improve algorithmic efficiency while also
maintaining low rank uncertainty.

The paper is organized as follows. Section 2 reviews the
related literature and Section 3 presents a formal definition
of the Top-k selection problem. In Section 4.1 three parallel
Top-k models are presented and Section 4.2 the concept of
rank uncertainty is described. Sections 5 and 6 propose
guidelines for implementing optimized algorithms for scalar,
SIMD, and multithreaded execution. Section 7 concludes
with extensive experiments and result discussion.

2. RELATED WORK
Solutions that support efficient Top-k query evaluation

fall into three categories: (1) List-based methods, (2) View-
based methods, (3) Layered-based methods.

2.1 List-Based Methods
Fagin et al [15] formalized the problem of Top-k query

evaluation over sorted-lists presenting FA, TA, and NRA.
These algorithms access the individual database objects in
round robin order dictated by a collection of sorted attribute
lists. FA maintains all seen objects until k of them have been
detected in all lists, evaluating their scores only after that
point. TA evaluates each object as soon as it is seen, termi-
nating execution only after discovering k objects with scores
greater or equal than the combined threshold of the associ-
ated list level. NRA focuses on enabling sequential access
which requires keeping track of the lower and upper bounds
for each seen object, terminating only when k objects with
lower bounds greater than all objects’ upper bounds are dis-
covered.

Stream-Combine (SC) [17] improves NRA using heuristics
to choose the most promising list for evaluation. LARA [29]
aims at reducing the cost of maintaining the upper bounds

for each seen object and improve candidate pruning. IO-
Top-k [3] utilizes selectivity estimators and score predictors
to efficiently schedule sorted and random accesses. TBB [32]
relies on a pruning mechanism and bloom filters to efficiently
process Top-k queries over bucketized sorted lists.

BPA [2] improves TA’s stopping threshold by consider-
ing attributes seen both under sorted and random access.
T2S [18] promotes reordering the database objects based on
their first seen position in the sorted lists favoring sequential
access for disk-resident data. ListMerge [41] relies on intelli-
gent result merging to efficiently evaluate Top-k queries over
large number of sorted lists.

2.2 View-Based Methods
PREFER [22] aims at reducing the cost associated with

Top-k query processing by effectively managing and updat-
ing materialized views in-memory. LPTA [10] employs lin-
ear programming to avoid accessing the disk when the com-
bined query attributes appear within overlapping material-
ized views. LPTA+ [38] aims at reducing the number of
solved linear programming problems per query to improve
performance. TKAP [19] combines early pruning strategies
from list-based methods and materialized views to support
Top-k queries on massive data.

2.3 Layered-Based Methods
The Onion technique [6] linearly orders the objects in

the database by computing disjoint convex hulls on all at-
tributes. This method offers guarantees which state that
the Top-k objects appear within the first k layers (convex
hulls). The Dominant Graph (DG) [43, 44] orders objects
according to their dominance relationship while utilizing a
graph traversal algorithm to evaluate Top-k queries. The
partitioned layer algorithm (PLA) [21] relies on convex sky-
line layering and fixed line partitioning to further improve
object pruning. The HL-index [20] is a hybrid method that
combines skyline layering and TA ordering within each layer
to reduce object evaluations. The Dual Resolution (DL) [27]
index suggest relying on skyline layering and the convex sky-
line properties to improve DG’s graph traversal algorithm.

2.4 Parallel In-Memory Top-K Selection
Top-k query processing techniques that support early stop-

ping have focused mainly on disk-resident data. Existing
solutions for in-memory processing reduce the problem of
query evaluation to that of list intersection [36, 35, 25, 40,
13], while other methods avoid reordering the dataset and
try to maximize skipping irrelevant objects during evalu-
ation [14, 16, 12]. These optimizations are contingent on
the attribute lists having different sizes. This may not be
a reasonable assumption for a DBMS environment and is
heavily dependent on the application (e.g. text mining). In
this paper, we consider a setting, in which all objects/tuples
have a value for each attribute (even if that value is close to
zero). Our goal is to incorporate an early stopping mech-
anism that strikes a balance between algorithmic efficiency
and the ability to support vectorization, parallel execution,
and high memory bandwidth utilization.

3. PROBLEM DEFINITION
Let R be a relation consisting of n objects/tuples, each

one having d attributes/scores (o = {a0, a1, ...ad−1}) rang-
ing in (0, 1] without loss of generality. Equivalently, R can
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Figure 1: Parallel Top-k evaluation models

be thought of as a set of multidimensional points assigned in
euclidean space. A user-defined scoring function F (o) maps
the objects in R to values in the range (−∞,∞). A Top-k
query retrieves the k objects having the k highest (or lowest)
score under F . For the rest of this paper it is assumed that
we are searching for the highest ranked objects. Hence, our
goal is to discover a collection S of objects [o1, o2, o3...ok]
such that ∀j ∈ [1, k] and ∀oi ∈ (R− S), F (oj) ≥ F (oi).

In related work the user-defined function has been either
linear [6, 10, 22] or monotone [10, 22, 34, 39]. We formally
define an arbitrary linear function as follows:

F (o) =

m∑

i=0

(wi · ai) (1)

An arbitrary ranking function F is identified through a
unique declaration of weights which refer to a specific subset
of the corresponding relational attributes. These weights,
denoted with wi, constitute the preference vector of a given
Top-k query.

A monotone scoring function satisfies that:

if ou(ai) ≥ ov(ai), ∀i ∈ [0, d− 1]

then F (ou) ≥ F (ov)
(2)

This means that any objects having higher values on all
attributes should rank higher than those with smaller at-
tributes. This is guaranteed for any linear function when all
weights in of the preference vector are non-negative. Never-
theless, our solutions are applicable for both linear and non-
linear monotone functions (since they rely on static object
re-ordering similar to TA [15] and T2S [18]). The majority of
previous work support exclusively monotone functions with
the only exceptions being ONION [6] and HL [20] which can
also support non-monotone functions.

4. PARALLEL TOP-K QUERIES
In this section, we attempt to identify such practices that

provide satisfactory parallelism, and efficient in-memory pro-
cessing without sacrificing algorithmic efficiency.

