Big, hot, or bright? Integrating cues to perceive home energy use
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Abstract

Despite constantly using energy and having extensive interactions
with household appliances, people consistently mis-estimate the
amount of energy that is used by home appliances. This poses
major problems for conservation efforts, while also presenting an
interesting case study in human perception. Since many forms of
energy used are not directly perceptible, and since the amount of
energy that is being used by an appliance is often difficult to infer
from appearances alone, people often rely on cues. Some of these
cues are more reliable than others and previous literature has
investigated which of these cues people rely on. However, past
literature has always studied these proximal cues in isolation—
despite the fact that, during real-world perception, people are
always integrating a variety of cues. Here, we investigate how
people rely on a variety of cues, and how individual differences
in the reliance on those cues predicts the ability to estimate home
energy use.

Keywords: energy; perception; estimation; home appliances;
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Introduction

Despite its importance in the face of catastrophic climate
change, energy and energy use are not well or widely
understood by the public. For many home appliances, we
have only indirect access to the appliances’ energy use and
energy units are difficult to understand. However, people
frequently make choices as energy consumers: When should
I turn off the lights? For how long should I take a hot shower?
To what temperature should I set the thermostat? These daily
decisions all depend on a perception of energy use. Given
people’s poor understanding of energy use and the difficulty
of perceiving energy use, how do people make these daily
decisions about using energy?

In some contexts, people have access to explicit
information about appliances’ energy use. For instance, some
smart meters are digital devices that indicate, in real time,
how much energy is being used by an appliance; other
appliances may have labels indicating their average energy
use (e.g., “Energy Star” labels on efficient appliances).
However, explicit information about energy use is the
exception, not the rule.

In the absence of direct, explicit information about energy
use, people must rely on indirect indices of energy use. (For
reference on similar work done in the HCI community see
He, Greenberg, and Huang, 2010 and Heller, Konstantinos,
Borchers, 2013.)

Vacuums are noisy. Lightbulbs are luminous and sometimes
hot. It is these observable features that are typically available
to individuals when they are making decisions about their
energy use. Some of these cues, however, are more reliable
than others. For instance, generating and extracting heat
requires a lot of energy; mechanical movement, while
perhaps more perceptually salient, can be accomplished with
far less energy. Good judgements and decisions about energy
use, therefore, requires a good sense of which proximal cues
torely on, and which to ignore. Understanding and improving
these judgments can translate to energy conservation, as
illustrated by the conservation benefits of in-home smart
devices that give real-time feedback on energy-use (Darby,
2006; Delmas, Fischlein, & Asensio, 2013), although these
energy technologies may be years away from becoming
mainstream.

Past work on situated perception and decision making has
advocated for similar approaches to understanding how
people make judgments about entities that cannot be
perceived directly. For instance, Brunswick (1956) proposed
a “lens model” of perception, in which people must integrate
across proximal cues in order to decide whether some target
entity or property exists in the world; on this account,
learning to perceive correctly involves learning how best to
weight these different cues, so that more reliable cues (i.e.,
those that most often co-occur with the target phenomenon)
are weighted more. A similar perspective has been advocated
by researchers in the Judgement and Decision Making world,
who have argued that, for many difficult decisions, people
deploy ‘replacement heuristics’ — relying on some simpler
or more easily perceived property or feature to make
decisions about some target phenomenon that is more
complex or difficult to perceive (Kahneman & Frederick,
2002). On all these approaches, understanding how people
make complex perceptual judgments about ‘invisible’
entities, such as energy use, requires understanding the
proximal cues or features they are relying on.

A number of past studies have tried to do exactly that.
Previously, in the energy literature, different replacement
heuristics have been studied. Past work has suggested that novices
base their estimates of home energy use on perceptions of
appliances’ size (Cowen & Gatersleben, 2017), frequency of use
(Schley & DeKay, 2015), effect on temperature (heating or
cooling) (Attari, DeKay, Davidson, & de Bruin, 2010), and type
of appliance (Lesic, Bruin, Davis, Krishnamurti, & Azevedo,
2018). But these past studies have focused on a single dimension



of experience (e.g., size), in isolation from the many other
features which that dimension may be correlated (e.g.,
frequency of use). As a result, we still do not know how
people weight the range of features to which they have
access, or whether there is one or a subset of features that are
driving most of people’s energy estimates.

