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The Bitcoin protocol induces miners, through monetary rewards, to expend energy in order to add blocks
to the chain. We show that, when energy costs are substantial and taken into account, counterintuitive and
unintended strategic behavior results: In a simple bounded-horizon setting with two identical miners there is
a unique pure symmetric equilibrium in which both miners first “slow down” in order to decrease the crypto
complexity and then take advantage of this decrease. If miners have different energy efficiencies and are
restricted to choose the same hash rate for many epochs, there is a unique pure equilibrium in which miners
either participate at low levels that depend in intricate ways on all the other miners’ efficiencies, or choose to
abstain from mining if their efficiency is too low. In the general setting in which miners can adapt their hash
rates over time, we show that, unless the number of miners is very small, the only possible pure equilibria are
rather chaotic, with miners quitting and starting again periodically — or there is no pure equilibrium at all.
We discuss the implications of these results for the stability of proof-of-work protocols.

ACM Reference Format:

Amos Fiat, Anna Karlin, Elias Koutsoupias, and Christos Papadimitriou. 2019. Energy Equilibria in Proof-
of-Work Mining. In ACM EC ’19: ACM Conference on Economics and Computation (EC ’19), June 24-28, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3328526.3329630

1 INTRODUCTION

The protocol described in the 2008 paper “Bitcoin: A peer-to-peer electronic cash system" by Satoshi
Nakamoto [9] (hence called “the Satoshi protocol”) is a singular achievement: a bold, novel system
design that has spawned, without much debugging a decade later, a global distributed system with
millions of users that is surprisingly robust.

The backbone of Bitcoin and of similar cryptocurrencies is a proof-of-work blockchain protocol
which attempts to keep a consistent list of transactions in a peer-to-peer network. This list of
transactions, the public ledger, is maintained by the users of the network, who constantly attempt
to extend the blockchain, a public data structure consisting of a sequence of blocks of transactions.
To add a block to the blockchain and claim some reward, a user has to provide proof-of-work which
takes the form of an easily verifiable solution to a hard cryptographic puzzle. This process is called
mining and we will use the term miner to refer to the users and nodes of the distributed network.
For excellent introductions to Bitcoin and cryptocurrency technologies, see [10, 14].

There is only one known major fault of the Satoshi protocol: The original paper by Nakamoto
claimed that as long as no miner has a majority of the mining power, no one would have reason
to deviate from the protocol — that is to say, it was claimed that the Satoshi protocol is incentive
compatible. Recently, Eyal and Sirer [7] disproved this claim by showing that there are circumstances
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where it is advantageous for a miner (with less than half the total power) to deviate from the Satoshi
protocol and delay the publication of a new block. There has been much subsequent work along
these lines, e.g., [8, 11-13]. Significantly, it was recently pointed out that in the regime in which
transaction fees, as opposed to block reward by new Bitcoins, will be the main monetary reward
for mining — as it is expected to be eventually — the increased variance of rewards will incentivize
even small miners to occasionally fork the chain [5].

Our main contribution is a new genre of strategic deviations from the intended function of the
Satoshi protocol, related to energy costs and crypto puzzle difficulty. Critically, the deviations we
consider are not dependent upon having a large fraction of the computing power, any constant
fraction will do. An important part of the Satoshi protocol is the difficulty adjustment process,
whereby the complexity (inverse probability of success for a single hash) of solving the crypto
puzzle is recomputed every two weeks, or more precisely, every 2016 blocks (an epoch), with the
goal that the expected length of time between successive blocks in the upcoming epoch is kept to
ten minutes, under the assumption that the rate with which hashes are computed does not change
between the previous epoch and the next!. The idea of using difficulty adjustment appears in [4, 6]
but in a different context of replacing one history with another.