4.1 Parallel Execution Models
In the context of in-memory Top-k query evaluation, there

are two ways to enable parallelism: (1) utilize SIMD instruc-
tions to evaluate multiple objects in parallel, (2) leverage
multithreading to either evaluate many queries concurrently
or partition the data so as to evaluate a single query in par-
allel. It is important to note that both of these methods
implicitly improve memory bandwidth utilization, as they
promote sequential streaming access and memory latency
masking by issuing many outstanding memory requests, re-
spectively. In addition, they can be intertwined together to
create three separate parallel Top-k query evaluation mod-
els as indicated in Fig. 1; this includes: (i) Single Thread
Single Query (STSQ), (ii) Multiple Thread Single Query
(MTSQ) and (iii) Multiple Thread Multiple Query (MTMQ)
(i.e. one thread per query). There is apparent correlation
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Figure 2: Cycles/Object vs Rank Uncertainty.

between developing optimal STSQ/MTSQ algorithms and
applying them also towards MTMQ processing. For this
reason, we focus on developing optimal STSQ and MTSQ
methods which are also tested on top of MTMQ environ-
ments.

4.2 Rank Uncertainty
Existing Top-k algorithms [15, 3, 29, 2, 20, 18] improve

query latency using auxiliary information to guide process-
ing, skip object evaluations through early termination and
reduce the candidate maintenance cost. These practices are
favorable in systems where the relative data access cost (aka
latency gap), as experienced by the CPU, between the pri-
mary and secondary storage media is high. For example
systems operating on disk-resident data, experience high
random access latency gap (×100000) between DRAM (pri-
mary) and disk (secondary). Therefore any intricate strate-
gies geared towards skipping object evaluations and enabling
early termination are less costly than a direct access to non-
essential data from the secondary storage medium. In con-
trast when data are memory resident, the latency gap be-
tween CPU cache and DRAM is much smaller (×30). In that
case, complicated pruning and early termination schemes
may result in performance degradation as the cost of en-
abling them cannot be justified solely by less object evalua-
tions. In fact, using a simple streaming solution may prove
to be more or equally effective than some over-complicated
early termination strategies.

In order to quantify the suitability of previous work, when
employed in a parallel main-memory environment, we intro-
duce the concept of rank uncertainty. The rank uncertainty

(R(A) = MT (A)
ME(A)

) of a Top-k algorithm (A) is the ratio of

total memory accesses (MT (A)) over memory accesses asso-
ciated with object score aggregation and ranking (ME(A)).
Rank uncertainty is a superior measure of algorithmic effi-
ciency because it concentrates on the relationship between
supportive and meaningful work. Supportive work is affil-
iated with practices intended to guide processing (e.g. se-
lectivity estimators) or early termination (e.g. threshold
calculations), and maintain partially or fully evaluated can-
didate objects. Breaking down memory accesses into sup-
portive and meaningful ones help us reason about why they
occur and how to reduce them independently. Barring pro-
cedures geared towards high throughput, practices attaining
low rank uncertainty are equally important for efficient par-
allel main-memory Top-k query processing.

We validated the above hypothesis by conducting exper-
iments measuring latency per object evaluation and rank
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Figure 3: TA execution and data access example

uncertainty for different threshold-based solutions (Fig. 2).
Rank uncertainty was calculated as the ratio of the total
memory accesses (MT(A)) using performance counters1 over
the accesses related to score aggregation (ME(A)) by multi-
plying the number of evaluated objects to the corresponding
query attributes. Figure 2 was created by evaluating 8 at-
tribute queries on a collection of 256 million objects that
were synthetically generated following a uniform distribu-
tion.

LARA, BPA, and DL experience higher rank uncertainty
because of memory accesses associated with candidate main-
tenance, seen position tracking (i.e. best position thresh-
old), and candidate generation (i.e. graph traversal), re-
spectively. Although BPA and DL require less object evalu-
ations compared to TA, their total workload is much higher,
contributing to higher latency. Full Table Evaluation (FTE)
attains the lowest possible rank uncertainty because it per-
forms work related only to evaluating and ranking objects.
HL and T2S leverage on data layering and reordering, tech-
niques that require some threshold calculations and mainte-
nance of few candidate objects while performing increased
number of object evaluations. Hence, their rank uncertainty
is relatively low while the attainable cycles per object are
somewhat higher compared to FTE. We adopted the prac-
tices of HL and T2S, and developed their optimized parallel
in-memory variants (i.e. SLA and VTA). These solutions
utilize blocking which results to less threshold calculation,
thus lower rank uncertainty, while being optimized for par-
allel main-memory execution enabling lower cycles per ob-
ject. We improved rank uncertainty further, designing an
improved solution called PTA which utilizes a sophisticated
partitioning mechanism (i.e. angle space partitioning). As
indicated by the previous figure, its rank uncertainty is close
to FTE because of less object and threshold calculations
while the attained cycles/object remain very low.

5. SINGLE-THREAD TOP-K SELECTION
In this section, we review TA’s execution using the toy

example of Figure 3. In that figure, the left table depicts
the initial collection of objects (and their attributes) and the
right table the corresponding sorted-lists (maintained using
indexes, e.g. B-trees). Below those tables we enumerate the
individual steps of TA’s execution for each list level when
executing Top-1 query evaluation.

TA operates by retrieving in round-robin order the ob-
jects seen at each list-level. For every newly seen object, TA

1Reported using mem uops retired.all loads.
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Figure 4: Round robin reordering example

calculates its score and inserts it into the associated prior-
ity queue (denoted as Qk), if and only if the corresponding
score is greater than the current minimum. At the same
time, a threshold value is computed from the attributes of
every object seen under round robin access. Query evalua-
tion terminates when Qk contains k objects and its current
minimum score is greater or equal to the threshold value. In
our example, the first iteration will access objects o1 and o3
and keep only o3 because it attains the highest score accord-
ing to

∑

. The threshold value is 1.77 = (o9.a1) + (o4.a2) =
0.87 + 0.9 ≥

∑

(o3) = 1.6, thus processing continues. In
steps 2 and 3, the newly seen objects o9, o4 and o6, o5 at-
tain lower score than o3, thus they are never inserted into
Qk. Query evaluation continues because the corresponding
threshold values (1.70 and 1.63) are still greater than 1.6.
At step 4, o2 is discarded because it ranks lower that o3 and
processing terminates because the threshold value (1.4) is
greater than the minimum in Qk. TA incurs too many ran-
dom accesses and requires keeping track of of seen objects
to avoid reevaluation. This results in cache pollution as
the number of evaluated objects grows. This puts increased
pressure on the main memory bus, especially during parallel
processing, and can be overall detrimental to performance.