Moreover, all these approaches share the prediction that
better judgements will involve better weighting of proximal
cues. How do individual differences in weighting these
features relate to individual differences in estimation ability?

Here, we attempt to answer these three outstanding
questions: Which features are people relying on to make
energy estimates? How do individual differences in cue-
weighting relate to estimation skill? And how can we capture
people’s feature representation of appliances in a way that
accounts for correlations among features?

In the following studies, we first surveyed participants for
the most important or relevant features of energy in home
appliances. We then took the most frequently cited features
and used them to create feature rating scales for participants
to rate multiple home appliances along. A multiple regression
was performed on a few theoretically-driven features to
determine how they competed with one another. Multi-
dimensional scaling (MDS) was performed on all the features
to capture the structure in how people perceive appliances
and their energy use.

By performing these analyses on multiple features at once,
we can establish which features matter most in the larger
context of available appliance features. We also hope to paint
a more clear and nuanced — and thus complete — picture of
how these features are combined with one another. MDS
affords us a look at categories of appliances that emerge and
have implications for why some categories matter. These
targeted analyses in concert with the larger picture of
appliance feature perception, will hopefully inform future
projects on how to help people better understand and use
energy (Marghetis, Attari, and Landy, under review).

Methods
Participants
We recruited adults (N =299) from the United States through
Amazon Mechanical Turk, an online labor market that has
been used previously for online studies. Each subject
participated in return for $5. Only the data from those
participants who completed the entire study were analyzed (N
= 261). We also removed participants who repeated the exact
same response for their estimates of all appliances (n = 1),
giving us a final sample of N = 260.

Feature Selection

Participants rated features that were selected based on a
previous study with different participants (N = /7) in which
people were asked to list all features that they would use to
estimate an appliance’s energy use. On the basis of these free
response features, we compiled a list of features that were

most frequently cited and most widely applicable to our list of
home appliances (N =13, see Appendix).

Procedure

Participants first completed a feature rating task, in which they
were presented with typical home appliances (N = 36) and
asked to judge each appliance in terms of a set of perceptual or
experiential features (e.g., brightness, loudness). They were
first instructed “For each question, [to] please imagine a typical
version of that appliance while it is in use and answer
accordingly.” The survey was organized by feature. For each
feature, e.g. “How loud is each appliance?”, participants were
given a Likert scale from 1-10 as well as a Not Applicable box
for each appliance. Both appliances and features were presented
in a random order. Participants supplied ratings for the
following features: how frequently the appliance is used, how
big the appliance is, how long the appliance is used, how much
light the appliance produces, how much the appliance heats
itself/its environment, how much sound it makes, how much
water it uses, how much it cools itself/its environment, how big
its motor is, how much it heats water, how complex its software
is, how complex its internal electronic components are, how
complex its internal mechanical components are, how much
movement it generates in itself/environment. Each participant
rated each appliance along each feature dimension, totaling 36
x 13 ratings for each participant.

After the feature rating task, participants were asked to make
energy estimates for each appliance. They were given a point
of reference: “A 100-watt incandescent light bulb uses 100
units of energy in one hour.” Then they were asked to make an
estimate for each appliance, “How many units of energy do
you think each of the following devices typically uses in one
hour?”” Appliances were presented in a random order. This task
has been used in prior studies to investigate and elicit accuracy
in energy perceptions (e.g., Attari et al., 2010).

