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Abstract

This paper studies Dictionary Learning problems wherein the learning task is distributed
over a multi-agent network, modeled as a time-varying directed graph. This formulation
is relevant, for instance, in Big Data scenarios where massive amounts of data are col-
lected/stored in different locations (e.g., sensors, clouds) and aggregating and/or process-
ing all data in a fusion center might be inefficient or unfeasible, due to resource limitations,
communication overheads or privacy issues. We develop a unified decentralized algorithmic
framework for this class of nonconvex problems, which is proved to converge to stationary
solutions at a sublinear rate. The new method hinges on Successive Convex Approximation
techniques, coupled with a decentralized tracking mechanism aiming at locally estimating
the gradient of the smooth part of the sum-utility. To the best of our knowledge, this is
the first provably convergent decentralized algorithm for Dictionary Learning and, more
generally, bi-convex problems over (time-varying) (di)graphs.

Keywords: Decentralized algorithms, dictionary learning, directed graph, non-convex
optimization, time-varying network

1. Introduction and Motivation

This paper introduces, analyzes, and tests numerically the first provably convergent dis-
tributed method for a fairly general class of Dictionary Learning (DL) problems. More
specifically, we study the problem of finding a matrix D ∈ RM×K (a.k.a. the dictionary),
by which the data matrix S ∈ RM×N can be represented through a matrix X ∈ RK×N , with
a favorable structure on D and X (e.g., sparsity). We target scenarios where computational
resources and data are not centrally available, but distributed over a group of I agents,
which can communicate through a (possibly) time-varying, directed network; see Fig. 1.
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Figure 1: Directed network topology

Each agent i ∈ {1, 2, . . . , I} owns one block Si ∈ RM×ni of the data S , [S1, . . . ,SI ], with∑I
i=1 ni = N . Partitioning the representation matrix X , [X1, . . . ,XI ] according to S,

with Xi ∈ RK×ni , the class of distributed DL problems we aim at studying reads

min
D,{Xi}Ii=1

U(D,U) ,
I∑
i=1

fi(D,Xi)︸ ︷︷ ︸
,F (D,X)

+

I∑
i=1

gi(Xi) +G(D)

s.t. D ∈ D, Xi ∈ Xi, i = 1, . . . , I,

(P)

where fi : D × Xi → R is the fidelity function of agent i, which measures the mismatch
between the data Si and the (local) model; this function is assumed to be smooth and
biconvex (i.e., convex in D for fixed Xi, and vice versa); G : D → R and gi : Xi → R are
(possibly non-smooth) convex functions, which are generally used to impose extra structure
on the solution (e.g., low-rank or sparsity); and D ⊆ RM×K and Xi ⊆ RK×ni are some closed
convex sets. To avoid scaling ambiguity in the model, D is assumed to be bounded, without
loss of generality. Since all fi’s share the common variable D, we call it a shared variable
and, by the same token, Xi’s are termed private variables. Note that, in this distributed
setting, agent i knows only its own functions fi (and gi) but not

∑
j 6=i fj . Hence, agents aim

to cooperatively solve Problem P leveraging local communications with their neighbors.
Problem P encompasses several DL-based formulations of practical interest, correspond-

ing to different choices of the fidelity functions, regularizers, and feasible sets; examples
include the elastic net (Zou and Hastie, 2005) sparse DL, sparse PCA (Shen and Huang,
2008), non-negative matrix factorization and low-rank approximation (Hastie et al., 2015),
supervised DL (Mairal et al., 2008), sparse singular value decomposition (Lee et al., 2010),
non-negative sparse coding (Hoyer, 2004), principal component pursuit (Candès et al., 2011),
robust non-negative sparse matrix factorization, and discriminative label consistent learning
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(Jiang et al., 2011). More details on explicit customizations of the general model P can be
found in Sec. 2.

Our distributed setting is motivated by several data-intensive applications in several
fields, including signal processing and machine learning, and network systems (such as
clouds, cluster computers, networks of sensor vehicles, or autonomous robots) wherein the
sheer volume and spatial/temporal disparity of scattered data, energy constraints, and/or
privacy issues, render centralized processing and storage infeasible or inefficient. Also,
time-varying communications arise, for instance, in mobile wireless networks (e.g., ad-hoc
networks), wherein nodes are mobile and/or communicate through fading channels. More-
over, since nodes generally transmit at different power and/or communication channels are
not symmetric, directed links are a natural assumption.

Our goal is to design a provably convergent decentralized method for Problem P, over
time-varying and directed graphs. To the best of our knowledge this is an open problem,
as documented next.

1.1. Challenges and related works

The design of distributed algorithms for P faces the following challenges:

(i) Problem P is non-convex and non-separable in the optimization variables;

(ii) Each agent i owns exclusively Si and thus can only compute its own function fi;

(iii) Each fi depends on a common set of variables−the dictionary D−shared among all
the agents, as well as the private variables Xi. Shared and private variables need to be
treated differently. In fact, in several applications, the size of private variables is much
larger than that of the shared ones; hence, broadcasting agents’ private variables over
the network would result in an unaffordable communication overhead;

(iv) The gradient of each fi is in general neither bounded nor globally Lipschitz on the
feasible region. This represents a challenge in the design of provably convergent dis-
tributed algorithms, as boundedness and Lipschitzianity of the gradient are standard
assumptions in the analysis of most distributed schemes for nonconvex problems;

(v) G and gi’s are nonsmooth;

(vi) The graph is directed, time-varying ; no other structure is assumed (such as star or
ring topology, etc.), but some long term connectivity properties (cf. Assumption B).