In the wake of these issues, we develop three different
algorithmic solutions; mainly Vectorized Threshold Algo-
rithm (VTA), Skyline Layered Algorithm (SLA), and Parti-
tioned Threshold Algorithm (PTA). All these methods rely
on static object reordering as proposed by Han et al. [18]
and are optimized for SIMD and multithreaded execution.
They leverage on our newly proposed and easily maintain-
able data layout known as Threshold Block Layout (TBL;
to be discussed next). VTA, SLA, and PTA differ in that
they utilize their own data partitioning strategies to enable
multithreaded execution.

5.1 TBL List and TBL Node
Fig. 4 presents an example showcasing how to order a

relation based on the round robin access. Each sorted-list
contains objects (highlighted in gray), indicating the first
seen position for a given object under sorted access. For a
collection of objects oi where i ∈ [0, n− 1] and their corre-
sponding collection of sorted-lists SLj with j ∈ [0, d− 1],
there exists a unique position of first appearance denoted
with pi [j] ∈ [0, n− 1]. This position is calculated based on
the following formula:

p̃i = argmin
∀j∈[0,d−1]

{pi [j]} (3)

During query evaluation, not all threshold calculations are
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necessary since they do not contribute towards satisfying
the stopping conditions. For example in Fig. 3, only the
fourth threshold evaluation was needed. It is not possible to
pinpoint the exact threshold for arbitrary data distributions
and query configurations (i.e. result size, preference vector).
However, it is possible to maintain a small fraction of all
thresholds sacrificing some algorithmic efficiency for better
processing throughput.

Algorithm 1 Build TBL List

D = Input dataset., NTBL = TBL node size.
1: for j in [0,m− 1] do
2: c = sort(D[:, j]) ⊲ Sorted <id,score> pairs.
3: for i = 0 to n− 1 do

4: Ps[c[i].id] = min(Ps[c[i].id], i)
5: if i % NTBL == 0 then L.set( i/NTBL, c[i].score)
6: end for

7: end for

8: Ps = sort(Ps)
9: for i = 0 to n− 1 do

10: L.assign( i/NTBL, Ps[i].id, D)
11: end for

In order to achieve this goal, we develop a data layout,
called Threshold Block Layout (TBL) node. Each TBL node
contains a fixed collection of objects, and a set of attributes
that correspond to the node’s threshold. For a given relation
and depending on the TBL node size, we maintain a list of
multiple nodes called TBL list. This data structure has sim-
ilar properties to a clustered index, in that it stores data in
close proximity and according to a predetermined ordering.
Fig. 5 (left) showcases a TBL list configuration with node
size 3 (i.e. each node has three objects plus the threshold T )
for the list ordering shown in Fig. 4. The threshold of each
node equates to the last object’s threshold first seen posi-
tion. For example, node 2 is assigned threshold attributes
0.5, 0.3, 0.5 because o6 (the last object) appears in column
a3 at the fifth level where the threshold contains these ex-
act attributes (see Fig. 4 (a)). Choosing a small TBL node
size results in estimating the true stopping threshold with
greater accuracy but demands higher memory footprint and
proportional threshold calculations. Modern multiproces-
sors benefit from large node size because it equates to a
large pool of unordered work, providing opportunities for
better instruction level parallelism.

Algorithm 1 summarizes the steps related to building a
TBL list. For each attribute column (Line 1), we create a
sorted list of <id,score> pairs in descending order of score
(Line 2). For each sorted list, we update the first seen posi-
tion of every object (Line 4). We assign the i-th threshold
attribute for the given attribute column to partition i/NTBL

when i is divisible by the TBL node size (Line 5). We sort
the objects in ascending order to the first seen position (Line
8). Finally, we assign object i to partition i/NTBL (Lines
9-11).

Maintenance: The TBL list can easily support inser-
tion, and deletion of objects. Assume that the TBL node
has a minimum (Bmin) and a maximum (Bmax) size, where
Bmax = 2 · Bmin − 1 and the root node can have minimum
1 object. A new object ov = {a0, a1, ..ad−1} is inserted
into the list by performing binary search to discover node
B having a threshold T = {t0, t1...td−1} such that ∃ai ∈ ov
where ai ≥ ti. This assignment process guarantees that any
newly inserted object follows the first seen position princi-
ple, hence we do not need to update the thresholds because
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Figure 5: TBL list insert-delete example.

they roughly approximate those seen under sorted list ac-
cess. When the node size becomes larger than Bmax, we
split it into two nodes using Algorithm 1 for all objects
within the node. The second node’s threshold is initial-
ized with the maximum attributes of the subsequent node.
In Fig. 5 (center), o10 is inserted and the third node is as-

Algorithm 2 Vectorized Threshold Algorithm

LTBL = TBL List., W = Preference Vector
Qk = Priority Queue., k = Query result size.
1: for B ∈ LTBL do

2: vta kernel(B,W,Qk, k)
3: for j = 0 to m− 1 do

4: T+ = B.threshold[j] ·W [j]
5: end for

6: if T ≤ Qk.min() & Qk.size() == k then return Qk

7: end for

signed a threshold consisting of the maximum attributes of
the fourth node. Deleting an object may result in two nodes
being merged. In that case, we merge with the previous
node in-order and update its threshold with the one of the
merging node. Fig. 5 (right) shows the deletion of o6 which
results in merging nodes 2 and 3. In the worst case, a merge
can cause at most another split to happen when the new
node size exceeds Bmax. This happens because a node’s
size ranges in [Bmin, 2 · Bmin − 1], and the merging node’s
size is Bmin − 1, hence the total size of the new node will
range in [2 · Bmin − 1, 4 · Bmin − 2]. In any case, we can
create two nodes following the splitting steps outlined pre-
viously. Updates are implemented by combining a delete
and an insert operation.

