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Abstract 
Despite constantly using energy and having extensive interactions 
with household appliances, people consistently mis-estimate the 
amount of energy that is used by home appliances. This poses 
major problems for conservation efforts, while also presenting an 
interesting case study in human perception. Since many forms of 
energy used are not directly perceptible, and since the amount of 
energy that is being used by an appliance is often difficult to infer 
from appearances alone, people often rely on cues. Some of these 
cues are more reliable than others and previous literature has 
investigated which of these cues people rely on. However, past 
literature has always studied these proximal cues in isolation—
despite the fact that, during real-world perception, people are 
always integrating a variety of cues. Here, we investigate how 
people rely on a variety of cues, and how individual differences 
in the reliance on those cues predicts the ability to estimate home 
energy use.  
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Introduction 

Despite its importance in the face of catastrophic climate 
change, energy and energy use are not well or widely 
understood by the public. For many home appliances, we 
have only indirect access to the appliances’ energy use and 
energy units are difficult to understand. However, people 
frequently make choices as energy consumers: When should 
I turn off the lights? For how long should I take a hot shower? 
To what temperature should I set the thermostat? These daily 
decisions all depend on a perception of energy use. Given 
people’s poor understanding of energy use and the difficulty 
of perceiving energy use, how do people make these daily 
decisions about using energy? 

In some contexts, people have access to explicit 
information about appliances’ energy use. For instance, some 
smart meters are digital devices that indicate, in real time, 
how much energy is being used by an appliance; other 
appliances may have labels indicating their average energy 
use (e.g., “Energy Star” labels on efficient appliances). 
However, explicit information about energy use is the 
exception, not the rule.  

In the absence of direct, explicit information about energy 
use, people must rely on indirect indices of energy use. (For 
reference on similar work done in the HCI community see 
He, Greenberg, and Huang, 2010 and Heller, Konstantinos, 
Borchers, 2013.) 

Vacuums are noisy. Lightbulbs are luminous and sometimes 
hot. It is these observable features that are typically available 
to individuals when they are making decisions about their 
energy use. Some of these cues, however, are more reliable 
than others. For instance, generating and extracting heat 
requires a lot of energy; mechanical movement, while 
perhaps more perceptually salient, can be accomplished with 
far less energy. Good judgements and decisions about energy 
use, therefore, requires a good sense of which proximal cues 
to rely on, and which to ignore. Understanding and improving 
these judgments can translate to energy conservation, as 
illustrated by the conservation benefits of in-home smart 
devices that give real-time feedback on energy-use (Darby, 
2006; Delmas, Fischlein, & Asensio, 2013), although these 
energy technologies may be years away from becoming 
mainstream. 

Past work on situated perception and decision making has 
advocated for similar approaches to understanding how 
people make judgments about entities that cannot be 
perceived directly. For instance, Brunswick (1956) proposed 
a “lens model” of perception, in which people must integrate 
across proximal cues in order to decide whether some target 
entity or property exists in the world; on this account, 
learning to perceive correctly involves learning how best to 
weight these different cues, so that more reliable cues (i.e., 
those that most often co-occur with the target phenomenon) 
are weighted more. A similar perspective has been advocated 
by researchers in the Judgement and Decision Making world, 
who have argued that, for many difficult decisions, people 
deploy ‘replacement heuristics’ — relying on some simpler 
or more easily perceived property or feature to make 
decisions about some target phenomenon that is more 
complex or difficult to perceive (Kahneman & Frederick, 
2002).  On all these approaches, understanding how people 
make complex perceptual judgments about ‘invisible’ 
entities, such as energy use, requires understanding the 
proximal cues or features they are relying on. 

A number of past studies have tried to do exactly that. 
Previously, in the energy literature, different replacement 
heuristics have been studied. Past work has suggested that novices 
base their estimates of home energy use on perceptions of 
appliances’ size (Cowen & Gatersleben, 2017), frequency of use 
(Schley & DeKay, 2015), effect on temperature (heating or 
cooling) (Attari, DeKay, Davidson, & de Bruin, 2010), and type 
of appliance (Lesic, Bruin, Davis, Krishnamurti, & Azevedo, 
2018). But these past studies have focused on a single dimension 



of experience (e.g., size), in isolation from the many other 
features which that dimension may be correlated (e.g., 
frequency of use). As a result, we still do not know how 
people weight the range of features to which they have 
access, or whether there is one or a subset of features that are 
driving most of people’s energy estimates. 