Centralized methods for the solution of Problem P (or some closely related variants) have
been extensively studied and prominent examples are (Aharon et al., 2006; Mairal et al.,
2010; Razaviyayn et al., 2014b). However, we are not aware of any distributed algorithm
that can address challenges i)-vi) (even some subsets of them), as documented next.

Ad-hoc heuristics: Several attempts have been made to extend centralized approaches
for DL problems to a distributed setting (undirected, static graphs), under more or less
restrictive assumptions; examples include primal methods (Raja and Bajwa, 2013; Chainais
and Richard, 2013; Wai et al., 2015) and (primal/)dual-based ones (Chen et al., 2015; Liang
et al., 2014; Chouvardas et al., 2015). While these schemes represent good heuristics, their
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theoretical convergence remains an open question, and numerical results are contradictory.
For instance, some schemes are shown not to converge while some others fail to reach
asymptotic agreement among the local copies of the dictionary; see, e.g. (Chainais and
Richard, 2013).

Recently and independently from our conference work (Daneshmand et al., 2016), Zhao
et al. (2016) proposed a distributed primal-dual-based method for a class of dictionary learn-
ing problems related, but different from Problem P. Specifically, they considered: quadratic
loss functions fi, with a quadratic regularization on the dictionary (i.e., G = 0), and norm
ball constraints on the private variables. The network is modeled as a fixed undirected
graph. Asymptotic convergence of the scheme to stationary solutions is proved, but no rate
analysis is reported. We remark that the scheme in (Zhao et al., 2016), in order to establish
convergence, requires some penalty parameters to go to infinity, which makes the method
numerically not attractive.

Distributed nonconvex optimization: Since the DL problem P is an instance of non-
convex optimization problems, we briefly discuss here the few works in the literature on
distributed methods for non-convex optimization (Bianchi and Jakubowicz, 2013; Tatarenko
and Touri, 2017; Wai et al., 2017; Di Lorenzo and Scutari, 2016; Sun et al., 2016; Hong et al.,
2017; Scutari and Sun, 2019); we group these papers as follows. The schemes in (Bianchi
and Jakubowicz, 2013; Tatarenko and Touri, 2017; Wai et al., 2017; Hong et al., 2017),
while substantially different, are all applicable to smooth, unconstrained optimization, with
(Bianchi and Jakubowicz, 2013; Wai et al., 2017) handling also compact constraints and
(Tatarenko and Touri, 2017) implementable on (time-varying) digraphs. The distributed
algorithms in (Di Lorenzo and Scutari, 2016; Sun et al., 2016; Scutari and Sun, 2019) can
handle objectives with additive nonsmooth convex functions, with (Sun et al., 2016; Scutari
and Sun, 2019) applicable to (time-varying) digraphs.

All the above schemes cannot adequately deal with private (i.e., Xi’s) and shared vari-
ables (i.e., D), which are a key feature of Problem P. Furthermore, convergence therein
is proved under the assumption that the gradient of (the smooth part of) the objective
function is globally Lipschitz continuous, a property that we do not assume and that is
not satisfied in many of the applications we consider. The design of provably convergent
distributed algorithms for P remains an open problem, let alone rate guarantees.

1.2. Major contributions

In this paper, we propose the first provably convergent distributed algorithm for the gen-
eral class of DL problems P, addressing all challenges i)-vi). The proposed approach uses
a general convexification-decomposition technique that hinges on recent (centralized) Suc-
cessive Convex Approximation methods (Scutari et al., 2014; Facchinei et al., 2015). This
technique is coupled with a perturbed push-sum consensus scheme preserving the feasibility
of the iterates and a tracking mechanism aiming at estimating locally the gradient of

∑
i fi.

Both communication and tracking protocols are implementable on time-varying undirected
or directed graphs (B-strongly connected). The scheme is proved to converge to stationary
solutions of Problem P, under mild assumptions on the step-size employed by the algorithm;
a sublinear convergence rate is also established. On the technical side, we contribute to the
literature of distributed algorithms for bi-convex (nonsmooth) constrained optimization by
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putting forth a new non-trivial convergence analysis that, for the first time, i) avoids the as-
sumption that the gradients ∇fi are globally Lipschitz; and ii) deals with private and shared
optimization variables. Numerical experiments show that the proposed schemes compare
favorably with ad-hoc algorithms, proposed for special instances of Problem P.

1.3. Paper Organization

The rest of the paper is organized as follows. The problem and network setting are intro-
duced in Sec. 2, along with some motivating applications. Sec. 3 presents the algorithm
and its convergence properties; the proofs of our results are given in the Appendix, Sec. A.
Extensive numerical experiments showing the effectiveness of the proposed scheme are dis-
cussed in Sec. 5 whereas Sec. 6 draws some conclusions.