The TBL list was designed to improve Top-k selection
performance, which is inline with related work [15, 29, 18,
19, 33] focusing solely on selection. It could be extended on
rank joins [24] and possibly combined with other operators
(i.e. group-by, join) , but this is out of this paper’s scope.

5.2 The Vectorized Threshold Algorithm
Algorithm 2 summarizes the steps of VTA which oper-

ates on a single TBL list. For each TBL node (Line 1), the
algorithm evaluates the objects associated with it by utiliz-
ing the V TA kernel (Line 2) and then calculates the node’s
threshold (Lines 3-5). When both stopping conditions are
satisfied, the algorithm halts processing and returns a prior-
ity queue consisting of the k-highest ranked objects (Line 6).
TBL nodes store their data using column-major order to en-

118



Algorithm 3 VTA Kernel

B = TBL Node., W = Preference Vector, Qk = Priority Queue.
1: for i = 0 to |B| − 1 do

2: for m = 0 to d− 1 do

3: pv= mm256 set ps(W [m])
4: j = |B| ∗m+ i
5: ld0 = mm256 load ps(&B[j])
6: ld1 = mm256 load ps(&B[j + 8])
7: r0 = mm256 add ps(r0, mm256 mul ps(ld0, pv))
8: r1 = mm256 add ps(r1, mm256 mul ps(ld0, pv))
9: end for

10: mm256 store ps(&buf [0], r0)
11: mm256 store ps(&buf [8], r1)
12: for r ∈ buf do

13: if Qk.size() < k then Qk.push(id, r)
14: else if Qk.min() < r then Qk.pop(), Qk.push(id, r)
15: end for

16: i+ = 16
17: end for

able SIMD vectorization. Our implementation makes use of
AVX instructions that support 8 lane operations. The VTA
kernel (Algorithm 3) evaluates the score for a fixed group of
objects per iteration (Lines 2-9). Once 16 objects have been
evaluated using SIMD operations, their scores are written
back to a local buffer (Lines 10-11). This local buffer is
used to update the contents of the associated priority queue
(Lines 12-15). A new object is inserted into the queue if
no more than k objects already exist (Line 13), or when its
score is greater than that of the minimum scored object, at
which point the latter object is evicted (Line 14).

5.3 VTA Complexity Analysis
VTA does not require keeping track of evaluated objects

and is able to maintain a constant candidate set at each
processing step. In addition, it favors instruction level par-
allelism and vectorization which improves bandwidth uti-
lization. However, it exhibits increased rank uncertainty for
queries on a subset of the reordered attributes, resulting in
many more object evaluations compared to TA.

Let np be the depth at which TA is able to stop processing
new objects. In the worst case, the total number of object
evaluations will be np ·m for a query with m attributes. In
contrast, VTA requires (np + nTBL) · d evaluations where d
is the number of attributes and nTBL the node size. This
inefficiency motivates the development of a solution having
better algorithmic efficiency. In the following section, we
describe two possible solutions, one based on previous work
(i.e. skyline layering) and a new method relying on angle
space partitioning.

Algorithm 4 Skyline layering with TBL list construction.

D = Relation data., LL = List of layers.
1: while D 6= ∅ do

2: L =skyline(D)
3: LL.append(build tbl(L))
4: D = D − L
5: end while

6. MULTITHREADED TOP-K SELECTION
There are two ways to parallelize TBL list processing: (1)

enable parallel evaluation within each TBL node, (2) create
multiple TBL lists and assign each one to distinct threads
for processing. Both options should be optimized to achieve

high algorithmic efficiency. In the following sections, we dis-
cuss two different algorithmic solutions geared towards im-
plementing the previous parallel query evaluation strategies.
The first method (SLA) relies on the practices established
in [20], while the second method (PTA) follows a new direc-
tion, utilizing angle space partitioning to optimally partition
the data for processing.

6.1 The Skyline Layered Algorithm
SLA combines the idea of reordering the base table, with

the concept of layering data using the skyline operator. Our
implementation leverages vectorization and the TBL list or-
ganization, in addition to utilizing the pruning properties of
the skyline layers. Although, our solution follows the best
practices established by Heo et al. [20], it presents the first
attempt to enable parallel processing and vectorization using
static reordering of each layer. Related solutions using sky-
line layering [27, 44] rely on graph traversal to improve algo-
rithmic efficiency, a process that is often hard to vectorize.
In addition, these solutions require maintenance of a high
number of candidates at each processing step, a character-
istic that is incompatible to our original goals (Section 4.2)
and inappropriate for our current environment.

Algorithm 4 showcases the pseudo-code for calculating the
skyline layers and their corresponding TBL lists. Utilizing
the parallel skyline algorithm presented in [9], we calculate
the skyline set (Line 2). For this collection of points, we
create a TBL list which is added at the end of a list con-
taining all layers (Line 3). Finally, we update the dataset
by removing the skyline set (Line 4) and repeat the previous
steps until there are no more points in D.

Algorithm 5 Skyline Layered Algorithm

LL = Layers List, W = Preference Vector.
Qk = Priority queues, k = Query result size., tid = Thread id
1: for i = 0 to |LL| − 1 do

2: if i > k then break
3: for B ∈ LL[i] in parallel do
4: vta kernel(B,W,Qk[tid], k)
5: if tid == 0 then

6: for j = 0 to m− 1 do

7: T+ = B.threshold[j] ·W [j]
8: end for

9: end if

10: synchronize
11: if T ≤ Qk.min() & Qk.size() == k then break
12: end for

13: end for

14: return merge(Qk)

Algorithm 5 summarizes SLA’s execution steps. SLA pro-
cesses only the first k layers (Line 2) since according to
Chang et al. [6] the Top-k objects are guaranteed to ap-
pear in them. Within each layer, we process the individual
TBL nodes by assigning consecutive objects for evaluation
to distinct threads (Line 4). Thread zero is responsible for
calculating the node’s threshold (Lines 5-9). In order to
ensure that T has been computed and all threads have com-
pleted their evaluations, omp barrier is used to synchronize
processing (Line 10). When the accrued number of objects
from all queues are ≥ k and their minimum scored object
is ≥ T processing terminates for the given layer (Line 11).
Finally, when all k layers have been processed, the individ-
ual queues are merged together before returning the Top-k
result (Line 14).
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Figure 6: ASP on objects from Fig 3.

