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ABSTRACT

Euclidean embeddings of data are fundamentally limited in their ability to capture
latent semantic structures, which need not conform to Euclidean spatial assump-
tions. Here we consider an alternative, which embeds data as discrete probability
distributions in a Wasserstein space, endowed with an optimal transport metric.
Wasserstein spaces are much larger and more flexible than Euclidean spaces, in
that they can successfully embed a wider variety of metric structures. We exploit
this flexibility by learning an embedding that captures semantic information in the
Wasserstein distance between embedded distributions. We examine empirically
the representational capacity of our learned Wasserstein embeddings, showing that
they can embed a wide variety of metric structures with smaller distortion than an
equivalent Euclidean embedding. We also investigate an application to word em-
bedding, demonstrating a unique advantage of Wasserstein embeddings: We can
visualize the high-dimensional embedding directly, since it is a probability dis-
tribution on a low-dimensional space. This obviates the need for dimensionality
reduction techniques like t-SNE for visualization.

1 INTRODUCTION

Learned embeddings form the basis for many state-of-the-art learning systems. Word embeddings
like word2vec (Mikolov et al., 2013), GloVe (Pennington et al., 2014), fastText (Bojanowski et al.,
2017), and ELMo (Peters et al., 2018) are ubiquitous in natural language processing, where they
are used for tasks like machine translation (Neubig et al., 2018), while graph embeddings (Nickel
et al., 2016) like node2vec (Grover & Leskovec, 2016) are used to represent knowledge graphs and
pre-trained image models (Simon et al., 2016) appear in many computer vision pipelines.

An effective embedding should capture the semantic structure of the data with high fidelity, in a
way that is amenable to downstream tasks. This makes the choice of a target space for the em-
bedding important, since different spaces can represent different types of semantic structure. The
most common choice is to embed data into Euclidean space, where distances and angles between
vectors encode their levels of association (Mikolov et al., 2013; Weston et al., 2011; Kiros et al.,
2014; Mirzazadeh et al., 2014). Euclidean spaces, however, are limited in their ability to represent
complex relationships between inputs, since they make restrictive assumptions about neighborhood
sizes and connectivity. This drawback has been documented recently for tree-structured data, for ex-
ample, where spaces of negative curvature are required due to exponential scaling of neighborhood
sizes (Nickel & Kiela, 2017; 2018).

In this paper, we embed input data as probability distributions in a Wasserstein space. Wasserstein
spaces endow probability distributions with an optimal transport metric, which measures the dis-
tance traveled in transporting the mass in one distribution to match another. Recent theory has shown
that Wasserstein spaces are quite flexible—more so than Euclidean spaces—allowing a variety of
other metric spaces to be embedded within them while preserving their original distance metrics. As
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such, they make attractive targets for embeddings in machine learning, where this flexibility might
capture complex relationships between objects when other embeddings fail to do so.

Unlike prior work on Wasserstein embeddings, which has focused on embedding into Gaussian
distributions (Muzellec & Cuturi, 2018; Zhu et al., 2018), we embed input data as discrete distribu-
tions supported at a fixed number of points. In doing so, we attempt to access the full flexibility of
Wasserstein spaces to represent a wide variety of structures.

Optimal transport metrics and their gradients are costly to compute, requiring the solution of a
linear program. For efficiency, we use an approximation to the Wasserstein distance called the
Sinkhorn divergence (Cuturi, 2013), in which the underlying transport problem is regularized to
make it more tractable. While less well-characterized theoretically with respect to embedding ca-
pacity, the Sinkhorn divergence is computed efficiently by a fixed-point iteration. Moreover, re-
cent work has shown that it is suitable for gradient-based optimization via automatic differentiation
(Genevay et al., 2018b). To our knowledge, our work is the first to explore embedding properties of
the Sinkhorn divergence.

We empirically investigate two settings for Wasserstein embeddings. First, we demonstrate their rep-
resentational capacity by embedding a variety of complex networks, for which Wasserstein embed-
dings achieve higher fidelity than both Euclidean and hyperbolic embeddings. Second, we compute
Wasserstein word embeddings, which show retrieval performance comparable to existing methods.
One major benefit of our embedding is that the distributions can be visualized directly, unlike most
embeddings, which require a dimensionality reduction step such as t-SNE before visualization. We
demonstrate the power of this approach by visualizing the learned word embeddings.