1.4. Notation

Throughout the paper we use the following notation. We denote by Rn+ and N+ the non-
negative orthant and the set of non-negative integers, respectively. Given x ∈ R, dxe
(resp. bxc) denotes the smallest (resp. the largest) integer greater (resp. smaller) than
or equal to x. Vectors are denoted by bold lower-case letters (e.g., x) whereas matrices
are denoted by bold capital letters (e.g., A). The k-th canonical vector is denoted by ek.
The inner product between two real matrices, A and B, is denoted by 〈A,B〉 , tr(AᵀB),
where tr(•) is the trace operator; A ⊗ B denotes the Kronecker product. Given the real
matrix A, with ij-entries denoted by Aij , we will use the following matrix norms: the

Frobenius norm ||A||F ,
√∑

i,j |Aij |2; the L1,1 norm ||A||1,1 ,
∑

i,j |Aij |; the L2,∞ norm

||A||2,∞ , maxi
√∑

j A
2
ij ; the L∞,∞ norm ||A||∞,∞ = maxi,j |Aij |; and the spectral norm

||A||2 , σmax(A), where σmax(A) denotes the maximum singular value of A. The matrix
quantities ∇Dfi(D,Xi) and ∇Xifi(D,Xi) are the gradients of fi with respect to D and
Xi, evaluated at (D,Xi), respectively, with the partial derivatives arranged according to
the patterns of D and Xi, respectively. The same convention is adopted for subgradients
of gi and G, that are therefore written as matrices of the same dimensions of Xi and D,
respectively. Table 1 summarizes the main notation and symbols used in the paper.

Because of the nonconvexity of Problem P, we aim at computing stationary solutions of
P, defined as follows: a tuple (D∗,X∗), with X∗ , [X∗1, . . . ,X

∗
I ] is a stationarity solution of

P if the following holds: D∗ ∈ D, X∗i ∈ Xi, i = 1, . . . , I , and

〈
∇DF (D∗,X∗),D−D∗

〉
+G(D)−G(D∗) ≥ 0, ∀D ∈ D,

〈∇Xifi(D∗,X∗i ),Xi −X∗i 〉+ gi(Xi)− gi(X∗i ) ≥ 0, ∀Xi ∈ Xi, i = 1, . . . , I.
(2)

2. Problem Setup and Motivating Examples

In this section, we first discuss the assumptions underlying our model and then provide
several examples of possible applications.
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Symbol Definition Member of Reference

F (D,X)
∑I
i=1 fi(D,Xi) RM×K × RK×N → R (P)

U(D,X) F (D,X) +
∑I
i=1 gi(Xi) +G(D) RM×K × RK×N → R (P)

Si Local data matrix RM×ni

S [S1,S2, . . . ,SI ] RM×N

D Dictionary matrix variable D ⊆ RM×K

D(i) Local copy of D of agent i D ⊆ RM×K

Dν
(i) D(i) at iteration ν D ⊆ RM×K

Dν [Dνᵀ
(1),D

νᵀ
(2), . . . ,D

νᵀ
(I)]

ᵀ RM×KI (25)

D̃ν
(i) Solution of subproblem (8) D ⊆ RM×K (8)

D
ν (1/I)

∑I
i=1 Dν

(i) D ⊆ RM×K (25)

Uν
(i) Local update of dictionary variable D ⊆ RM×K (10)

Xi Local matrix variable Xi ⊆ RK×ni

X [X1,X2, . . . ,XI ] X ⊆ RK×N

Xν
i Xi at iteration ν Xi ⊆ RK×ni

Xν X at iteration ν : [Xν
1 ,X

ν
2 , . . . ,X

ν
I ] X ⊆ RK×N (25)

Θν
(i) Gradient-tracking variable D ⊆ RM×K (13)

Aν (aνij)
I
i,j=1− consensus weights at time ν RI×I Assumption F

Table 1: Table of notation

2.1. Problem Assumptions

We consider Problem P under the following assumptions.

Assumption A (On Problem P)

(A1) Each fi : O×Oi → R is C2, lower bounded, and biconvex, where O ⊇ D and Oi ⊇ Xi
are convex open sets;

(A2) Given D ∈ D, each ∇Xifi(D, •) is Lipschitz continuous on Xi, with Lipschitz constant
L∇Xi(D). Furthermore, each L∇Xi : D → R+ is continuous;

(A3) D is compact and convex; and each Xi is closed and convex (not necessarily bounded);

(A4) G : O → R is convex (possibly non-smooth);

(A5) For all i = 1, . . . , I, either i) Xi is compact and gi : Oi → R is convex; or ii) gi is
µi-strongly convex.

The above assumptions are quite mild and are satisfied by several problems of practical
interest; see Sec. 2.2 for several concrete examples.

Network topology

We study Problem P in the following network setting. Time is slotted and in each time-slot
ν the network of the I agents is modeled as a digraph Gν = (V, Eν), where V = {1, . . . , I}
is the set of agents and Eν is the set of edges (communication links); we use (i, j) ∈ Eν to
indicate that there is a directed link from node i to node j. The in-neighborhood of agent
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agent 𝒊 

Figure 2: Illustration of in-neighborhood set of agent i at time ν.

i ∈ V at time ν is defined as N in
i [ν] = {j ∈ V|(j, i) ∈ Eν} ∪ {i} (see Fig. 2) whereas its

out-neighborhood is N out
i [ν] = {j ∈ V| (i, j) ∈ Eν} ∪ {i}. In words, agent i can receive

information from its in-neighborhood members, and send information to its out-neighbors.
The out-degree of agent i is defined as dνi ,

∣∣N out
i [ν]

∣∣, where |•| denotes the cardinality
of a set. If the graph is undirected, the set of in-neighbors and out-neighbors coincide; in
such a case we just write Ni to denote the set of neighbors of agent i. When the network is
static, all the above quantities do not depend on the iteration index ν; hence, we will drop
the superscript “ν”. To let information propagate over the network, we assume that the
sequence {Gν}ν possesses some “long-term” connectivity property, as stated next.