6.2 The Partitioned Threshold Algorithm
SLA relies on discovering an optimal linear ordering for

all objects in the dataset to improve algorithmic efficiency.
Since this is a form of global optimization, it will not work
well for increasing attributes due to the curse of dimension-
ality which makes it increasingly difficult to identify simi-
lar properties between high-dimensional objects. In order
to overcome this limitation, we develop a versatile solution
which relies on partitioning the objects according to their at-
tribute correlation before choosing a local optimal ordering.
We call this method the Partitioned Threshold Algorithm
(PTA).

PTA utilizes Angle Space Partitioning (ASP), a strategy
first proposed in [37] for improving skyline computation.
This strategy has never been used in the context of Top-
k selection queries, hence it is a new approach. In addition,
PTA necessitates partitioning the data in collections of cor-
related objects (i.e. objects around a given trend line), thus
it is not tied to that specific partitioning strategy. In re-
ality, our contribution with PTA revolves around the idea
of minimizing the number of possible total orderings within
each partition by considering object correlation. Any parti-
tioning strategy that accomplishes these goals is suitable to
overcome the limitations associated with choosing a global
ordering.

Algorithm 6 Partitioned Threshold Algorithm

PL = Partitions List, W = Preference Vector.
Qk = Priority queues, k = Query result size., tid = Thread id

1: for p ∈ PL in parallel do
2: for B ∈ p do

3: vta kernel(B,W,Qk[tid], k)
4: for j = 0 to m− 1 do

5: T+ = B.threshold[j] ·W [j]
6: end for

7: if T ≤ Qk.min() & Qk.size() == k then break
8: end for

9: end for

10: return merge(Qk)

ASP maps each multi-dimensional object from cartesian
space to hyperspherical space using the geometric equations
presented in [37]. The data are then partitioned using grid
partitioning over the d − 1 space defined by the associated
angular coordinates. In effect, this leads to grouping to-
gether objects that are increasingly correlated as the angle
of the partition shrinks (see Fig 6). Assuming a splitting
factor s we create sd−1 distinct partitions for relations with
d attributes. Through recursive splitting of each angular di-
mension, we are able to maintain roughly the same number
of objects per partition while also building a separate TBL
list for everyone.
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Figure 7: Processed areas for varying δi using ASP.

ASP partitioning contributes towards discovering an opti-
mal per partition ordering independently of the user-defined
monotone function. Hence, each partition may require as lit-
tle as k evaluations to discover the highest ranked objects.
This becomes apparent in Figure 6 where reordering the
data per partition is almost optimal, resulting in at most
one object evaluation for the corresponding Top-1 query.
Typically Top-k query evaluation involves only a subset of
all attributes. ASP operates optimally only when querying
all of the indexed attributes. Our extensive experimentation
showcased that processing Top-k sub-queries incur some mi-
nor performance degradation. Hence, our methods are suit-
able for solving Top-k selection efficiently.

6.3 PTA Algorithm
Algorithm 6 summarizes the execution steps of PTA. We

assign each partition to a distinct thread and in parallel pro-
cess their corresponding TBL lists (Lines 1 - 9). For each list
assigned to a thread, the VTA kernel is utilized to evaluate
one node at a time from the TBL list (Line 3). The thresh-
old is calculated after the evaluation of each node (Lines
4-6), then the corresponding stop conditions are evaluated
(Line 7). Note that stopping applies only to the partition
which is currently under processing. A thread is responsible
for evaluating multiple partitions. Once all partitions are
processed, the individual priority queues are traversed and
only the k-highest ranked objects are returned (Line 10). It
is possible to employ different strategies when merging the
queues together. However, the cost of merging is relatively
small and is not detrimental to high performance.

6.4 PTA Complexity Estimation
Consider an algorithm leveraging on TA (i.e. VTA, SLA,

T2S, HL-index, IO-Top-k) at step t of its execution where k
objects have been identified. Let τ = (1− δ1, 1− δ2, . . . , 1−
δm) (δi ∈ [0, 1]) be the combined attribute threshold. For
the worst case object arrangement, the corresponding al-
gorithm would need to evaluate all objects with at least
one aj ≥ 1 − δi. Assuming uniformly distributed values,
the expected number of object evaluations can be estimated
by the volume (or area in 2D) of the polytope enclosed
by the threshold and hypercube [0, 1]m. This is ETA(t) ≤
n ·

[

1−
∏m

i=1 (1− δi)
]

. Typically, δi grows linearly with k
and N , while E(t) grows exponentially to the query dimen-
sions. This growth rate is conceptually equivalent to the
number of candidates maintained during processing for no
random access methods [15, 29, 18]. Hence, any strategy
geared towards limiting such growth could be used to im-
prove performance for that class of algorithms as well.

Let us consider the 2D case of ASP where δ2 = c · δ1, c ∈
[0, 1] for simplicity. Fig. 7 presents the case where 0 ≤
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φ1 < φ2 ≤ π
4
. Given some threshold, an ASP enabled

algorithm following the TA ordering would process in the
worst case the depicted shaded region. This occurs because
TA performs a plane sweep for each attribute while ASP
restricts the associated region depending on the partition
angle. For δ1 ∈ [0, 1], the processed area is computed using
Equations 4, 5 where δ1 ≤ or > to c · tan(φ1), respectively.

A1 =
δ21
2

·

(
tanφ2 − tanφ1 +

(
1−

1

c · tanφ1

)2

· tanφ1

)
(4)

A2 = 0.5 ·
(
tanφ2 − tanφ1 − (1− δ1)

2 · tanφ2

)
(5)

Fig. 8 presents the projected (utilizing Equations 4, 5) vs
actual number of object evaluations for TA vs PTA (assum-
ing 8 partitions). The actual number was measured through
experimentation with varying k on 228 uniformly generated
objects. It is apparent that the projected curves are very
similar to the actual ones, indicating an average improve-
ment of at least two orders of magnitude. ASP is extremely

efficient for δi ≤ 0.004 where EPTA(t)
ETA(t)

≥ 400. This finding

indicates that intelligent partitioning is pivotal to achieving
high parallel efficiency and should precede the choice of a
suitable Top-k implementation that favors high system per-
formance. Note that this does not entail the selection of
any specific Top-k optimization, it only acts as the founda-
tion for the design of an efficient parallel Top-k algorithm.