We show that, once energy costs are taken into consideration, Bitcoin mining entails strategic
behavior deviating from the implicit intension of the Satoshi protocol — namely, that each miner
exerts the same amount of effort each epoch, presumably using all of the resources they have
available. It is remarkable however that the strategic behavior we describe is not an actual deviation
from the Satoshi protocol; in the original protocol there is no explicit suggestion that users should
use their full hashpower every round. Our results are most relevant in a regime in which energy
costs are a substantial part of mining revenue, which seems to be the case now: it is estimated (see
for example [1, 2]) that this has been the case during the past year, with current estimates of energy
costs hovering higher than 90% of revenue.

Strategic deviations and equilibria described in this paper hold for arbitrary proof-of-work cryp-
tocurrencies that include a difficulty adjustment feature. It is unclear how a proof-of-work system
could avoid having such a feature — but see discussion at the end of the paper. Bitcoin is hardly the
only proof-of-work cryptocurrency. A [very very] long list of proof-of-work cryptocurrencies (and
associated market capitalization) appears in [3].

We model mining as a game between miners in which the utility for each miner is the miner’s
revenue minus the miner’s energy costs per unit time; we assume that each miner i has a specific
energy cost per hash, denoted «;. We analyze several such games:

e In a warm-up toy game (Section 2) in which two miners with identical energy costs & compete
by adjusting their hash rate for two epochs, there is a unique symmetric equilibrium in which
both miners hold back their hashing effort in order to “game down” the difficulty adjustment
process, and benefit from this decreased difficulty in the last epoch.

e In Section 3 we turn to the fixed effort game, in which n miners with hashing costs a; <
ay < ... < a, must each choose an effort level which will be kept constant for a long run of
epochs; we completely characterize the unique pure equilibrium of this game. At equilibrium,
the first k* miners will participate with some positive effort, and the rest will abstain. The
number k* of participating miners, and the effort level at which they will participate, depends
on all @;’s in a rather intricate way: the k + 1st miner will participate if and only if its a1 is
no larger than an “enhanced average” of the first k. At least two miners will participate — this

1Because of this provision, puzzle difficulty and energy consumption has been increasing rapidly over the past decade
(despite a recent drop), an issue that has justifiably attracted much attention: Bitcoin mining now costs the world a good
fraction of one percent of total energy consumption, bringing it on par with Portugal.
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Fig. 1. The chart of the Bitcoin mining difficulty for the last two years

is intuitive, since a single very efficient miner wants to lower her effort, and so the second
most efficient miner will “squeeze in”. Of course, if there are only two miners participating
then the more powerful miner can also rewrite history. If there are more miners with equal
or similar costs as the second one, they will also participate. At the other extreme, n miners
with equal ¢;’s will each get at equilibrium a revenue of 2 per block, in contrast to the social
optimum of % per miner, were they able to cooperate through a contract.
e But of course the fixed effort assumption is not realistic. In Section 4, we consider the case
where the n players are free to adapt their hashing rates from one epoch to the next. For this
setting, we show that with sufficiently many miners, either there are no pure equilibria at all,
or they must be are somewhat bizarre: miners will vary their efforts from epoch to epoch.
The number of miners needed for this result to kick in is parameterized by the maximum
fraction of the total hash power available to a single miner. It seems that this captures a host
of plausible scenarios regarding the number of agents and the fraction of the total effort that
can be exerted by a single agent.
Since equilibria are unlikely, we next look at the nature of the best response by one agent,
who is free to adapt her hash rate arbitrarily, to fixed hash rates by other agents. In Section
5 we present closed form equations for the best response, whose accuracy depends on a
mathematical conjecture that we articulate, derived after much experimentation and ana-
lysis through Mathematica. The results suggest that the effort level of the agents may vary
dramatically and chaotically from epoch to epoch.

We conclude with a discussion and open problems.

2 MODEL
Definitions:

(1) Anepoch is a period during which 2016 blocks are generated. Epoch t > 1, starts immediately
after the (£ — 1) - 2016" block is generated, and ends when the next 2016 blocks are generated.
Let ¢; denote the length of epoch ¢ in “time units". One time unit is 10 minutes of elapsed
time.