Assumption B (B-strong connectivity) The graph sequence {Gν}ν is B-strongly con-
nected, i.e., there exists an (arbitrarily large) integer B > 0 (unknown to the agents) such

that the graph with edge set ∪(k+1)B−1
t=kB E t is strongly connected, for all k ≥ 0.

Notice that this condition is quite mild and widely used in the literature to analyze conver-
gence of distributed algorithms over time-varying networks. Generally speaking, it permits
strong connectivity to occur over time windows of length B, so that information can prop-
agate from every node to every other node in the network. Assumption B is satisfied in
several practical scenarios. For instance, commonly used settings in cloud computing infras-
tructures are star, ring, tree, hypercube, or n-dimensional mesh (Torus) topologies, which all
satisfy Assumption B. It is worth mentioning that the multi-hop network topologies of these
structures are migrating towards high-radix mesh and Torus, since they are scalable, low-
energy consuming, and much cheaper than other topologies, like fat-tree topologies (Kim,
2008). These type of connected networks are generally time-invariant and undirected, and
clearly they satisfy Assumption B.

2.2. Motivating examples

We conclude this section discussing some practical instances of Problem P, all satisfying
Assumption A, which show the generality of the proposed model.

Elastic net sparse DL (Tosic and Frossard, 2011; Zou and Hastie, 2005)

Sparse approximation of a signal with an adaptive dictionary is one of the most studied DL
problems (Tosic and Frossard, 2011). When an elastic net sparsity-inducing regularizer is
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used (Zou and Hastie, 2005), the problem can be written as

min
D,{Xi}Ii=1

I∑
i=1

{
1

2
‖Si −DXi‖2F + λ ‖Xi‖1,1 +

µ

2
‖Xi‖2F

}
s.t. D ∈ D, Xi ∈ RK×ni , i = 1, 2, . . . , I,

(3)

where D , {D : ||Dek||2 ≤ α, k = 1, 2, . . . ,K}, and α, λ, µ > 0 are the tuning param-
eters. Problem (3) is an instance of P, with fi(D,Xi) = (1/2) · ‖Si −DXi‖2F , gi(Xi) =
λ ‖Xi‖1,1+ µ

2 ‖Xi‖2F , G(D) = 0, and Xi = RK×ni . It is not difficult to check that (3) satisfies

Assumption A, and the Lipschitz constant in A2 is given by L∇Xi(D) = (σmax(D))2.

Supervised DL (Mairal et al., 2008)

Consider a classification problem with training set {sn, yn}Nn=1, where sn is the feature vector
with associated binary label yn. The discriminative DL problem aims at simultaneously
learning a dictionary D(1) ∈ RM×K such that sn = D(1)xn, for some sparse xn ∈ RK , and
finding a bilinear classifier ζn(D(2),xn, sn) , sᵀn D(2) xn that best separates the coded data
with distinct labels (Mairal et al., 2008). Assume that each agent i owns {(sn, yn) : n ∈ Si},
with {Si}Ii=1 being a partition of {1, . . . , N}, then the discriminative DL reads

min
D(1),D(2)

{xn}Nn=1

I∑
i=1

∑
n∈Si

[
`
(
ynζn

(
D(2),xn, sn

))
+

1

2

∥∥∥sn −D(1)xn

∥∥∥2

2
+ gn(xn)

]

s.t. D(1) ∈ D(1), D(2) ∈ D(2), xn ∈ RK , n = 1, 2, . . . , N,

(4)

where `(x) , log(1 + e−x) is the logistic loss function; and gn (xn) , λ ‖xn‖1 + (µ/2) ·
‖xn‖22 is the elastic net regularizer. The dictionary D(1) and classifier parameter D(2) are
constrained to belong to the convex compact sets D(1) and D(2), respectively. Problem (4)
is an instance of Problem P, with D ,

[
D(1),D(2)

]
, Si , [sn]n∈Si and Xi , [xn]n∈Si . Note

that Assumption A is satisfied, and the Lipschitz constant in A2 is given by L∇Xi(D) =
(1/4) · ‖yi · sᵀi D(2)‖22 + (σmax(D(1)))2.

DL for low-rank plus sparse representation (Bouwmans et al., 2017)

The low-rank plus sparse decomposition problems cover many applications in signal pro-
cessing and machine learning (Bouwmans et al., 2017), including matrix completion, image
denoising, deblurring, superresolution, and Principal Component Pursuit (PCP) (Candès
et al., 2011). Consider the bi-linear model S ≈ L + HQU: the data matrix S is decom-
posed as the superposition of a low-rank matrix L (capturing the correlations among data)

and HQU, where Q ∈ RM×K̃ is an over-complete dictionary (capturing the representative

modes of the data), U ∈ RK̃×N is a sparse matrix (representing the data parsimoniously),
and H is a given degradation matrix, which accounts for tasks such as denoising, superreso-
lution, and deblurring. To enforce L to be low-rank, we employ the nuclear norm ‖L‖∗ reg-
ularizer, which can be equivalently rewritten as ‖L‖∗ = inf{1