Table 1: Processing environment per tested method.

Single
Threaded
(Scalar)

Single
Threaded
(SIMD)

Multi-
Threaded
(SIMD)

Single
Query

TA, LARA,
HL, DL, VTA,
SLA, PTA

FTE, VTA,
SLA, PTA

VTA, SLA,
PTA

Query
Batch

VTA, PTA

In fact, our analysis suggests that any previously proposed
Top-k method, aimed at limiting the exponential growth of
candidate objects and object evaluations, can be parallelized
effectively using ASP partitioning. However, according to
our analysis, the in-memory execution environment dictates
utilizing data reordering and layering because these tech-
niques favor sequential access and reduced candidate object
maintenance cost. As a result, we developed PTA to utilize
these practices in combination with ASP. The main con-
clusions of our analysis are also applicable for skewed data

Figure 9: Distribution properties of synthetic vs real
data (top: histogram, bottom: correlation matrix).

distributions. This reasoning is drawn from [37] where the
authors used equi-volume instead of regular grid partitioning
on polar coordinate space to adjust the partition boundaries
accordingly. Following this methodology, the actual parti-
tioning is applied on the densest regions of space where the
local distribution characteristics are similar to that of a uni-
form dataset. Hence, the properties of early termination are
still satisfied enabling improved algorithmic efficiency.

7. EXPERIMENTAL ENVIRONMENT
We provide a detailed experimental evaluation, comparing

against different categories of algorithms from previous work
which include list-based solutions optimized for random-
access (TA) or sorted-access (LARA), layered-based solu-
tions geared for efficient blocked access (HL) or high algo-
rithmic efficiency (DL) and hardware optimized algorithms
(i.e (Full Table Evaluation (FTE)),

We focus on three different types of experiments based
on the processing models described in Section 4.1. Ta-
ble 1 summarizes the environment in which every devel-
oped algorithmic was tested. In the interest of fairness, we
implemented the scalar variants of our proposed solutions
(i.e. FTE, VTA, SLA, PTA) and compare those to previ-
ous work which is inherently incompatible with SIMD and
multithreading. Following those experiments, we present
performance measurements for our proposed solutions when
evaluating a single query using either single-threaded or
multithreaded SIMD processing. Finally, we took the best
performing solutions (i.e VTA, PTA) and evaluated their
performance, measuring latency, throughput and parallel
efficiency for a randomly generated query batch (see Sec-
tion 7.2).

7.1 System Specification
All our experiments were conducted on a two socket 2.4

GHz Intel Xeon E5-2680 v4 CPU with hyperthreading en-
abled (56 cores in total) and 64 GB DDR4. We imple-
mented each algorithm in C++ utilizing the standard prior-
ity queue implementation. FTE, VTA, SLA and PTA were
designed to utilize AVX instructions and assume that the
data are stored in column-major order. For these meth-
ods, we also developed a scalar version used to present a
fair comparison against previous work which was not origi-
nally designed for column-major execution or to use AVX-
instructions. We used GCC version 5.4.0 having the O3
optimization flag enabled and the OpenMP framework to
enable multithreaded execution. The thread affinity was set

121



10!

10"

10#

10$

10%

T
im

e
(s

)

Number of Objects (log$&)
25           26           27           28           29

TA LARA HL DL VTA SLA PTA

Figure 10: Initialization cost comparison.

using OMP PLACES = sockets. Unless stated/shown oth-
erwise, all multithreaded measurements where acquired for
32 threads. Our code is publicly available in Github [42].

7.2 Dataset & Query Format

We conducted experiments using both real and synthetic
data. Unless otherwise stated, the parameters of our ex-
periments are summarized in Table 2. Similar to previous
work [20, 44, 29], our synthetic data follow a uniform dis-
tribution and were created using the standard dataset gen-
erator from [4]. We performed experiments retrieving the k
objects with the highest sum (i.e. wi = 1, ∀i ∈ [0, d − 1]),
unless stated otherwise. MTMQ is evaluated on 131072
randomly generated queries for k = 16, n = 228. The real
dataset consist of temperature measurements acquired from
NOAA [30].

Table 2: Experimental parameters.

Objects (n) Attributes (d) Result Size (k)
(n) [225, 229] 6 128

(d) 228 [2, 8] 128

(k) 228 6 [16, 1024]

In Figure 9, we summarize the distribution characteristics
for a random sample of our synthetic and real data using a
single attribute histogram and correlation matrix (light =
zero correlation, dark= high correlation). In contrast to the
synthetic data (that follow a uniform distribution), the real
dataset follow a bimodal distribution. From the correlation
matrices, we observe that the synthetic data contain objects
having almost no linear relationship. In contrast, the real
data consist of noticeably larger clusters of strongly corre-
lated objects. Low (High) correlation between objects is
responsible for decreasing (increasing) the likelihood of con-
structing highly correlated partitions just by chance. Hence,
we expect methods that do not utilize intelligent partition-
ing to perform poorly on data collections with zero or nega-
tive linear correlation, especially for queries on high number
of attributes.

8. PERFORMANCE TUNING
In this section, we discuss experiments related to the cost

of initialization (i.e. reordering, layering, creating sorted
lists), the chosen TBL node size, and the effects of varying
query weights.

8.1 Initialization Cost
In Fig. 10, the highest initialization cost is incurred by

methods that require calculating the skyline set to construct
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Figure 11: Block size vs latency-object evaluations.

the corresponding data layers. DL exhibits the highest ini-
tialization overhead because in addition to the skyline it re-
quires identifying all points dominated by any point in the
parent layer. Likewise, SLA attains the second highest ini-
tialization cost because it requires also reordering the layers
according the first seen principle. On the other hand, HL re-

Table 3: Individual query weights.

Q0 (1, 1, 1, 1, 1, 1, 1, 1)

Q1 (.1, .2, .3, .4, .5, .6, .7, .8)

Q2 (.8, .7, .6, .5, .4, .3, .2, .1)

Q3 (.1, .2, .3, .4, .4, .3, .2, .1)

Q4 (.4, .3, .2, .1, .1, .2, .3, .4)

quires discovering the skyline set and building the individual
lists for each layer, which translates to incurring about the
same initialization cost of VTA and PTA. Compared to TA
and LARA, the previous methods exhibit at most 4× and 7×
higher initialization overhead which is an acceptable trade-
off considering that all of them perform 350× and 33000×
better in terms of query latency. Note that initialization is
executed only once, similar to any other type of index like
structure.