Analysis

A multiple regressions analysis was run on features that have
been identified in past research as important for energy
estimation use (Cowen & Gatersleben, 2017; Schley &
DeKay, 2015; Marghetis, Attari, and Landy, under review),
namely: size, how “electronic” the appliance is, frequency of
use, and how much the appliance changes the temperature (i.e.,
the maximum of the heating and cooling ratings). Feature
ratings were z-scored across participants. In a mixed effects
model, there were fixed slopes for the interaction of features
and feature ratings of every participant, random intercepts on
every appliance, and random slopes on feature ratings by
participant. The random slopes for every participant’s ratings
were extracted and used to investigate individual differences
in energy estimating accuracy.



Results
What proximal cues do people use to estimate
appliances’ energy use?
We first zoomed in on those features that have been
identified, in past literature, as playing a role in novice’s
judgements of home energy use. These included how
frequently the appliance is used, how “electronic” the
appliance is, how much the appliance changes the
temperature (the max of the ‘heat’ and ‘cool’ ratings), and
how large the appliance is. Using a linear mixed effects
model, we predicted participants’ energy estimates (log
transformed) using these four features, with random
intercepts and slopes for participants, and random intercepts
for appliances. Feature ratings were z-scored within each
participant. See Figure 1 for coefficient estimates of reliance
on these proximal cues.

Participants’ estimates of appliances’ energy use were
driven almost entirely by how large they judged the appliance
to be (b = 0.10 £ 0.01 SEM, p<.001). Most variance in
estimates is accounted for by differences in size. By contrast,
people’s judgments of how much the appliance changed the
temperature and of how “electronic” an appliance was also
had much smaller relations to their energy estimates (b= 0.04
+ 0.01 SEM, p<.001, b = 0.05 £ 0.01 SEM, p<.001).
Critically, we found no relation between judgments of how
often an appliance is used and estimates of how much energy
it uses — despite past work that has argued that frequency-
of-use is used as a ‘replacement heuristic’ for energy
estimation (Schley & DeKay, 2015). Note that people’s
estimates of energy use were explained primarily by
judgments of the appliance’s size rather than by how much
the appliance changed the temperature, even though heat is a
more reliable cue to energy use, because heating and cooling
use a lot of energy.

Individual differences in the use of proximal

cues to estimate home energy use

We next investigated individual differences in the features
that were associated with energy estimates — that is, we
asked whether some people relied more on some proximal
cues (e.g., size) than on others (e.g., temperature change).

Size Electronic Frequency Temperature

of use Change
Size 1.00 0.183 0.066 0.215
Elect. 1.00 0.103 -0.131
Freq. 1.00 0.023
Temp. 1.00

Table 1: Correlation matrix of key features

Figure 1: Reliance on proximal cues to estimate energy use.
Points indicate coefficient estimates from a mixed-effects
model of energy estimates. Error lines indicate standard
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To capture these individual differences, we used the random by-
participant slopes from our mixed effects model of energy
estimates; for each participant, therefore, we had four random
slopes, one for each feature (size, frequency-of-use,
temperature change, and electronic-ness). Positive values of
these random slopes indicate that a participant relies on that
feature more than the group average; negative values indicate
that they rely on that feature less than average.

In general, there was considerable variability in how strongly
these features were associated with individuals’ energy
estimates (Fig. 2, panels A, B, C, and D). Some individuals’
energy estimates were explained primarily by their judgments
of the frequency of an appliance’s use, despite the fact that
frequency of use is a poor proxy for energy use. Others,
however, appeared to ignore frequency and instead relied on
temperature change, a reliable cue to energy use. Indeed,
participants who relied more on temperature change tended to
rely less on frequency of use (R = -0.60). Size and temperature
change, both fairly good proxies for energy use, were highly
correlated (R = 0.95), suggesting that people who use one
feature to evaluate appliances’ energy use are also likely to use
the other.