2 ‖P‖
2
F + 1

2 ‖V‖
2
F : L = PV},

where P ∈ RM×L, V ∈ RL×N , and L � min(M,N) (Srebro and Shraibman, 2005; Recht
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et al., 2010). Partitioning V and U according to S, i.e., Si = PVi + HQUi, the problem
reads

min
P,Q,(Vi,Ui)

I
i=1

I∑
i=1

[
1

2

∥∥∥Si − [P HQ]

[
Vi

Ui

]∥∥∥2

F

+
ζ

2I

(
‖P‖2F + I · ‖Vi‖2F

)
+ λ ‖Xi‖1,1 +

µ

2
‖Xi‖2F

]
s.t. D ∈ D, Xi ∈ R(L+K̃)×ni , i = 1, 2, . . . , I,

(5)

where D is some compact set; ζ > 0 is a constant used to promote the low-rank structure on
L while sparsity on X is enforced by the elastic net regularization, with constants λ, µ > 0.
Problem (5) is clearly an instance of Problem P wherein fi is the quadratic loss, and [P,Q]
and [Vᵀi ,U

ᵀ
i ]
ᵀ are the shared and private variables (K = L+K̃), respectively. Assumption A

is satisfied, and the Lipschitz constant in A2 is given by L∇Xi(D) = (σmax(PHQ))2.

A variant of this problem, which still is a particular case of Problem (5), is obtained by
replacing the quadratic loss function with the smoothed Huber function to achieve robust-
ness against outliers (Aravkin et al., 2014).

Sparse SVD/PCA (Lee et al., 2010; Udell et al., 2016; Mairal et al., 2010)

Computing the SVD of a set of data with sparse singular vectors (Sparse SVD) is the
foundation of many applications in multivariate analysis, e.g., biclustering (Lee et al., 2010).
As proposed in (Mairal et al., 2010), Problem P can be used to accomplish this task by
imposing sparsity on the factors D and X of S. More specifically, we have

min
D,(Xi)Ii=1

I∑
i=1

{
1

2
‖Si −DXi‖2F + λX ‖Xi‖1,1 +

µX
2
‖Xi‖2F

}
+ λD ‖D‖1,1 +

µD
2
‖D‖2F

s.t. D ∈ D , {D ∈ RM×K : ||D||2,∞ ≤ α}, Xi ∈ RK×ni , i = 1, 2, . . . , I,
(6)

where λD, λX , µD, µX , α > 0 are given constants. Problem (6) is an instance of P, with
fi(D,Xi) = (1/2) · ||Si − DXi||2F ; G(D) = λD ||D||1,1 + (µD/2) · ||D||2F , and gi(Xi) =
λX ||Xi||1,1 + (µX/2) · ||Xi||2F . Note that orthonormality of factors are relaxed for sake of
simplicity. A related formulation, termed Sparse PCA, has also been used in (Udell et al.,
2016). It is not difficult to show that Assumption A is satisfied, and the Lipschitz constant
in A2 is given by L∇Xi(D) = (σmax(D))2.

Non-negative Sparse Coding (NNSC) (Hoyer, 2004)

Non-negative Matrix Factorization (NMF) was primarily proposed by (Lee and Seung, 1999)
as a better alternative to the classic SVD in learning localized features of image datasets,
such as face images. The formulation enforces non-negativity of the entries of D and X.
This has been shown to empirically lead to sparse solutions; however no explicit control on
sparsity is employed in the model. To overcome this shortcoming, (Hoyer, 2004) proposed a
non-negative sparse coding (NNSC) formulation which extends NMF by adding a sparsity-
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inducing penalty function of X. The problem reads

min
D,(Xi)Ii=1

I∑
i=1

{
1

2
‖Si −DXi‖2F + λ ‖Xi‖1,1 +

µ

2
‖Xi‖2F

}
s.t. D ∈ D , {D ∈ RM×K+ | ||D||2,∞ ≤ α}, Xi ∈ RK×ni+ , i = 1, 2, . . . , I,

(7)

for some λ, µ, α > 0. Problem (7) is another instance of P, with fi(D,Xi) = (1/2) · ||Si −
DXi||2F , gi(Xi) = λ ‖Xi‖1,1 + (µ/2) · ‖Xi‖2F , G(D) = 0, D = {D ∈ RM×K+ | ||D||2,∞ ≤ α},
and Xi = RK×ni+ . Assumption A is satisfied, and the Lipschitz constant in A2 is given by
L∇Xi(D) = (σmax(D))2.

3. Algorithmic Design

We introduce now our algorithmic framework. To shed light on the core idea behind the
proposed scheme, we begin introducing an informal and constructive description of the
algorithm, followed by its formal description along with its convergence properties.

Each agent i controls its private variable Xi and maintains a local copy of the shared
variables D, denoted by D(i), along with an auxiliary variable Θ(i); we anticipate that Θ(i)

aims at locally estimating the gradient sum
∑

j ∇Dfj(D(i),Xj), an information that is not
available at agent i’s side. The value of these variables at iteration ν is denoted by Xν

i ,
Dν

(i), and Θν
(i), respectively. Roughly speaking, the update of these variables is designed

so that asymptotically i) all the D(i) will be consensual, i.e., D(i) = D(j), ∀i 6= j; and ii)

the tuples (D(i), (Xj)
I
j=1) will be a stationary solutions of Problem P. This is accomplished

throughout the following two steps, which are performed iteratively and in parallel across
the agents.