8.2 TBL Node Size
Figure 11 presents the measured object evaluations and

query latency for varying TBL node size. We observed a
noticeable increase in object evaluations for queries with 2
to 4 attributes and somewhat mediocre increase on queries
with 5 to 8 attributes. In contrast, query latency follows a
downward trend for increasing TBL node size. This happens
because having large node size translates to less threshold
evaluations and a larger pool of unordered work that favors
instruction level parallelism, hence lower latency. Note that
a similar downward trend is observed for the threshold mem-
ory footprint as the node size increases (i.e. at most 8 MB
for 1024 vs 128 MB for 64).

8.3 Varying Preference Vectors
Figure 12 presents the measured object evaluations for the

preference vectors of Table 3. VTA exhibits little variation
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Figure 13: Scalar performance on synthetic data.

in performance, while PTA occasionally performs better for
specific weight combinations. PTA’s behavior is a conse-
quence of the order in which partitions are processed (i.e.
starting from φ1, in ascending order of the corresponding
partition angles). For preference vectors Q2 and Q3, the
specific order of processing favors discovery of high scor-
ing objects early, while the decreasing weight values reduce
the magnitude of the threshold for each TBL node. Hence,
any partition processed after these objects have been discov-
ered will require less object evaluations due to the higher
likelihood for the minimum score to be greater than the
associated threshold. PTA is compatible with cost-based
scheduling algorithms [3] focused on choosing the best order
of evaluating the corresponding partitions. Our experiments
follows the worst case order of processing (i.e. round-robin
order).

9. SYNTHETIC DATA EXPERIMENTS
In Figures 13 (a), (b), (c), we present the measured num-

ber of object evaluations for all developed scalar algorithms.
PTA requires the least number of object evaluations despite
following a fixed order of processing within each partition.
This is apparent for any instance of the Top-k problem, as
indicated by our experiments with varying number of at-
tributes, result size, and input size. VTA incurs higher num-
ber of object evaluations for queries on few attributes. This
happens because it follows a fixed order of processing which
forces it to evaluate all objects regardless of the chosen query
attributes. SLA performs worse than any other method be-
cause it follows the same sub-optimal order of processing
while also partitioning the data in few skyline layers which
are quite large and often need to be evaluated completely.
DL is the second best solution in terms of the number of ob-
ject evaluations. However, it is not practical because it ne-
cessitates a costly initialization step and requires too much
auxiliary information the processing of which negatively af-
fects query latency (see next section). TA, LARA, and HL
perform poorly for queries on large number of attributes.

In Figures 13 (d), (e), (f), we showcase the query latency
for all scalar methods. Again, we observe that PTA out-
performs almost every other method. VTA and SLA attain
similar query latency with small variations which are inline
with their corresponding object evaluations. DL requires
traversing frequently the lists of dominated objects for every
object within the result set, in order to update its candidate
set This results in unstable query latency that occasionally
is higher compared to VTA/SLA. LARA attains the worst

TA LARA HL DL FTE VTA SLA PTA
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Figure 14: Average number of cache misses for vari-
able attribute queries using performance counters.

query latency because it needs to maintain large candidate
sets and update their upper bounds at every step during the
shrinking phase. DL’s and LARA’s behavior is indicative of
the performance penalties associated with maintaining too
much auxiliary information while requiring also exorbitant
amount of computation to avoid only few object evaluations.
VTA and SLA maintain only a constant number of candi-
dates (at most k objects). Furthermore, they require few
auxiliary information (see 5.1) during processing as com-
pared to other methods (i.e LARA, DL). PTA adheres to
the same principles while also utilizing intelligent partition-
ing which helps with improving algorithmic efficiency and
achieving noticeably lower query latency.

9.1 Profiling Cache Misses
In Figure 14, we summarize the average number of cache

misses measured using synthetic data for queries having 2
to 8 attributes. We utilized the CPU event counters (i.e.
mem load uops retired.l1 miss) to gather the corresponding
measurements. Cache misses are counted at a given level
and any one above it, since any memory request would have
been forwarded from the top levels first. For example, a
cache miss at L3 would have been also counted on the mea-
surements of L2 and L1 caches, since the associated data
would have been requested and not found at those higher
levels.

Methods that perform excessive number of random ac-
cesses cause conflict misses that often evict relevant data
from every cache level. Future reference to that same data
will incur a cache miss at each level, ultimately resulting
into a direct memory access. Hence, when measuring the
cache misses every level will incur the same amount because
every data access will go through each cache level before the
data become available to the CPU core. TA, LARA, HL and
DL exhibit this behavior as indicated by the corresponding
cache measurements.

Methods that favor sequential access incur fewer cache
misses at the lowest level because multiple words are trans-
ferred from main memory for a given memory request. In ad-
dition, data prefetching primitives and SIMD load instruc-
tions are also responsible for reducing the total number of
cache misses at the lowest level. This behavior is apparent
by observing the cache misses for FTE, VTA, SLA and PTA.
Our measurements indicate that FTE, VTA, SLA and PTA
minimize the number of conflict/capacity misses by serving
more memory requests from L3 cache. However, PTA is the
only method that reduces cold misses by several orders of
magnitudes compared to every other solution.

9.2 Hardware Optimized STSQ Processing
As indicated by Fig 15, PTA attains the best performance

among all other hardware optimized solutions for varying
instances of the Top-k problem. VTA and SLA achieve
similar query latency, with the former being occasionally
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Figure 15: Latency using SIMD instructions.

slightly better than the latter. FTE performs worse that
all other implementations because it requires evaluating the
full dataset for every query. The above behavior indicates
that achieving high algorithmic efficiency is as important
as optimizing for the underlying hardware. Similar results
were observed in the multithreaded query evaluation of the
above algorithms (omitted due to lack of space).

9.3 Hardware Optimized MTSQ Processing
In this section, we concentrate on the evaluation of hard-

ware optimized solutions that follow the MTSQ processing
model (denoted with M). We compare against the single-
threaded hardware optimized implementations (shown with
S) of the previous section.