2 PRELIMINARIES
2.1 OPTIMAL TRANSPORT AND WASSERSTEIN DISTANCE

The p-Wasserstein distance between probability distributions x4 and v over a metric space X is
1
Wy (p,v) = ( inf / d(z1,22)? dﬂ($17$2)> ; (1)
mell(p,v) Jxxx

where the infimum is taken over transport plans 7 that distribute the mass in y to match that in
v, with the p-th power of the ground metric d(x1,x2) on X giving the cost of moving a unit of
mass from support point z; € X underlying distribution p to point x5 € X underlying v. The
Wasserstein distance is the cost of the optimal transport plan matching i and v (Villani, 2003).

In this paper, we are concerned with discrete distributions supported on finite sets of points in R™:
M N

n = Z uiéxm and vV = Z Vi5y(i) . (2)
i=1 i=1

Here, u and v are vectors of nonnegative weights summing to 1, and {x(i)}f‘il, {y(i)}ij\il CR”
are the support points. In this case, the transport plan 7 matching x and v in Equation 1 becomes
discrete as well, supported on the product of the two support sets. Define D € Rf *N to be the
matrix of pairwise ground metric distances, with D;; = d(x("),y(7)). Then, for discrete distribu-
tions, Equation 1 is equivalent to solving the following:

Wp(u,v)P = rjp;ré tr(DPT") subjectto Tl=wu, T'1l=w, 3)
with T;; giving the transported mass between x; and y;. The power DP? is taken elementwise.

2.2  SINKHORN DIVERGENCE

Equation 3 is a linear program that can be challenging to solve in practice. To improve efficiency,
recent learning algorithms use an entropic regularizer proposed by Cuturi (2013). The resulting
Sinkhorn divergence solves a modified version of Equation 3:

W) (i, v)P = min tw(DPTT) + Ar (T(log(T) —117) ") st. T1=u, T'1=v, (4
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where log(-) is applied elementwise and A > 0 is the regularization parameter. For A > 0, the
optimal solution takes the form T = A(r) exp (=P"/x) A(c), where A(r) and A(c) are diagonal
matrices with diagonal elements r and ¢, resp. Rather than optimizing over matrices 7', one can
optimize for 7 and c, reducing the size of the problem to A/ 4 N. This can be solved via matrix bal-
ancing, starting from an initial matrix K := exp(‘TDP) and alternately projecting onto the marginal
constraints until convergence:

r«u./Kc cv./K'r. )
Here, ./ denotes elementwise division for vectors.

Beyond simplicity of implementation, Equation 5 has an additional advantage for machine learning:
The steps of this algorithm are differentiable. With this observation in mind, Genevay et al. (2018b)
incorporate entropic transport into learning pipelines by applying automatic differentiation (back
propagation) to a fixed number of Sinkhorn iterations.

2.3  WHAT CAN WE EMBED IN THEORY?

Given two metric spaces A and BB, an embedding of A into B is a map ¢ : A — B that approximately
preserves distances, in the sense that the distortion is small:

Ld 4(u,v) < dg(¢p(u), p(v)) < CLdg(u,v), Vu,v € A, (6)
for some uniform constants L > 0 and C' > 1. The distortion of the embedding ¢ is the smallest C
such that Equation 6 holds.

One can characterize how “large” a space is (its representational capacity) by the spaces that em-
bed into it with low distortion. In practical terms, this capacity determines the types of data (and
relationships between them) that can be well-represented in the embedding space. R™ with the Eu-
clidean metric, for example, embeds into the L' metric with low distortion, while the reverse is not
true (Deza & Laurent, 2009). We do not expect Manhattan-structured data to be well-represented in
Euclidean space, no matter how clever the mapping.