(2) Let m;, 1 £ i < n, be the maximum number of hashes the it" miner can perform per time

unit. We mainly use this to assign some meaning to the “full throttle” idea; in almost all of the
games studied below we shall assume that the maximum number of hashes is not binding,



however we will generally not consider the possibility of a miner having a large percentage
of the network hash power, and certainly not more than 50%.

(3) Let 0 < hf <m;,1<i<n,t>1,bethe number of hashes per time unit actually performed
by miner i during the t*# epoch. If h! = m; we say that miner i is going full throttle during
epoch t, and we say that miner i is holding back otherwise.

(4) Let H = }; hi, the total number of hashes performed per time unit during epoch t.

(5) The hardness of the puzzle in epoch t is expressed in terms of the probability, p, that a single
hash will solve the puzzle. This is recomputed when epoch t — 1 ends, so that the expected
length of epoch ¢ is one time unit, under the assumption that H* = H'~!. Now, 1/p; is the
expected number of hashes until the crypto puzzle is solved, and H;_; is the total number of
hashes in epoch t — 1. Thus, p; is computed as follows:

1 —_—
bt
The utility for player i over the first T epochs is the profit over T epochs (i.e., the number of
Bitcoins minus energy cost in Bitcoins) divided by the length of time for these T epochs.

Ht—l

DEFINITION 1 (ENERGY COST ;). We denote by a; the cost (in Bitcoin) of the electricity required
for one hash using the technology available to miner i.
To derive a formula for utility, we observe that:

(1) The length of epoch ¢t is H*~!/H! (in time units).
(2) Thus, the energy cost for miner i in epoch ¢ is

Using these, we now define the utility of each agent.

DEFINITION 2 (UTILITY). The utility per time unit for agent i, averaged over the first T epochs, is
given by

T hi -1
U = Zewr (- HTY) (1)
P T Ht-!
Zt=1 H?

Note: In the definitions of utility and of puzzle difficulty we omit the factor 2016 reflecting the
number of blocks in one epoch; this is inconsequential, akin to a change in currency from 1 Bitcoin
to 2016 Bitcoins.

Example: A finite horizon game

We illustrate these definitions through a simple example, which also showcases the kind of phenom-
enon that we study. Suppose that two identical players with hash costs  and maximum hash power
m; =my = %, are about to play for only two epochs, starting from some fixed puzzle complexity
at the first epoch. Rational players will go “full throttle” during the last epoch; this is so because
the utility is increasing in hl.T (in Equation 1, the numerator is increasing and the denominator is
decreasing in h7).

There are two unknowns, the hash rates at the first epoch, call them h; and h; by dropping
superscripts. The length of epoch 1 is 1/(hy + h;), while the length of the epoch 2 is h; + h,. For
a > 1, the total duration of epochs 1 and 2 is hy + hy + 1/(hy + hy) > 2.



It follows from equation 1 that utility of agent i € {1, 2} is

_hi o1 41 1
U = Fith —a-hi g+ —agz(hi+hy)
i— 1 .
iy T (h1 + h3)

We observe that

o When o < 1/2, the utility U; is increasing in h;. This means that the unique Nash equilibrium
is full throttle for both players.

e When « € [1/2,3/2), to find the Nash equilibria we consider the points with dU;/dh; = 0 or
the extreme values 0 and 1/2 of h;.

By setting both derivatives to 0,

0 _ 0
ohy 7 0hy
we get that
hlzhgz_a+ 3 -2a + a?

2

For a > 3/2 the solution to the above equation gives an infeasible value of h; (negative) which
means that players use ever smaller hash levels, and no equilibria is possible.