Step 1: Local Optimization

The nonconvexity of fi together with the lack of knowledge of
∑

j 6=i fj in F prevents agent
i to solve directly Problem P with respect to (D(i),Xi). Since fi is bi-convex in (D(i),Xi),
a natural approach is then to update D(i) and Xi in an alternating fashion by solving a
local approximation of P. Specifically, at iteration ν, given the iterates Xν

i , Dν
(i), and Θν

(i),
agent i fixes Xi = Xν

i and solves the following strongly convex problem in D(i) :

D̃ν
(i), argmin

D(i)∈D
f̃i
(
D(i); D

ν
(i),X

ν
i

)
+
〈
I ·Θν

(i) −∇Dfi(D
ν
(i),X

ν
i ),D(i) −Dν

(i)

〉
+G

(
D(i)

)
, (8)

where f̃i(•; Dν
(i),X

ν
i ) is a suitably chosen strongly convex approximation of fi(•,Xν

i ) at

(Dν
(i),X

ν
i ) (cf. Assumption C, Sec. 3.1); and Θν

(i), as anticipated, is used to track the

gradient of F , with limν→∞ ‖I ·Θν
(i) −

∑I
j=1∇Dfj(Dν

(i),X
ν
j )‖ = 0; which would lead to

lim
ν→∞

∥∥∥∥∥∥
(
I ·Θν

(i) −∇Dfi(D
ν
(i),X

ν
i )
)
−
∑
j 6=i
∇Dfj(Dν

(i),X
ν
j )

∥∥∥∥∥∥ = 0. (9)

This sheds light on the role of the linear term in (8): it can be regarded as a proxy of the
sum-gradient

∑
j 6=i∇Dfj(Dν

(i),X
ν
j ), which is not available at agent i’s side. In Step 2 below

we show how to update Θν
(i) using only local information, so that (9) holds.

10
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Given D̃ν
(i), a step-size is employed in the update of D(i), generating the iterate Uν

(i):

Uν
(i) = Dν

(i) + γν(D̃ν
(i) −Dν

(i)), (10)

where γν is the step-size, to be properly chosen (see Assumption E, Sec. 3.1).
Let us now consider the update of the private variables Xi. Fixing D(i) = Uν

(i), agent

i computes the new update Xν+1
i by solving the following strongly convex optimization

problem:
Xν+1
i , argmin

Xi∈Xi
h̃i(Xi; U

ν
(i),X

ν
i ) + gi(Xi), (11)

where h̃i(•; Uν
(i),X

ν
i ) is a strongly convex function of Xi, approximating fi(U

ν
(i), •) at

(Uν
(i),X

ν
i ); see Assumption C (cf. Sec. 3.1) for specific instances of h̃i.

Step 2: Local Communications

Let us design now a local communication mechanism ensuring asymptotic consensus over
the local copies D(i)’s and property (9). To do so, we build on the (perturbed) push-sum
protocol proposed in (Sun et al., 2016) (see also Kempe et al. (2003)). Specifically, an extra
scalar variable φi is introduced at each agent’s side to deal with the directed nature of the
graph; given φνi and Uν

(j) from its in-neighbors j ∈ Ni, each agent i updates its own local
estimate Dν

(i) and φνi according to:

φν+1
i =

∑
j∈N in

i [ν]

aνij φ
ν
j and Dν+1

(i) =
1

φν+1
i

∑
j∈N in

i [ν]

aνij φ
ν
jU

ν
(j), (12)

where aνij ’s are some weights (to be properly chosen, see Assumption F, Sec. 3.1); and

φ0
i = 1, for all i = 1, . . . , I .

Note that the updates in (12) can be implemented locally: all agents only need to (i)
send their local variable Uν

(j) and the scalar weight aνij φ
ν
j to their neighbors; and (ii) collect

locally the information coming from the neighbors.
To update the Θν

(i) variables we leverage the gradient tracking mechanism first intro-

duced in (Di Lorenzo and Scutari, 2016), coupled with the push-sum consensus scheme (Sun
et al., 2016), resulting in the following perturbed push-sum scheme:

Θν+1
(i) =

1

φν+1
i

∑
j∈N in

i [ν]

aνijφ
ν
jΘ

ν
(j) +

1

φν+1
i

(
∇Dfi(Dν+1

(i) ,Xν+1
i )−∇Dfi(Dν

(i),X
ν
i )
)
, (13)

with Θ0
(i) , ∇Dfi(D0

(i),X
0
i ), for all i = 1, . . . , I . The update (13) follows similar logic

as that of Dν
(i) in (12), with the difference that (13) contains a perturbation [the second

term in the RHS of (13)], which employs Θν
(i) and ensures the desired tracking properties

(otherwise Θν
(i) would converge to the average of their initial values). Note that (13) can

be performed locally by agent i, following the same procedure as described for (12).
Combining the above steps, we can now formally introduce the proposed distributed al-

gorithm for the DL problems P, as described in Algorithm 1, and termed D4L (Decentralized
Dictionary Learning over Dynamic Digraphs) Algorithm.