All this together suggests that individual difference in the
reliance on proximal cues might be associated with variability
in how good people were at estimate home energy use. To
quantify individual differences in estimation ability, we
calculated, for each individual, the correlation between their
estimates and the true energy used by each appliance. As
predicted, participants who relied more on how much an
appliance changed the temperature were also, overall,
significantly better at estimating home energy use (b =1.97 +
0.27 SEM, p<.001); the same held for participants who relied
more on the appliance’s size, though to a lesser degree. Indeed,
past work has found that lay people reliably underestimate the
energy used by large appliances that heat or cool (Attari et al,
2010); here, our results suggest that there may be important
variability in people’s sensitivity to appliances’ size and
temperature change (Fig. 2A, 2B). By contrast, participants



Figure 2: Energy estimation ability as predicted by reliance on select features
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who relied more on electronic-ness and frequency-of-use
were overall worse at estimating home energy use (b = -
0.51 £ 0.24 SEM, p<.05, b = -2.96 + 0.43 SEM, p<.001).
We also ran a correlation on the participants’ reliance on
each of these four features (Table 1). We found reliance on
frequency of use and electronic-ness to be positively
correlated, while frequency of use and temperature change
were negatively correlated.

Characterizing the complex structure of the full
appliance space
Finally, we combined ratings of all thirteen features (e.g.,
size, brightness, movement, etc.) to characterize lay
perception of home appliances. To do so, we used multi-
dimensional scaling (MDS). This technique takes the
similarity between paired appliances and uses that to
generate a reduced dimensional representation that
captures how similar or different appliances are to each
other. This approach gets at the rich structure that exists in
how people perceive appliances as varying along multiple
dimensions, many of which covary with each other. This
approach is also necessary, because when dimensions are
treated as independent, classic approaches like multiple
regression do not account for collinearity of dimensions.
The two-dimensional MDS solution is illustrated in
Figure 3. Note the rich structure that emerges bottom-up
from this approach, with some appliances clumping
together into meaningful groups, with related appliances
clustering together into meaningful categories. We used
k-means clustering (k=8) to capture these categories (Fig.
2). For example, all the light-bulb appliances (i.e.
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incandescent lightbulbs, Compact Fluorescent Light bulb, and
LED bulb) group together because people rated those
appliances very similarly.

While this MDS solution can characterize people’s mental
representations of appliances, it is blind to people’s estimates
of the appliances’ energy use. However, when we regressed
the MDS dimensions onto estimation ability, we found both
MDS axes were related significantly to energy estimates
increase (dimension 1: b = 146.88 + 67.5 SEM, p<.05;
dimension 2: b = -254.68 + 104.0 SEM, p<.05). This was true
despite the fact that these MDS dimensions combine multiple
experiential features in complex, non-linear ways. Thus, lay
people have structured perceptions of appliances, and these
perceptions seem to relate systematically to their perceptions
— and misperceptions — of their energy use. Future work
should try to leverage this to improve energy decisions and
behaviors.

Discussion
We began by asking how it is that people are able to estimate
the energy used by appliances, when that energy use is often
hidden. We found that estimates of appliances’ size accounted
for most of the variance in people’s energy estimates. People
relied, to a lesser extent on temperature change and how
“electronic” an appliance, but they did not rely on frequency
of use as a cue. Previous literature has claimed that all these
features matter. Our results put those findings in a new light
because we found that size is the primary driver of energy
estimates. Since these replacement cues correlate, previous
findings such as ‘people use frequency of use as a replacement



Figure 3: Two-dimensional MDS solution for home appliance space
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heuristic’ might indicate that people tend to use bigger
appliances more often. Interestingly, people relied

more on size than heat, despite heat being a better
indication of energy use. Heating (and cooling) both take
a lot of energy but are perhaps not as obvious to people
because the energy used to heat (and cool) are often used
to achieve homeostasis. Your heating bill is high in the
winter because so much energy has to be exerted to
maintain your home at a constant temperature.