For a € [1/2,3/2), the above solution gives the unique Nash equilibrium. What this means is
that equilibria exists only if « < 3/2 and we have that

, {1/2, a<1/2 . {(1 —a)/2, a<1/2
1= —g+V32ata? 1= —g+V32ata?

et /2 <a <3/2 SRR /2 <a <3/2
In conclusion, if the miners have very low costs ( < 3) they will mine at full speed. But for higher
cost in the range (%, %] both miners hold back and mine during the first epoch below their hash
capacity in order to bring the puzzle difficulty down and exploit it in the last epoch.

3 THE CONSTANT EFFORT GAME

We first consider a setting where miners do not change the number of hashes between different
epochs, i.e., hf. = hf/ = h; for all ¢, ¢’ — this assumption is revisited and removed in the next sections.
The n miners differ in their efficiency levels with energy costs (per single hash) of a1 < @, < -+ < ay.
The lower the miner index the better the technology and the smaller the cost. Formally, this is
a game where the strategic decision of a miner is the choice of a single hash level that they will
use throughout. For now, we also assume that there is no upper bound on the maximal number of
hashes that can be performed by a miner (m; = o).
In this section we prove the following theorem:

THEOREM 1. Given agents with hash costsay < ay < - -+ < ap, n > 2, there is a unique equilibrium
of the following form:

(1) The participating agents are those with the lowest costs, a1, . . ., ay, for some 2 < k* < n where

ZI;:I W}

k¥ =max<{2<k<n|ax<
{ | ok 1



(2) The hash rates in the equilibrium for alli € {1,...,k*} are given by

. k-1 k-1
hi = K (1 - K" : ai) (3)
j=1%j j=19%j
= \/H_i/OCi - H_i, where H_i = Z h; (4)
1<<k*,€+i

(3) The hash rates h; for k* < i < n are all zero.
(4) The utility of agenti € {1,...,k"}, in equilibrium (in each epoch) is:

X
Ui =(1-a;H)? where H= Z h;.
=1

Remarks:

(1) Note that part (1) of the theorem implies that in equlibrium there are always at least two
participants if n > 2. This is intuitively obvious since a single miner, no matter how powerful,
will always attempt to reduce her hash rate so that the puzzle difficulty will drop to 0. However,
this will always induce another miner, no matter how inefficient, to join in.

(2) Of course, two participants implies that one of the miners has 50% of the mining power,
which allows her to rewrite history. More generally, under the assumption that agents use
constant effort, Theorem 1 can be used to derive conditions under which the system falls
apart. If the unique equilibria has a very powerful miner, the same miner can go off and
rewrite history.

(3) We derive the hash power in equilibrium, k7, in two ways: Equation (3) describes the equili-
brium hash level of an agent as a function of of all energy costs, whereas (4) describes the
equilibrium hash level of an agent as a function of hash power used by the others and her
own energy level.

We proceed with the proof of the theorem.
LEMMA 1. The best response for agent i given that all other agents have (jointly) hash level H;, is
bri(H_l-) = max(O, \/H_i/O{i - H_i),
moreover, the best response is > 0 iff 1 — aH_; > 0.

Proor. Consider the utility of agent i given in Equation (1). As the denominator is constant,
(H' = HY for all t, ') it follows the best response for agent i to the others making effort H_;,

bri(H_i) = argmaxy hl/(hl + H_i) —a;h; (5)
= argmaxhi 1- H_i/(hi + H_i) —a;h;
= argmin,_ a;h; + H-;/(h; + H-;). (6)

Taking the derivative of Equation (6) with respect to h; and setting this to zero we get that the
best response hash rate for miner i has

bri(H-;) = VH_;/o; — H_;.
Now, we have br(H_;) > 0 iff H_;/a; > (H-;)?, which is equivalent to 1 — aH_; > 0. O