Moreover, all these approaches share the prediction that 
better judgements will involve better weighting of proximal 
cues. How do individual differences in weighting these 
features relate to individual differences in estimation ability? 

Here, we attempt to answer these three outstanding 
questions: Which features are people relying on to make 
energy estimates? How do individual differences in cue-
weighting relate to estimation skill? And how can we capture 
people’s feature representation of appliances in a way that 
accounts for correlations among features? 

In the following studies, we first surveyed participants for 
the most important or relevant features of energy in home 
appliances. We then took the most frequently cited features 
and used them to create feature rating scales for participants 
to rate multiple home appliances along. A multiple regression 
was performed on a few theoretically-driven features to 
determine how they competed with one another. Multi-
dimensional scaling (MDS) was performed on all the features 
to capture the structure in how people perceive appliances 
and their energy use. 

By performing these analyses on multiple features at once, 
we can establish which features matter most in the larger 
context of available appliance features. We also hope to paint 
a more clear and nuanced — and thus complete — picture of 
how these features are combined with one another. MDS 
affords us a look at categories of appliances that emerge and 
have implications for why some categories matter. These 
targeted analyses in concert with the larger picture of 
appliance feature perception, will hopefully inform future 
projects on how to help people better understand and use 
energy (Marghetis, Attari, and Landy, under review).  

 
Methods 

Participants 
We recruited adults (N = 299) from the United States through 
Amazon Mechanical Turk, an online labor market that has 
been used previously for online studies. Each subject 
participated in return for $5. Only the data from those 
participants who completed the entire study were analyzed (N 
= 261). We also removed participants who repeated the exact 
same response for their estimates of all appliances (n = 1), 
giving us a final sample of N = 260. 
 
Feature Selection 
Participants rated features that were selected based on a 
previous study with different participants (N = 17) in which 
people were asked to list all features that they would use to 
estimate an appliance’s energy use. On the basis of these free 
response features, we compiled a list of features that were 

most frequently cited and most widely applicable to our list of 
home appliances (N =13, see Appendix). 
 
Procedure 
Participants first completed a feature rating task, in which they 
were presented with typical home appliances (N = 36) and 
asked to judge each appliance in terms of a set of perceptual or 
experiential features (e.g., brightness, loudness). They were 
first instructed “For each question, [to] please imagine a typical 
version of that appliance while it is in use and answer 
accordingly.” The survey was organized by feature. For each 
feature, e.g. “How loud is each appliance?”, participants were 
given a Likert scale from 1-10 as well as a Not Applicable box 
for each appliance. Both appliances and features were presented 
in a random order. Participants supplied ratings for the 
following features: how frequently the appliance is used, how 
big the appliance is, how long the appliance is used, how much 
light the appliance produces, how much the appliance heats 
itself/its environment, how much sound it makes, how much 
water it uses, how much it cools itself/its environment, how big 
its motor is, how much it heats water, how complex its software 
is, how complex its internal electronic components are, how 
complex its internal mechanical components are, how much 
movement it generates in itself/environment. Each participant 
rated each appliance along each feature dimension, totaling 36 
x 13 ratings for each participant. 

After the feature rating task, participants were asked to make 
energy estimates for each appliance. They were given a point 
of reference: “A 100-watt incandescent light bulb uses 100 
units of energy in one hour.” Then they were asked to make an 
estimate for each appliance, “How many units of energy do 
you think each of the following devices typically uses in one 
hour?” Appliances were presented in a random order. This task 
has been used in prior studies to investigate and elicit accuracy 
in energy perceptions (e.g., Attari et al., 2010).  
 
Analysis 
A multiple regressions analysis was run on features that have 
been identified in past research as important for energy 
estimation use (Cowen & Gatersleben, 2017; Schley & 
DeKay, 2015; Marghetis, Attari, and Landy, under review), 
namely: size, how “electronic” the appliance is, frequency of 
use, and how much the appliance changes the temperature (i.e., 
the maximum of the heating and cooling ratings). Feature 
ratings were z-scored across participants. In a mixed effects 
model, there were fixed slopes for the interaction of features 
and feature ratings of every participant, random intercepts on 
every appliance, and random slopes on feature ratings by 
participant. The random slopes for every participant’s ratings 
were extracted and used to investigate individual differences 
in energy estimating accuracy.  
 