When we examined individual differences in the
reliance on these cues, we found that the degree to which
people relied on certain features predicted how good their
energy estimates were. People who relied more on
temperature change had better energy estimates than
people who relied more on size, or any of the other theory-
driven features used in our model. The more participants
relied on how “electronic” an appliance was or on
frequency of use, the worse their energy estimation ability
was. When we ran a correlation on individual differences
of reliance, we found that reliance on frequency is
negatively correlated with reliance on temperature
change. We also found that reliance on frequency is
positively correlated with reliance on electronic-ness.
This suggests that teaching people to use these more
reliable cues may have benefits for energy judgments and
decisions (Marghetis et al., under review).
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Using multi-dimensional scaling, we also sought to
characterize the public’s mental representation of home

appliances. This bottom-up approach found significant
structure in people’s perceptions of appliances; moreover, this
two-dimensional representation was related systematically to
people’s energy estimates. In Fig. 3, the upper-left quadrant of
the graph seems to include all the appliances that heat water,
while the lower-left quadrant includes the appliances that heat
without water. This suggests that this two-dimensional MDS
solution has picked out keat as a notable component of one of
its major axes. The appliances near the top of Fig. 3 are quite
small and increase in size as you go down the MDS 2 axis,
suggesting that this MDS solution has picked out size as a
major component of its other axis. It is quite notable that even
just a two-dimensional solution has, in a bottom-up way,
picked out the two most useful and frequently used
replacement heuristics. The clustering as shown in Fig. 3, also
created through the bottom-up k-means algorithm, is quite
remarkable as well. Kitchen appliances that heat water have
clustered together on the left (blue); devices that are electronic
or involved in entertainment have clustered together on the
right (pink and green); appliances that heat or cool and move
air around have also clustered together in the middle of the
figure (purple). These clusters suggest that this MDS solution
is a fruitful way to access the internal structure of people’s
complex perceptions.



Conclusion

We set out to answer three main questions. The first was
‘Which features are people relying on to make energy
estimates?’ The answer to this is not simple. Our MDS
solution shows that people rely on a complex and
correlated set of proximal features. However, when
comparing a smaller set of theoretically important
features, size far outstrips any of them. Among the
features we examined, people seem to rely most on size,
even though it is not the best indicator of energy use. The
best indicator of energy use was heat or temperature
change.

We also set out to answer how individual differences in
cue-weighting relate to estimation skill. Fig. 2A shows
that as people rely on heat as a cue, their estimation skill
improves. This is true to a lesser extent of size as well
(Fig. 2B). As people rely on how electronic an appliance
is, or how frequently it is used, their estimation skill
decreases (Figs. 2C, 2D).

Finally, we set out to capture people’s feature
representation of appliances in a way that accounts for
correlations among features. With an MDS solution, we
found that meaningful clusters of appliances emerge, even
from bottom-up clustering methods, and that the
dimensions of this representation were related
systematically to estimates of energy use.

This study speaks to previous energy literature that has

attempted to identify the most predictive cue of people’s
energy estimates. By looking at several cues at once while
accounting for correlations, we can say with confidence
that despite the many, many features to choose from, the
size of an appliance matters to people.
People do rely on the superficial cues about energy that
they have access to. It is important to understand which of
these people most rely on, so that we can more deeply
understand how people understand and choose to use
energy. Good energy choices can be encouraged in a
variety of way, including but not limited to top-down
policies, market-based incentives, extensive educational
programs, home energy audits, and new home
technologies. For example, in-home smart devices that
give real-time feedback on energy-use can encourage
energy conservation (Darby, 2006; Delmas et al., 2013).
But implementing effective climate policies is politically
difficult (Dietz, Ostrom, & Stern, 2003), home audits
require time and resources that make scaling up nearly
impossible, and new in-home energy technologies may be
years away from mainstream use.

By understanding, and eventually changing either the
cues people have access to, or their perceptions, we hope
to encourage better ways of communicating energy
information and making possible good and widely usable
energy consumption habits.
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Appendix: Features

How big is each appliance?

How long is each appliance typically used?

How much light does each appliance produce?
How much does each appliance heat itself or its
environment?

How loud is each appliance?

How much water does each appliance use?

How much does each appliance cool itself or its
environment?

How big is the motor of each appliance?

How much does each appliance heat water?

How complex is the software each appliance runs?
How electronic is each appliance?

How mechanical is each appliance?

How much does each appliance move itself or its
environment?

How frequently do you use each appliance?
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