Wasserstein spaces are very large: Many spaces can embed into Wasserstein spaces with low dis-
tortion, even when the converse is not true. W, (A), for A an arbitrary metric space, embeds any
product space A", for example (Kloeckner, 2010), via discrete distributions supported at n points.
Even more generally, certain Wasserstein spaces are universal, in the sense that they can embed
arbitrary metrics on finite spaces. Wi (¢1) is one such space (Bourgain, 1986), and it is still an open
problem to determine if W, (R¥) is universal for any k& < +o0. Recently it has been shown that
every finite metric space embeds the % power of its metric into W,(R?), p > 1, with vanishing

distortion (Andoni et al., 2015). A hopeful interpretation suggests that W (R®) may be a plausible
target space for arbitrary metrics on symbolic data, with a finite set of symbols; we are unaware of
similar universality results for L? or hyperbolic spaces, for example.

The reverse direction, embedding Wasserstein spaces into others, is well-studied in the case of dis-
crete distributions. Theoretical results in this domain are motivated by interest in efficient algorithms
for approximating Wasserstein distances by embedding into spaces with easily-computed metrics.
In this direction, low-distortion embeddings are difficult to find. W, (R3), for example, is known not
to embed into L' (Andoni et al., 2016). Some positive results exist, nevertheless. For a Euclidean
ground metric, for example, the 1-Wasserstein distance can be approximated in a wavelet domain
(Shirdhonkar & Jacobs, 2008) or by high-dimensional embedding into L' (Indyk & Thaper, 2003).

In §4, we empirically investigate the embedding capacity of Wasserstein spaces, by attempting to
learn low-distortion embeddings for a variety of input spaces. For efficiency, we replace the Wasser-
stein distance by its entropically-regularized counterpart, the Sinkhorn divergence (§2.2). The em-
bedding capacity of Sinkhorn divergences is previously unstudied, to our knowledge, except in the
weak sense that the approximation error with respect to the Wasserstein distance vanishes with the
regularizer taken to zero (Carlier et al., 2017; Genevay et al., 2018a).

2.4 RELATED WORK

While learned vector space embeddings have a long history, there is a recent trend in the representa-
tion learning community towards more complex target spaces, such as spaces of probability distribu-
tions (Vilnis & McCallum, 2015; Athiwaratkun & Wilson, 2018), Euclidean norm balls (Mirzazadeh
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et al., 2015; Mirzazadeh, 2017), Poincaré balls (Nickel & Kiela, 2017), and Riemannian manifolds
(Nickel & Kiela, 2018). From a modeling perspective, these more complex structures assist in rep-
resenting uncertainty about the objects being embedded (Vilnis & McCallum, 2015; Bojchevski &
Giinnemann, 2018) as well as complex relations such as inclusion, exclusion, hierarchy, and order-
ing (Mirzazadeh et al., 2015; Vendrov et al., 2015; Athiwaratkun & Wilson, 2018). In the same vein,
our work takes probability distributions in a Wasserstein space as our embedding targets.

The distance or discrepancy measure between target structures is a major defining factor for a rep-
resentation learning model. L,, distances as well as angle-based discrepancies are fairly common
(Mikolov et al., 2013), as is the KL divergence (Kullback & Leibler, 1951), when embedding into
probability distributions. For distributions, however, the KL divergence and L, distances are prob-
lematic, in the sense that they ignore the geometry of the domain of the distributions being compared.
For distributions with disjoint support, for example, these divergences do not depend on the separa-
tion between the supports. Optimal transport distances (Villani, 2008; Cuturi, 2013; Peyré & Cuturi,
2017; Solomon, 2018), on the other hand, explicitly account for the geometry of the domain. Hence,
models based on optimal transport are gaining popularity in machine learning; see (Rubner et al.,
1998; Courty et al., 2014; Frogner et al., 2015; Kusner et al., 2015; Arjovsky et al., 2017; Genevay
et al., 2018b; Claici et al., 2018; Singh et al., 2018) for some examples.

Learned embeddings into Wasserstein spaces are relatively unexplored. Recent research proposes
embedding into Gaussian distributions (Muzellec & Cuturi, 2018; Zhu et al., 2018). Restricting to
parametric distributions enables closed-form expressions for transport distances, but the resulting
representation space may lose expressiveness. We note that Courty et al. (2018) study embedding
in the opposite direction, from Wasserstein into Euclidean space. In contrast, we learn to embed
into the space of discrete probability distributions endowed with the Wasserstein distance. Discrete
distributions are dense in W, (Kloeckner, 2012; Brancolini et al., 2009).