LEMMA 2. Let P be an arbitrary subset of {1, ...,n} such that every miner i € P has hash rate
h; > 0 and all minersj € {1,...,n}\P have hashrateh; = 0. Then, hy, . . ., hy is a Nash Equilibrium

if and only if



1)

|P| -1
H = h; = , (7)
; ' 2jep @j
(2) Foralli € P we have that
Pl -1 P|-1
hiZH(l—H'(Xi)Z | | (1— | | '0(,'). (8)
ZjeP aj ZjePaj
3)
1-a;H>0 ifandonlyif ieP 9)

PrOOF. Suppose that {h;} is an equilibrium and let H-; = }}; ;; h;. Then by Lemma 1, for i € P,
we have that

[H_; [H_;
hi=,|—-H,; & — =-H ©H,;=aH? foralliceP. (10)
a; Qi

Therefore, for i € P
h;=H-H_; = H- a;H? = H(1 — a;H). (11)

Summing over i € P, we get

ieP ieP
Cancelling H on both sides yields (7) and substituting (7) back into (11) yields (8). Moreover, for
eachi € P, h; > 0 and h; is a best response to {h_;};x; only if
|P| -1

ZjeP aj

H=Zhi =H(|P|—HZai).

l-qH=1-

ca; > 0.

Finally, by Lemma 1, we have that h; = 0 is a best response only if 1 — a;H_; < 0. But for i ¢ P,
H_; = H,so h; = 0is a best response if 1 — ;H < 0 completing the claim that (9) must hold.

Next we argue that if (7), (8) and (9) hold, then {k;} is a Nash equilibrium. From (7), (8) and (9),
we have that all h; € P are positive and the best response for all i ¢ P is h; = 0. So we have just left

to verify that for i € P
hl‘ = \/H_i/ai — H_i. (12)
Subtracting (8) from (7), we get that for i € P,

H_i = (Zin
which by (10) is equivalent to (12), which completes the proof that {h;} is a Nash equilibrium.
O
These two lemmas imply that setting hash values for agents in the set P* = {1,...,k*} as given

in Equation (3) and zero hash values for others is a Nash equilibrium. Next, we verify that this
equilibrium is unique. Suppose that there is another equilibrium {h;} satisfying (7), (8) and (9). Let
P = {ilh; > 0}, H' := Yjep h}.

First suppose that P’ = {1,...,k’}.If k" < k*, then 1 — ay+H’ > 0 contradicting (9). Similarly, if
k’ > k*,then 1-apH’ < 0, again contradicting (9). Finally if P’ is has some miner i with k] = 0 and
another miner j with h} > 0, where a; < a;, then since 1-;H’ > 0, it also holds that 1 —¢;H’; > 0
contradicting (9).

Finally, we observe that substituting (7) and (8) into the utility expression 5 yields part 4 of
Theorem 1 and completes its proof. O



On price of anarchy and technological innovation.

Assuming constant effort per agent, Theorem 1 has some interesting consequences. When all miners
have equal hash costs a; = « for all i, we find that the equilibrium hash rate is h; = (n — 1)/n?a and
each agent’s utility per epoch is U; = 1/n?%. In contrast, if the miners could be bound by a contract
to mine at an agreed-upon effort level, they could drive the puzzle difficulty arbitrarily low and
have utility arbitrarily close to 1/n: The price of anarchy in this case is n.
Suppose now that a new miner with significantly better technology, say € - @, enters the game.
1

The remaining n miners still participate, but at a lower level h = 1 — Trem = e/n+ O((e/n)?), with

the new miner contributing much larger effort A’ = 1 — € + O((¢/n)?). The utility of the innovator
will be 1 — € + O(e?/n) with the original players receiving €?/n® + O(e*/n*), an €? fraction of their
past utility, while the price of anarchy is elevated near one.

Finally, if a second miner with significantly better technology than the original miners enters,
all the original miners will drop out of the game.