11
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Algorithm 1 : Decentralized Dictionary Learning over Dynamic Digraphs (D4L)

Initialization : set ν = 0 and φ0
i = 1, D0

(i) ∈ D, X0
i ∈ Xi, Θ0

(i) = ∇Dfi(D0
(i),X

0
i ),

for all i = 1, 2, . . . , I .
S1. If (Dν

(i),X
ν
i ) satisfies a suitable stopping criterion: STOP;

S2. Local Optimization: Each agent i computes:

(a) D̃ν
(i) and Uν

(i) according to (8) and (10);

(b) Xν+1
i according to (11);

S3. Local Communications: Each agent i collects data from its current neighbors and
updates:

(a) φν+1
i and Dν+1

(i) according to (12);

(b) Θν+1
(i) according to (13);

S4. Set ν + 1→ ν, and go to S1.

3.1. Algorithmic Assumptions

Before stating the main convergence result for the D4L Algorithm, we discuss the main
assumptions governing the choices of the free parameters of the algorithm, namely: the
surrogate functions f̃i and h̃i, the step-size γν , and the consensus weights (aνij)

I
i,j=1.

3.1.1. On the choice of f̃i and h̃i.

The surrogate functions are chosen to satisfy the following assumption.

Assumption C (On f̃i and h̃i) Given Dν
(i) and Xν

i , f̃i(•; Dν
(i),X

ν
i ) in (8) is either

f̃i(D(i); D
ν
(i),X

ν
i ) = fi(D(i),X

ν
i ) +

τνD,i
2
||D(i) −Dν

(i)||
2
F , (14)

or

f̃i(D(i); D
ν
(i),X

ν
i ) =

〈
∇Dfi(Dν

(i),X
ν
i ),D(i) −Dν

(i)

〉
+
τνD,i

2

∥∥D(i) −Dν
(i)

∥∥2

F
, (15)

where τνD,i is a positive scalar satisfying Assumption D.

Given Uν
(i) and Xν

i , h̃i(•; Uν
(i),X

ν
i ) in (11) is either

h̃i(Xi; U
ν
(i),X

ν
i ) , fi(U

ν
(i),Xi) +

τνX,i
2
‖Xi −Xν

i ‖
2
F , (16)

or

h̃i(Xi; U
ν
(i),X

ν
i ) =

〈
∇Xifi(Uν

(i),X
ν
i ),Xi −Xν

i

〉
+
τνX,i

2

∥∥Xi −Xν
i

∥∥2

F
, (17)

where τνX,i is a positive scalar satisfying Assumption D.

12
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Assumption D (On τνX,i and τνD,i) The parameters (τνX,i)
I
i=1 and (τνD,i)

I
i=1 are chosen

such that

(D1) {τνD,i}ν and {τνX,i}ν satisfy

0 < inf
ν
τνD,i ≤ sup

ν
τνD,i < +∞, (18)

and
supν τ

ν
X,i < +∞,

τνX,i ≥
1
2L∇Xi(U

ν
(i)) + ε, ∀ν ≥ 1, (19)

for all i = 1, 2, . . . , I, where ε > 0 is an arbitrarily small constant, and L∇Xi is defined
in Assumption A2.

(D2) Stronger convergence results [cf. Theorem 2] can be obtained if, under Assumption
A5(ii), the sequences {τνD,i}ν and {τνX,i}ν , in addition to D1, also satisfy

∞∑
t=0

∣∣∣τ t+1
D,i − τ

t
D,i

∣∣∣ <∞, (20)

and
lim sup

ν

∣∣∣τνX,i − τν−1
X,i

∣∣∣ < µ, (21)

where µ , mini µi and µi is the strongly convexity constant of fi.

Discussion. Several comments are in order.
• On the choice of f̃i and h̃i. Since fi (resp. hi) is convex in D(i) (resp. Xi), (14) [resp.

(16)] is a natural choice for the surrogate f̃i (resp. h̃i): the structure of fi (resp. hi) is
preserved while a quadratic term is added to make the overall surrogate strongly convex.
The non-smooth strongly convex subproblems (8) and (11) resulting from (14) and (16) can
be solved using standard solvers, e.g., projected subgradient methods. When dealing with
large-scale instances, effective methods are also (Facchinei et al., 2015; Daneshmand et al.,
2015).

The alternative surrogates f̃i and h̃i as given in (15) and (17), respectively, are based
on the the linearization of the original fi and hi. This option is motivated by the fact
that, for specific instances of fi and hi, (15) and (17) lead to subproblems (8) and (11)
whose solution can be computed in closed form. For instance, consider the elastic net
sparse DL problem (3) in Sec. 2.2, where fi(D,Xi) = 1

2 ||Si − DXi||2F ; G(D) = 0; and
gi(Xi) = λ ||Xi||1 + µ

2 ||Xi||2F , with λ, µ > 0. By using (15), the resulting subproblem (8)
admits the following closed form solution:

D̃ν
(i) = PD

[
Dν

(i) −
I

τνD,i
Θν

(i)

]
. (22)

Referring to the sparse coding subproblem (11), if h̃i is chosen according to (16), computing
the update Xν+1

i results in solving a LASSO problem. If instead one uses the surrogate in
(17), the solution of (11) can be computed in closed form as

Xν+1
i =

τνX,i
µ+ τνX,i

T λ
τν
X,i

(
Xν
i −

1

τνX,i
∇Xifi(Uν

(i),X
ν
i )

)
, (23)

13
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where T is the soft-thresholding operator Tθ(x) , max(|x| − θ, 0) · sign(x) [with sign(·)
denoting the sign function], applied to the matrix argument component-wise.