3 LEARNING WASSERSTEIN EMBEDDINGS
3.1 THE LEARNING PROBLEM

We consider the task of recovering a pairwise distance or similarity relationship that may be only
partially observed. We are given a collection of objects C—these can be words, symbols, images, or
any other data—as well as samples { (u(i), @ r(u®, v(i))) } of a target relationshipr : CxC — R
that tells us the degree to which pairs of objects are related.

Our objective is to find a map ¢ : C — W, (X) such that the relationship r(u, v) can be recovered
from the Wasserstein distance between ¢(u) and ¢(v), for any u, v € C. Examples include:

1. METRIC EMBEDDING: 7 is a distance metric, and we want W, (¢(u), ¢(v)) =~ r(u,v) for all
u,v € C.

2. GRAPH EMBEDDING: C contains the vertices of a graph and r : CxC — {0, 1} is the adjacency
relation; we would like the neighborhood of each ¢(u) in W, to coincide with graph adjacency.

3. WORD EMBEDDING: C contains individual words and r is a semantic similarity between
words. We want distances in V), to predict this semantic similarity.

Although the details of each task require some adjustment to the learning architecture, our basic
representation and training procedure detailed below applies to all three examples.

3.2  OPTIMIZATION

Given a set of training samples S = {(u(i), v, 7’(")) }1111 C C x C x R, we want to learn a map
¢ : C = Wp(X). We must address two issues.

First we must define the range of our map ¢. The whole of W, (X) is infinite-dimensional, and for a
tractable problem we need a finite-dimensional output. We restrict ourselves to discrete distributions
with an a priori fixed number of support points M, reducing optimal transport to the linear program
in Equation 3. Such a distribution is parameterized by the locations of its support points {x(/) }Jle ,
forming a point cloud in the ground metric space X. For simplicity, we restrict to uniform weights
u, v 1, although it is possible to optimize simultaneously over weights and locations. As noted
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in (Brancolini et al., 2009; Kloeckner, 2012; Claici et al., 2018), however, when constructing a
discrete M -point approximation to a fixed target distribution, allowing non-uniform weights does
not improve the asymptotic approximation error.'

The second issue is that, as noted in §2.2, exact computation of W, in general is costly, requiring
the solution of a linear program. As in (Genevay et al., 2018b), we replace W, with the Sinkhorn
divergence Wﬁ, which is solvable by a the fixed-point iteration in Equation 5. Learning then takes
the form of empirical loss minimization:

by = arg min ;c (W,? (¢(u( ), ¢! ))) .l )) , (7)

over a hypothesis space of maps H. The loss L is problem-specific and scores the similarity between
the regularized Wasserstein distance WV} and the target relationship r at (u(i), v(i)). As mentioned
in §2.2, gradients are available from automatic differentiation of the Sinkhorn procedure, and hence
with a suitable loss function the learning objective Equation 7 can be optimized by standard gradient-
based methods. In our experiments, we use the Adam optimizer (Kingma & Ba, 2014).

4 EMPIRICAL STUDY
4.1 REPRESENTATIONAL CAPACITY: EMBEDDING COMPLEX NETWORKS

We first demonstrate the representational power of learned Wasserstein embeddings. As discussed
in §2.3, theory suggests that Wasserstein spaces are quite flexible, in that they can embed a wide
variety of metrics with low distortion. We show that this is true in practice as well.

To generate a variety of metrics to embed, we take networks with various patterns of connectivity and
compute the shortest-path distances between vertices. The collection of vertices for each network
serves as the input space C for our embedding, and our goal is to learn amap ¢ : C — W, (R¥)
such that the 1-Wasserstein distance Wi (¢(u), ¢(v)) matches as closely as possible the shortest
path distance between vertices u and v, for all pairs of vertices. We learn a minimum-distortion
embedding: Given a fully-observed distance metric d¢ : C xC — R in the input space, we minimize
the mean distortion:

1 Z W (¢(vi), 9(v;)) — dC('Uian)|. )

¢« = argmin -~
(2) >i dc(vi?vj)

¢ is parameterized as in §3.2, directly specifying the support points of the output distribution.