4 CONSTANT EFFORT IS NOT AN EQUILIBRIUM WHEN AGENTS CAN VARY THEIR
EFFORT

To contrast with results in the previous section, which only hold under the constant effort strategy
space, we now assume that miners are free to change effort from one epoch to another up to some
Y +1/n times the combined effort of the other miners, for some constant y. Clearly, if any individual
miner has too much of the total power then history can be rewritten, and even if not so high,
attacks of the type introduced by Eyal and Sirer [7] can come into play. Think of y as some constant
less than, say, 0.3. Clearly, reasonable values of y are small.

Theorem 2 shows that the space of possible pure equilibria is limited.

THEOREM 2. For anyy, there is a value n, = 4(1 + y)?/y such that there is no Nash Equilibrium
where

® n > n, miner participate in every epoch.
e There is some miner that uses at most a 1/n, fraction of the total effort in every epoch, but has
the capacity to increase his hash power toy + 1/n times the total effort of the others.

Before giving the proof of this theorem, we note that, for every epoch, there is always at least
one agent that uses no more than 1/n of the total effort. The theorem requires something stronger,
that in the pure equilibrium, there is a miner that consistently uses no more than 1/n in every
epoch. Of course if miners use constant effort across all epochs then there is always one agent that
uses no more that 1/n of the total effort, in all epochs. Thus we derive the following Corollary to
Theorem 2.

COROLLARY 1. There exists no constant effort equilibrium in whichn > n, miners have spare power
to increase their power toy + 1/n times the total effort of the others.

Note that this Corollary contrasts with but does not contradict Theorem 1, because the strategy
space considered for Theorem 1 restricts miners to choosing one constant effort level across all
epochs whereas the agents considered in Theorem 2 can choose arbitrary effort levels that differ
from epoch to epoch.

We now give the proof of Theorem 2:



Proor. Suppose that in the hypothesized equilibrium, on round ¢ the cumulative hash power

used is H'. Suppose also without loss of generality that T is even and
T/2 T/2
(13)

HZt > H2t71

Further denote the fraction of hash power used by agent 1 in epoch t by f which we assume to
be at most 1/n for all ¢. Then if follows from Equation 1 that agent 1’s utility is
_— T/2 [fl2t(1 o H2= 1) + f2t+1(1 a HZI)]
L= T/2 ( H2t + H2t+1)

Tt T
/2 2t-1 2t
ZT 2-oH — o H*)
! = (14)

T/2 ( 2t H2z+1)

mrT g

Now consider the following agent 1 deviation:
2= (y+ f2HH*  and R**'=0, Vi

Then the total hash power used in each round post deviation is
2t _ (1 + Y) . HZt and FIZtJrl — (1 _ ﬁ2t+l)H2t+l, Vi,

Therefore, agent 1’s utility post deviation is:
{ 1 Ht (1 - Ht 1)
Ul = T Ht1
Zt:1 Ht
T/2 (y+fH _ _
SI (5E) (1= (1 = f2E Y
H2t (1_f12t+1)H2t+1 )

T 2
! ((1 V) agEme Y e

T/Z
(1+Y) (1 a Hzt 1)

T T/2 (1+y)H?t H2t+l
2 ((1—1/n>H2H + (1+y)H2t)

since 0 < f} < 1/n for all t. Therefore, the utility post deviation

T/2 211
(&) 2iha - ahh
> ( 1+y " _) ZT/Z (;z[jil + 11;;;1)

1-1/n 1+y

which by (13) is at least
T/2 (2—oyH* " '—ayH?)

.
(1+y) Zt=1 2
1+y 1 T/2 ( Het L HEH :
1-1/n " 14y t=1 \ g2t-1 H?t

Combining this with Equation (14), we get that

GilU 2 75— —-




If the last expression is greater than 1, the miner has an incentive to switch to the new strategy.
This happens for all values of n exceeding a threshold (that depends on y). It is straightforward to
verify that for every

2
ps V)
Y

the left hand side of the above inequality is at least 1, which shows that the deviation is profitable. O

5 FURTHER RESTRICTIONS ON THE EQUILIBRIA OF THE ADAPTIVE EFFORT
GAME

We already know that there is no pure Nash equilibria when all agents have constant effort (Corollary
1). But, if everybody else plays at constant effort, what precise form will the deviation of the last
player take?