Results 
What proximal cues do people use to estimate 
appliances’ energy use?  
We first zoomed in on those features that have been 
identified, in past literature, as playing a role in novice’s 
judgements of home energy use. These included how 
frequently the appliance is used, how “electronic” the 
appliance is, how much the appliance changes the 
temperature (the max of the ‘heat’ and ‘cool’ ratings), and 
how large the appliance is. Using a linear mixed effects 
model, we predicted participants’ energy estimates (log 
transformed) using these four features, with random 
intercepts and slopes for participants, and random intercepts 
for appliances. Feature ratings were z-scored within each 
participant. See Figure 1 for coefficient estimates of reliance 
on these proximal cues.  

Participants’ estimates of appliances’ energy use were 
driven almost entirely by how large they judged the appliance 
to be (b = 0.10 ± 0.01 SEM, p<.001). Most variance in 
estimates is accounted for by differences in size. By contrast, 
people’s judgments of how much the appliance changed the 
temperature and of how “electronic” an appliance was also 
had much smaller relations to their energy estimates (b = 0.04 
± 0.01 SEM, p<.001, b = 0.05 ± 0.01 SEM, p<.001). 
Critically, we found no relation between judgments of how 
often an appliance is used and estimates of how much energy 
it uses — despite past work that has argued that frequency-
of-use is used as a ‘replacement heuristic’ for energy 
estimation (Schley & DeKay, 2015). Note that people’s 
estimates of energy use were explained primarily by 
judgments of the appliance’s size rather than by how much 
the appliance changed the temperature, even though heat is a 
more reliable cue to energy use, because heating and cooling 
use a lot of energy.  
 
Individual differences in the use of proximal 
cues to estimate home energy use  
We next investigated individual differences in the features 
that were associated with energy estimates — that is, we 
asked whether some people relied more on some proximal 
cues (e.g., size) than on others (e.g., temperature change).  
 

 
 
 

 
To capture these individual differences, we used the random by-
participant slopes from our mixed effects model of energy 
estimates; for each participant, therefore, we had four random 
slopes, one for each feature (size, frequency-of-use, 
temperature change, and electronic-ness). Positive values of 
these random slopes indicate that a participant relies on that 
feature more than the group average; negative values indicate 
that they rely on that feature less than average.  

In general, there was considerable variability in how strongly 
these features were associated with individuals’ energy 
estimates (Fig. 2, panels A, B, C, and D). Some individuals’ 
energy estimates were explained primarily by their judgments 
of the frequency of an appliance’s use, despite the fact that 
frequency of use is a poor proxy for energy use. Others, 
however, appeared to ignore frequency and instead relied on 
temperature change, a reliable cue to energy use. Indeed, 
participants who relied more on temperature change tended to 
rely less on frequency of use (R = -0.60).  Size and temperature 
change, both fairly good proxies for energy use, were highly 
correlated (R = 0.95), suggesting that people who use one 
feature to evaluate appliances’ energy use are also likely to use 
the other.  

All this together suggests that individual difference in the 
reliance on proximal cues might be associated with variability 
in how good people were at estimate home energy use. To 
quantify individual differences in estimation ability, we 
calculated, for each individual, the correlation between their 
estimates and the true energy used by each appliance. As 
predicted, participants who relied more on how much an 
appliance changed the temperature were also, overall, 
significantly better at estimating home energy use (b = 1.97 ± 
0.27 SEM, p<.001); the same held for participants who relied 
more on the appliance’s size, though to a lesser degree. Indeed, 
past work has found that lay people reliably underestimate the 
energy used by large appliances that heat or cool (Attari et al, 
2010); here, our results suggest that there may be important 
variability in people’s sensitivity to appliances’ size and 
temperature change (Fig. 2A, 2B). By contrast, participants 