We examine the performance of Wasserstein embedding using both random networks and real net-
works. The random networks in particular allow us systematically to test robustness of the Wasser-
stein embedding to particular properties of the metric we are attempting to embed. Note that these
experiments do not explore generalization performance: We are purely concerned with the repre-
sentational capacity of the learned Wasserstein embeddings.

For random networks, we use three standard generative models: Barabasi—Albert (Albert &
Barabasi, 2002), Watts—Strogatz (Watts & Strogatz, 1998), and the stochastic block model (Hol-
land et al., 1983). Random scale-free networks are generated from the Barabasi—Albert model,
and possess the property that distances are on average much shorter than in a Euclidean spatial
graph, scaling like the logarithm of the number of vertices. Random small-world networks are
generated from the Watts—Strogatz model; in addition to log-scaling of the average path length,
the vertices of Watts—Strogatz graphs cluster into distinct neighborhoods. Random community-
structured networks are generated from the stochastic block model, which places vertices within
densely-connected communities, with sparse connections between the different communities. We
additionally generate random trees by choosing a random number of children® for each node, pro-
gressing in breadth-first order until a specified total number of nodes is reached. In all cases, we
generate networks with 128 vertices.

'In both the non-uniform and uniform cases, the order of convergence in W, of the nearest weighted point
cloud to the target measure, as we add more points, is O(M - ), for a d-dimensional ground metric space.
This assumes the underlying measure is absolutely continuous and compactly-supported.

?Each non-leaf node has a number of children drawn uniformly from {2, 3,4}.
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Figure 1: Random networks: Learned Wasserstein embeddings achieve lower distortion than Eu-
clidean/hyperbolic embeddings. Hyperbolic embeddings outperform specifically on random trees.

We compare against two baselines, trained using the same distortion criterion and optimization
method: Euclidean embeddings, and hyperbolic embeddings. Euclidean embeddings we expect
to perform poorly on all of the chosen graph types, since they are limited to spatial relationships with
zero curvature. Hyperbolic embeddings model tree-structured metrics, capturing the exponential
scaling of graph neighborhoods; they have been suggested for a variety of other graph families as
well (Zhao et al., 2011).

Figure 1 shows the result of embedding random networks.> As the total embedding dimension
increases, the distortion decreases for all methods. Importantly, Wasserstein embeddings achieve
lower distortion than Euclidean and hyperbolic embeddings, establishing their flexibility under the
varying conditions represented by the different network models. In some cases, the Wasserstein
distortion continues to decrease long after the other embeddings have saturated their capacity. As
expected, hyperbolic space significantly outperforms both Euclidean and Wasserstein specifically
on tree-structured metrics.

We test R2, R3, and R* as ground metric spaces. For all of the random networks we examined,
the performance between R3 and R* is nearly indistinguishable. This observation is consistent with
theoretical results (§2.3) suggesting that R? is sufficient to embed a wide variety of metrics.

We also examine fragments of real networks: an ArXiv co-authorship network, an Amazon product
co-purchasing network, and a Google web graph (Leskovec & Krevl, 2014). For each graph frag-
ment, we choose uniformly at random a starting vertex and then extract the subgraph on 128 vertices
taken in breadth-first order from that starting vertex. Distortion results are shown in Figure 2. Again
the Wasserstein embeddings achieve lower distortion than Euclidean or hyperbolic embeddings.

3The solid line is the median over 20 randomly-generated inputs, while shaded is the middle 95%.
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Figure 2: Real networks: Learned Wasserstein embeddings achieve lower distortion than Euclidean
and hyperbolic embeddings of real network fragments.

one: f, two, i, after, four

Wl)‘ (RQ) united:  series, professional, team, east, central

algebra:  skin, specified, equation, hilbert, reducing
one: two, three, s, four, after

wi (R3) united:  kingdom, australia, official, justice, officially

algebra:  binary, distributions, reviews, ear, combination
one:  six, eight, zero, two, three

wi (]R4) united:  army, union, era, treaty, federal

algebra:  tables, transform, equations, infinite, differential

Table 1: Change in the 5-nearest neighbors when increasing dimensionality of each point cloud with
fixed total length of representation.