In Figures 16 (a), (b), (c), we summarize the number of
object evaluations for each implementation. VTA-M and
SLA-M perform worse than their single-threaded counter-
parts because they randomly partition the data across dis-
tinct TBL lists. Random partitioning increases rank uncer-
tainty since each partition contains objects from the com-
plete data space, possibly omitting those that contribute
towards improving the stopping threshold. SLA-M is also
affected by the fact that the individual data partitions con-
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Figure 16: Single vs multithread performance on
synthetic data.
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Figure 17: Throughput-latency on synthetic data.

sist of objects that are weakly and possibly negatively corre-
lated. This organization negatively affects rank uncertainty
because it creates a wider gap between the maximal and
minimal attribute values making it more probable to first
evaluate low scoring objects which appear at the boundaries
of the skyline set. Hence, the number of object evaluations
increase drastically.

PTA is the only method able to sustain the same algorith-
mic efficiency for a wide range of experimental parameters.
For queries on 2 or 3 attributes, it discovers the Top-k re-
sult by evaluating just one TBL node. In fact, considering
a smaller node size it can perform less object evaluations at
the expense of lower processing throughput due to frequent
threshold calculations. Overall, PTA’s work grows linearly
to the query attributes. In addition, the number of object
evaluations grow linearly with respect to increasing values
of k and n. This behavior suggests that PTA exhibits good
scaling properties across the board and can benefit from the
addition of new system resources (e.g. CPU cores, better
memory bandwidth).

In Figures 16 (d), (e), (f), we compare the query latency
of our single-threaded and multithreaded implementations.
These measurements follow a similar trend to the observed
number of object evaluations. VTA-M and SLA-M exhibit
comparable performance that is overall slightly worse than
their single-threaded counterparts because of the former re-
quiring more object evaluations. PTA-M outperforms both
of these solutions and the PTA-S variant. However, its per-
formance is slightly worse than proportional to the number
of threads used during processing. This happens mainly
because updating the individual priority queues is an inher-
ently sequential operation. When k is larger than 128 the
combined size of all priority queues (16 threads) is larger
than the size of the L1 cache (8 bytes for the key, 4 bytes
for the score). In that case, each update operation will most
likely access the priority queue from L2 cache the latency
of which is considerably higher. Further improvements on
latency and throughput are only possible through batched
query processing.

9.4 MTMQ Performance Evaluation
In Figure 17, we present the measured throughput and av-

erage query latency for increasing (a) number of threads, and
(b) number of attributes. PTA and VTA are both highly op-
timized, enabling efficient sequential processing and SIMD
vectorization. For this reason, our experiments indicate that
the observed throughput grows linearly to the number of
processing threads. Likewise, the average query latency fol-
lows a downward pattern. Both algorithm reach their peak
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performance when utilizing at most 16 threads, due to lim-
itations in the L1 cache size. PTA achieves lower query
latency because it experiences higher temporal locality dur-
ing processing. For certain queries only few TBL nodes are
examined, a behavior that increases the likelihood of these
nodes remaining in cache thus favoring future data re-use.
VTA fails to exploit this type of locality because it references
many more TBL nodes during processing, thus contributing
to the eviction of data useful to future queries. Overall,
PTA scales well for increasing query attributes because the
associated throughput and latency remain relatively stable.

In Figure 18, we showcase (a) the scale-up and (b) parallel
efficiency of PTA compared to VTA. We indicate scale-up
by increasing the number of processing threads to the in-
put size. Our experiments demonstrate that PTA exhibits
better scaling properties compared to VTA since the for-
mer sustains the same throughput for the corresponding ex-
perimental parameters. Parallel efficiency was measured by
dividing the achieved speed-up with the number of process-
ing threads for the same input size and MTMQ workload
(i.e. 512 million objects, and 131072 random queries). PTA
scales almost linearly with increasing number of threads thus
parallel efficiency is close to 1. On the other hand, VTA’s
parallel efficiency drops noticeably because it cannot effec-
tively exploit temporal locality for a given batch of queries.

10. WEATHER DATA EXPERIMENTS
In this section, we validate our experimental results us-

ing real data. In Figures 19 (a), (b), (c), we summarize
the number of object evaluations following MTSQ process-
ing. Similar to the experiments on synthetic data, VTA-S
and SLA-S perform less object evaluations than their mul-
tithreaded counterparts. PTA-S and PTA-M outperform
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mance on real data.
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VTA and SLA for almost every experimental parameter,
with the only exception being queries on 2 attributes. This
happens because consecutive attributes within each object
are often highly correlated (i.e. daily temperature values),
thus their first seen position matches the ranking order of
most preference vectors. The measured query latency for
all methods follows a similar trend to the observed number
of object evaluations. For PTA-M the major source of con-
tention during processing is the priority queue and the fact
that it does not fit completely within L1 cache.
In Figure 20, we present experiments measuring through-

put and latency on weather data for increasing number of
(a) threads and (b) attributes. PTA exhibits superior per-
formance compared to VTA for almost every experimental
parameter. This behavior is inline with our experiments
on synthetic data. Again, the only exception is queries on
2 attributes in which case, the strong correlation between
attributes allows VTA to stop earlier evaluating few TBL
nodes. In fact, PTA suffers from the overhead of having to
evaluate at least one node per partition.

11. CONCLUSION
In this work, we concentrated on developing algorithmic

solutions for parallel in-memory Top-k selection. We pro-
posed three distinct processing models that offer varying
levels of parallelism. We introduced the concept of rank un-
certainty used to discern (given a small representative subset
of existing approaches) those having the highest potential
to perform well for main memory processing. Based on the
rank uncertainty metric, we identified HL and T2S as poten-
tial candidates for further parallel optimization (due to their
early termination property). We proposed three algorithms,
namely VTA and PTA (based on improving T2S), and SLA
(based on improving HL). All these methods utilize a simple
and easy to maintain data structure, within a conventional
DBMS, called a TBL list. PTA adopts a new strategy to
minimize rank uncertainty which relies on angle space par-
titioning. In its scalar form, PTA exhibits several orders of
magnitude better performance compared to previous works.
In addition, PTA outperforms parallel variants of previous
methods that utilize reordering (VTA) and layering (SLA).
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