The characterization of the best response described in this section crucially depends on Conjecture
1 below. Note that this is stated as a conjecture and not as a lemma as we were unable to prove
it. However, we do have ample evidence derived from experiments and Mathematica that offers
strong support for the conjecture.

So, suppose that the total hashing power H_; of all miners except miner i is the same in all
epochs. What is the best response of the single miner? Perhaps not so surprisingly at this point
in the paper, the best response varies in general with time. To analyze the situation and keep the
notation simple, let’s define

xt = 0(th ﬁ = \/OCI'H_,'.

The utility of player i given in Equation (1), can be rewritten as

t_B2)(1_x1-1
_ZtT:1(x pHA-x"")

xt
Ui T i1
t=1 "x%
The best response for player i is to select h} > 0, =0,...,T, or equivalently x’ > f? to maximize

the above quantity. This maximization problem is affected by the boundary conditions, that is the
values of x° and x7, but their effect is limited and it almost disappears as T tends to infinity. We
don’t know the solution to this maximization problem, but we have strong evidence, including
experimental results, that it satisfies the following conjecture.

CONJECTURE 1. For every € (0,1) and for every even T, there exists x° and x”, such that the
optimal values x* that maximize the quantity

ZtT=1 (I =pH(=x"")

t

U" = sup r )
s 2 T xt—1
xt>p t=1 xf

are 2-periodic, that is, x* = x'*2 for everyt < T — 2.

Note that the class of 2-periodic solutions includes the constant effort solutions. The following
lemma characterizes the unique 2-periodic solution of the above maximization problem. It asserts
that for small , the optimal solution is the same for all ¢, while for large f, it alternates between
the minimum value and some other value.



LEMMA 3. Assume that Conjecture 1 holds, that is, assume that the solution to the above maximi-
zation problem is 2-periodic. Then the optimal solution is

p p<4av2-5
xt = {ﬁz t is odd (15)

otherwise,
(1+V2)* tiseven

and the maximum value of the expression is

- {(1—ﬂ)2 p<avz-5

- @(l—ﬁz) otherwise.

(16)

Proor. Since we consider only 2-periodic solutions we can express the problem as follows: find
x°, x! in [B?, o) to

('-pH01-x") | (x°-pH(-x")
1 + 0
max X X ,

which can be solved by standard methods. O

We now translate the above lemma to obtain the best response against constant effort by the
other miners. If the above conjecture holds, this is the unique best pure response.

LEMMA 4. If'the total hashing power H_; of all miners except miner i is the same for all epochs, the
best 2-periodic response of player i, when it has unlimited hashing power, is given by
if a;H_; < (4V2 - 5)? ~ 0.43, player i uses the following hashing power on every epoch: h; =
VH_;/a; — H_;,
if (4V2 - 52 < a;H_; < 1, playeri mines only in every second epoch with the following hashing
power: h; = \/EH,,-,
otherwise, playeri does not mine at all.

The player’s utility is given by
(1 — VO{iH_i)Z OCiH_i < (4\/5— 5)2

U =211 -qH,) (VZ-52<aH; <1

0 otherwise

From this general characterization of the best 2-periodic response against fixed power we can
arrive at some useful conclusions. The first corollary below shows that for two players there is
always a Nash equilibrium in which both players use the same power in every epoch. On the
contrary, the next corollary shows that for n > 3, there is no symmetric Nash equilibrium.

COROLLARY 2. Forn = 2 miners and assuming that Conjecture 1 holds, there exists a Nash equili-
brium in which playeri = 1,2 uses hashing power h; = as_;/(ay + az)? in every epoch.