4.2 WORD2CLOUD: WASSERSTEIN WORD EMBEDDINGS

In this section, we embed words as point clouds. In a sentence s = (Xg,...,Xy,), a word x; is
associated with word x; if x; is in the context of x;, which is a symmetric window around x;. This
association is encoded as a label 7; 7y, x, = 1if and only if |i — j| < [ where [ is the window size.
For word embedding, we use a contrastive loss function (Hadsell et al., 2006)

6 =agmin] 3 rm (W) (66, 6067)) )+ 1) [ 1= (00500, 605)) ] )

Xi,X;€ES
9)
which tries to embed words x;,x; near each other in terms of 1-Wasserstein distance (here Wf‘)
if they co-occur in the context; otherwise, it prefers moving them at least distance m away from
one another. This approach is similar to that suggested by Mikolov et al. (2013), up to the loss and
distance functions.

We use a Siamese architecture (Bromley et al., 1993) for our model, with negative sampling (as in
Mikolov et al. (2013)) for selecting words outside the context. The network architecture in each
branch consists of a linear layer with 64 nodes followed by our point cloud embedding layer. The
two branches of the Siamese network connect via the Wasserstein distance, computed as in §2.2.
The training dataset is Text8*, which consists of a corpus with 17M tokens from Wikipedia and is
commonly used as a language modeling benchmark. We choose a vocabulary of 8000 words and a
context window size of [ = 2 (i.e., 2 words on each side), A = 0.05, number of epochs of 3, negative
sampling rate of 1 per positive and Adam (Kingma & Ba, 2014) for optimization.

We first study the effect of dimensionality of the point cloud on the quality of the semantic neighbor-
hood captured by the embedding. We fix the total number of output parameters, being the product
of the number of support points and the dimension of the support space, to 63 or 64 parameters. Ta-
ble 1 shows the 5 nearest neighbors in the embedding space. Notably, increasing the dimensionality
directly improves the quality of the learned representation. Interestingly, it is more effective to use a
budget of 64 parameters in a 16-point, 4-dimensional cloud than in a 32-point, 2-dimensional cloud.

Next we evaluate these models on a number of benchmark retrieval tasks from (Faruqui & Dyer,
2014), which score a method by the correlation of its output similarity scores with human similarity

*From http://mattmahoney.net/dc/text8.zip
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# WHR?)  WHR3 WHRY) || R M S G w
Task Name Pairs 17™M 1"™M 17™M — 63M  63IM 900M 100B
RG-65 65 0.32 0.67 0.81 0.27 -0.02 0.50 0.66 0.54
WS-353 353 0.15 0.27 0.33 0.24 0.10 0.49 0.62 0.64
WS-353-S 203 0.23 0.40 0.44 0.36 0.15 0.61 0.70 0.70
WS-353-R 252 0.05 0.19 0.21 0.18 0.09 0.40 0.56 0.61
MC-30 30 0.04 0.45 0.54 047 -0.14 0.57 0.66 0.63
Rare-Word 2034 || 0.06 0.22 0.10 0.29 0.11 0.39 0.06 0.39
MEN 3000 || 0.25 0.28 0.26 0.24 0.09 0.57 0.31 0.65
MTurk-287 287 0.40 0.38 0.49 0.33 0.09 0.59 0.36 0.67
MTurk-771 771 0.11 0.23 0.25 0.26 0.10 0.50 0.32 0.57
SimLex-999 999 0.09 0.05 0.07 0.23 0.01 0.27 0.10 0.31
Verb-143 144 0.03 0.03 0.16 0.29 0.06 0.36 0.44 0.27

Table 2: Performance on a number of similarity benchmarks when dimensionality of point clouds
increase given a fixed total number of parameters. The middle block shows the performance of the
proposed models. The right block shows the performance of baselines. The training corpus size
when known appears below each model name.