 Size Electronic Frequency 
of use 

Temperature 
Change 

Size 1.00 0.183  
 

0.066  0.215 

Elect.  1.00 0.103  
 

-0.131 

Freq.   1.00 0.023 
 

Temp.    1.00 

Table 1: Correlation matrix of key features 

Figure 1: Reliance on proximal cues to estimate energy use. 
Points indicate coefficient estimates from a mixed-effects 
model of energy estimates. Error lines indicate standard 

errors. 
 



who relied more on electronic-ness and frequency-of-use 
were overall worse at estimating home energy use (b = -
0.51 ± 0.24 SEM, p<.05, b = -2.96 ± 0.43 SEM, p<.001). 
We also ran a correlation on the participants’ reliance on 
each of these four features (Table 1).  We found reliance on 
frequency of use and electronic-ness to be positively 
correlated, while frequency of use and temperature change 
were negatively correlated.  
 
Characterizing the complex structure of the full 
appliance space 
Finally, we combined ratings of all thirteen features (e.g., 
size, brightness, movement, etc.) to characterize lay 
perception of home appliances. To do so, we used multi-
dimensional scaling (MDS). This technique takes the 
similarity between paired appliances and uses that to 
generate a reduced dimensional representation that 
captures how similar or different appliances are to each 
other. This approach gets at the rich structure that exists in 
how people perceive appliances as varying along multiple 
dimensions, many of which covary with each other. This 
approach is also necessary, because when dimensions are 
treated as independent, classic approaches like multiple 
regression do not account for collinearity of dimensions.  

The two-dimensional MDS solution is illustrated in 
Figure 3. Note the rich structure that emerges bottom-up 
from this approach, with some appliances clumping 
together into meaningful groups, with related appliances 
clustering together into meaningful categories. We used 
k-means clustering (k=8) to capture these categories (Fig. 
2). For example, all the light-bulb appliances (i.e. 

incandescent lightbulbs, Compact Fluorescent Light bulb, and 
LED bulb) group together because people rated those 
appliances very similarly. 

While this MDS solution can characterize people’s mental 
representations of appliances, it is blind to people’s estimates 
of the appliances’ energy use. However, when we regressed 
the MDS dimensions onto estimation ability, we found both 
MDS axes were related significantly to energy estimates 
increase (dimension 1: b = 146.88 ± 67.5 SEM, p<.05; 
dimension 2: b = -254.68 ± 104.0 SEM, p<.05). This was true 
despite the fact that these MDS dimensions combine multiple 
experiential features in complex, non-linear ways. Thus, lay 
people have structured perceptions of appliances, and these 
perceptions seem to relate systematically to their perceptions 
— and misperceptions — of their energy use. Future work 
should try to leverage this to improve energy decisions and 
behaviors.  
 

Discussion 
We began by asking how it is that people are able to estimate 
the energy used by appliances, when that energy use is often 
hidden. We found that estimates of appliances’ size accounted 
for most of the variance in people’s energy estimates. People 
relied, to a lesser extent on temperature change and how 
“electronic” an appliance, but they did not rely on frequency 
of use as a cue. Previous literature has claimed that all these 
features matter. Our results put those findings in a new light 
because we found that size is the primary driver of energy 
estimates. Since these replacement cues correlate, previous 
findings such as ‘people use frequency of use as a replacement 

Figure 2: Energy estimation ability as predicted by reliance on select features 



heuristic’ might indicate that people tend to use bigger 
appliances more often. Interestingly, people relied  
more on size than heat, despite heat being a better 
indication of energy use. Heating (and cooling) both take 
a lot of energy but are perhaps not as obvious to people 
because the energy used to heat (and cool) are often used 
to achieve homeostasis. Your heating bill is high in the 
winter because so much energy has to be exerted to 
maintain your home at a constant temperature.  

When we examined individual differences in the 
reliance on these cues, we found that the degree to which 
people relied on certain features predicted how good their 
energy estimates were. People who relied more on 
temperature change had better energy estimates than 
people who relied more on size, or any of the other theory-
driven features used in our model. The more participants 
relied on how “electronic” an appliance was or on 
frequency of use, the worse their energy estimation ability 
was. When we ran a correlation on individual differences 
of reliance, we found that reliance on frequency is 
negatively correlated with reliance on temperature 
change. We also found that reliance on frequency is 
positively correlated with reliance on electronic-ness. 
This suggests that teaching people to use these more 
reliable cues may have benefits for energy judgments and 
decisions (Marghetis et al., under review).  