PRrOOF. Suppose that player 3 — i plays the strategy of the corollary, hs_; = @;/(a; + a2)?, in
every epoch. Then by Lemma 4, it suffices to show that a; H_; < (4\/5 —5)2, in which case the best
response of player i is to use the same power VH_;/a; —H_; = \/hs_;/a; —h3_; = a3_; /(a1 + az)? in
every epoch. Indeed, we have that a;H_; = ootz /(o + ap)® < 1/4 < (4V2 — 5)2, for every positive

numbers oy, 5. m]

CoROLLARY 3. Consider the case of symmetric miners, all with efficiency parameter a. Forn > 3,
there is no pure symmetric Nash equilibrium in which the miners use the same power in each epoch.
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Fig. 2. The utility of the best periodic response with periods 1 (parabola) and 2 (straight line), when the other
players use the same power H_; in every epoch (Lemma 4).

Proor. Suppose that such an equilibrium exists. Observe first that there is no symmetric equili-
brium in which all players use 0 power in some epoch. By Lemma 4, we must have aH_; < (4V2-5)?,
otherwise a varying 2-periodic better response exists.

For this range, the best response of miner i is h; = \/H_;/a — H_;. By symmetry, H_; = (n — 1)h;,
which gives «H_; = (n—1)?/n?. Therefore, a symmetric Nash equilibrium exists only if (n—1)?/n? <
(4V2 — 5)2. This does not hold for n > 3.

For the case of n = 2, (n — 1)%/n? < (4V2 — 5)? and, assuming that Conjecture 1 holds, there is a
symmetric Nash equilibrium with h; = 1/(4a); this also follows from Corollary 2. O

6 DISCUSSION

Proof-of-effort mining with difficulty adjustment, proposed in Satoshi Nakamoto’s paper a decade
ago, is currently the engine of many blockchain systems. There is the tacit assumption that rational
agents are incentivized by this protocol to outfit themselves with computational resources and mine
at full speed as long as this is profitable. Here we point out that this is not so: rather sophisticated
strategic considerations render the situation far more complicated, unstable, and hard to predict.
Even though there are rather nice constant-effort pure Nash equilibria (still quite complex and
surprising in their detail), they collapse when miners strategize from epoch to epoch. In most
equilibria — or deviations from such — considered here, effort by each miner is held back to a
strategic relatively low level, and it often oscillates from one epoch to the next.
We believe that these are issues that must be attended to, and explored further:

e Adjusting the adjustment: would a modified difficulty adjustment process — for example, a
smoothened version based on a weighted sum of the effort levels of the few past epochs —
create more manageable pure equilibria? We are pursuing this direction.

e Our results (both equilibria and deviations) assume that the agents possess full information
about the game — and this is of course unrealistic. However, in most of our results the decision
of agent i relies mainly on H_;, the total effort exerted by others, and it is reasonable to



assume that this is observable. Still, it would be of interest to study incomplete information
versions of the mining game.

e Similarly, in some parts of our work we assumed that users can vary their power from
epoch to epoch substantially. It would be interesting to see how maximum energy levels can
affect these results. We predict that maximum energy levels may cause even more chaotic
participation in some cases.

e Do the strategic realities of mining pointed out in this paper suggest a better outlook for the
energy footprint of blockchains? To answer, more research is required.

e Our results suggest that the rational behavior in many mining situations may be a mixed
strategy by at least some of the miners. What would such a strategy be like? How would we
know whether this is happening by looking at mining data? Note that, even in this case, a
miner would be able to observe some aggregate of the other miners’ current random choices.

e Incidentally, is there always a mixed equilibrium in mining games? Since the strategy space
is continuous, Nash’s theorem does not pertain, and more sophisticated analytic techniques
(such as tracing the limits of the sequence of the equilibria of discretized strategy spaces) are
required.

e Finally, we intend to pursue the Conjecture.
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