judgments, for various pairs of words. Results are shown in Table 2. The results of our method,
which use Sinkhorn distance to compute the point cloud (dis)similarities, appear in the middle block
of Table 2. Again, we mainly see gradual improvement with increasing dimensionality of the point
clouds. The right block in Table 2 shows baselines: Respectively, RNN(80D) (Kombrink et al.,
2011), Metaoptimize (50D) (Turian et al., 2010), SENNA (50D) (Collobert, 2011) Global Context
(50D) (Huang et al., 2012) and word2vec (80D) (Mikolov et al., 2013). In the right block, as in
(Faruqui & Dyer, 2014), the cosine similarity is used for point embeddings. The reported perfor-
mance measure is the correlation with ground-truth rankings, computed as in (Faruqui & Dyer,
2014). Note there are many ways to improve the performance: increasing the vocabulary/window
size/number of epochs/negative sampling rate, using larger texts, and accelerating performance. We
defer this tuning to future work focused specifically on NLP.

4.2.1 DIRECT, INTERPRETABLE VISUALIZATION OF HIGH-DIMENSIONAL EMBEDDINGS

Wasserstein embeddings over low-dimensional ground metric spaces have a unique property: We
can directly visualize the embedding, which is a point cloud in the low-dimensional ground space.
This is not true for most existing embedding methods, which rely on dimensionality reduction tech-
niques such as t-SNE for visualization. Whereas dimensionality reduction only approximately cap-
tures proximity of points in the embedding space, with Wasserstein embeddings we can display the
exact embedding of each input, by visualizing the point cloud.

We demonstrate this property by visualizing the learned word representations. Importantly, each
point cloud is strongly clustered, which leads to apparent, distinct modes in its density. We therefore
use kernel density estimation to visualize the densities. In Figure 3a, we visualize three distinct
words, thresholding each density at a low value and showing its upper level set to reveal the modes.
These level sets are overlaid, with each color in the figure corresponding to a distinct embedded
word. The density for each word is depicted by the opacity of the color within each level set.

It is easy to visualize multiple sets of words in aggregate, by assigning all words in a set a single
color. This immediately reveals how well-separated the sets are, as shown in Figure 3b: As expected,
military and political terms overlap, while names of sports are more distant.

Examining the embeddings in more detail, we can dissect relationships (and confusion) between
different sets of words. We observe that each word tends to concentrate its mass in two or more
distinct regions. This multimodal shape allows for multifaceted relationships between words, since
a word can partially overlap with many distinct groups of words simultaneously. Figure 3¢ shows
the embedding for a word that has multiple distinct meanings (k ind), alongside synonyms for both
senses of the word (nice, friendly, type). We see that kind has two primary modes,
which overlap separately with friendly and type. nice is included to show a failure of the
embedding to capture the full semantics: Figure 3d shows that the network has learned that nice
is a city in France, ignoring its interpretation as an adjective. This demonstrates the potential of this
visualization for debugging, helping identify and attribute an error.
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Figure 3: Directly visualizing high-dimensional word embeddings.
5 DISCUSSION AND CONCLUSION

Several characteristics determine the value and effectiveness of an embedding space for represen-
tation learning. The space must be large enough to embed a variety of metrics, while admitting a
mathematical description compatible with learning algorithms; additional features, including direct
interpretability, make it easier to understand, analyze, and potentially debug the output of a repre-
sentation learning procedure. Based on their theoretical properties, Wasserstein spaces are strong
candidates for representing complex semantic structures, when the capacity of Euclidean space does
not suffice. Empirically, entropy-regularized Wasserstein distances are effective for embedding a
wide variety of semantic structures, while enabling direct visualization of the embedding.

Our work suggests several directions for additional research. Beyond simple extensions like weight-
ing points in the point cloud, one observation is that we can lift nearly any representation space X
to distributions over that space W(X') represented as point clouds; in this paper we focused on the
case X = R". Since X embeds within W(X') using §-functions, this might be viewed as a general
“lifting” procedure increasing the capacity of a representation. We can also consider other tasks,
such as co-embedding of different modalities into the same transport space. Additionally, our em-
pirical results suggest that theoretical study of the embedding capacity of Sinkhorn divergences may
be profitable. Finally, following recent work on computing geodesics in Wasserstein space (Seguy
& Cuturi, 2015), it may be interesting to invert the learned mappings and use them for interpolation.
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