Using multi-dimensional scaling, we also sought to 
characterize the public’s mental representation of home  

appliances. This bottom-up approach found significant 
structure in people’s perceptions of appliances; moreover, this 
two-dimensional representation was related systematically to 
people’s energy estimates. In Fig. 3, the upper-left quadrant of 
the graph seems to include all the appliances that heat water, 
while the lower-left quadrant includes the appliances that heat 
without water. This suggests that this two-dimensional MDS 
solution has picked out heat as a notable component of one of 
its major axes. The appliances near the top of Fig. 3 are quite 
small and increase in size as you go down the MDS 2 axis, 
suggesting that this MDS solution has picked out size as a 
major component of its other axis. It is quite notable that even 
just a two-dimensional solution has, in a bottom-up way, 
picked out the two most useful and frequently used 
replacement heuristics. The clustering as shown in Fig. 3, also 
created through the bottom-up k-means algorithm, is quite 
remarkable as well. Kitchen appliances that heat water have 
clustered together on the left (blue); devices that are electronic 
or involved in entertainment have clustered together on the 
right (pink and green); appliances that heat or cool and move 
air around have also clustered together in the middle of the 
figure (purple). These clusters suggest that this MDS solution 
is a fruitful way to access the internal structure of people’s 
complex perceptions.  

Figure 3: Two-dimensional MDS solution for home appliance space 



 
Conclusion 

We set out to answer three main questions. The first was 
‘Which features are people relying on to make energy 
estimates?’ The answer to this is not simple. Our MDS 
solution shows that people rely on a complex and 
correlated set of proximal features. However, when 
comparing a smaller set of theoretically important 
features, size far outstrips any of them. Among the 
features we examined, people seem to rely most on size, 
even though it is not the best indicator of energy use. The 
best indicator of energy use was heat or temperature 
change.  

We also set out to answer how individual differences in 
cue-weighting relate to estimation skill. Fig. 2A shows 
that as people rely on heat as a cue, their estimation skill 
improves. This is true to a lesser extent of size as well 
(Fig. 2B). As people rely on how electronic an appliance 
is, or how frequently it is used, their estimation skill 
decreases (Figs. 2C, 2D).  

Finally, we set out to capture people’s feature 
representation of appliances in a way that accounts for 
correlations among features. With an MDS solution, we 
found that meaningful clusters of appliances emerge, even 
from bottom-up clustering methods, and that the 
dimensions of this representation were related 
systematically to estimates of energy use.  

This study speaks to previous energy literature that has 
attempted to identify the most predictive cue of people’s 
energy estimates. By looking at several cues at once while 
accounting for correlations, we can say with confidence 
that despite the many, many features to choose from, the 
size of an appliance matters to people.  
People do rely on the superficial cues about energy that 
they have access to. It is important to understand which of 
these people most rely on, so that we can more deeply 
understand how people understand and choose to use 
energy. Good energy choices can be encouraged in a 
variety of way, including but not limited to top-down 
policies, market-based incentives, extensive educational 
programs, home energy audits, and new home 
technologies. For example, in-home smart devices that 
give real-time feedback on energy-use can encourage 
energy conservation (Darby, 2006; Delmas et al., 2013). 
But implementing effective climate policies is politically 
difficult (Dietz, Ostrom, & Stern, 2003), home audits 
require time and resources that make scaling up nearly 
impossible, and new in-home energy technologies may be 
years away from mainstream use. 

By understanding, and eventually changing either the 
cues people have access to, or their perceptions, we hope 
to encourage better ways of communicating energy 
information and making possible good and widely usable 
energy consumption habits.  
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Appendix: Features 
 

1. How big is each appliance? 
2. How long is each appliance typically used? 
3. How much light does each appliance produce? 
4. How much does each appliance heat itself or its 

environment? 
5. How loud is each appliance? 
6. How much water does each appliance use? 
7. How much does each appliance cool itself or its 

environment? 
8. How big is the motor of each appliance? 
9. How much does each appliance heat water? 
10. How complex is the software each appliance runs? 
11. How electronic is each appliance? 
12. How mechanical is each appliance? 
13. How much does each appliance move itself or its 

environment? 
14. How frequently do you use each appliance? 
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