• On the choice of τνX,i and τνD,i. These coefficients must satisfy Assumption D. Roughly

speaking, D1 ensures that (τνX,i)
I
i=1 and (τνD,i)

I
i=1 are bounded (both from below and above)

while D2 guarantees that these parameters are asymptotically “stable”. A trivial choice for
τνD,i satisfying both (18) and (20) is τνD,i = c, for some c > 0; some practical rules for τνX,i
satisfying both (19) and (21) are the following:

(a) Use a constant τνX,i, that is,

τνX,i = max
D∈D

[
max

(
σmax

(
∇2
Xifi(D,X

ν
i )
)
, ε̃

)]
,

for some ε̃ > 0. The above value can be, however, much larger than any σmax(∇2
Xi
fi(U

ν
(i),

Xν
i )), which can slow down the practical convergence of the algorithm;

(b) A less conservative choice is to satisfy (19) iteratively, while guaranteeing that τνX,i is
uniformly positive:

τνX,i = max(L∇Xi(U
ν
(i)), ε̃), (24)

where ε̃ is any positive (possibly small) constant;

(c) A generalization of (b) is

τνX,i ∈
[
max(L∇Xi(U

ν
(i)), ε̃), L∇Xi(U

ν
(i)) + µ̃

]
,

for some ε̃ and µ̃ such that 0 < ε̃ ≤ µ̃ < µ.

Remark 1 While the choices (a)-(c) above clearly satisfy (19), it can be shown that (21)
also holds, as a consequence of the continuity of L∇Xi(·) and Proposition 5 (cf. Appendix
A.4).

Note that all the above rules do not require any coordination among the agents, but are
implementable in a fully distributed manner, using only local information.

3.1.2. On the choice of γν

The step-size can be chosen according to the following assumption.

Assumption E (On γν) {γν}ν satisfies: γν ∈ (0, 1], for all ν;
∑∞

ν=0 γ
ν = ∞; and∑∞

ν=0 (γν)2 <∞.

The above assumption is the standard diminishing-rule; see, e.g., (Bertsekas and Tsitsiklis,
1997). Here, we only recall one rule, satisfying Assumption E, that we found very effective
in our experiments, namely (Facchinei et al., 2015): γν = γν−1(1− ε0γν−1) with γ0 ∈ (0, 1]
and ε0 ∈ (0, 1/γ0).
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3.1.3. On the choice of the weigh coefficients {aνij}.

We denote by Aν the matrix whose entries are the weights aνij ’s, i.e., [Aν ]i,j = aνij . This
matrix is chosen so that the following conditions are satisfied.

Assumption F (On the weighting matrix) Given the digraph Gν = (V , Eν), each ma-
trix Aν , with [Aν ]ij = aνij, satisfies

(F1) aνii ≥ κ > 0 for all i = 1, . . . , I;

(F2) aνij ≥ κ > 0, if (j, i) ∈ Eν ; and aνij = 0 otherwise;

(F3) Aν is column stochastic, i.e., 1ᵀAν = 1ᵀ.

When the graph Gν is directed, a valid choice of Aν is (Kempe et al., 2003): aνij = 1/dνj
if j ∈ N in

i [ν], and aνij = 0 otherwise, where dνj is the out-degree of agent j at time ν. The
resulting communication protocols (12)–(13) can be easily implemented in a distributed
fashion:each agent i) broadcasts its local variable normalized by its current out-degree; and
ii) collects locally the information coming from its neighbors. When the graph is undirected,
several options are available in the literature, including: the Laplacian, Metropolis-Hastings,
and maximum-degree weights; see, e.g., (Xiao et al., 2005).

4. Convergence of D4L

In this section, we provide the main convergence results for the D4L Algorithm. We begin
introducing some definitions, instrumental to state our results. Let

Dν , [Dνᵀ
(1),D

νᵀ
(2), . . . ,D

νᵀ
(I)]
ᵀ, Xν , [Xν

1 ,X
ν
2 , . . . ,X

ν
I ], and D

ν
,

1

I

I∑
i=1

Dν
(i). (25)

Given the sequence {(Dν ,Xν)}ν generated by the D4L Algorithm, convergence is stated
measuring the distance of the sequence {(Dν

,Xν}ν from optimality as well as the consensus
disagreement among the local variables Dν

(i)’s. Distance from stationarity is measured by

∆ν , max(∆D(D
ν
,Xν),∆X(D

ν
,Xν)) (26)

where

∆D(D
ν
,Xν) , ||D̂(D

ν
,Xν)−D

ν ||∞,∞, ∆X(D
ν
,Xν) , ||X̂(D

ν
,Xν)−Xν ||∞,∞, (27)

with the functions D̂(•, •) and X̂(•, •) defined as:

D̂(D
ν
,Xν) , argmin

D′∈D

〈
∇DF (D

ν
,Xν),D′ −D

ν〉
+
τ̂D
2

∥∥D′ −D
ν∥∥2

+G(D′), (28)

X̂(D
ν
,Xν) , [X̂1(D

ν
,Xν

1), . . . , X̂I(D
ν
,Xν

I )],

with X̂i(D
ν
,Xν

i ) , argmin
X′i∈Xi

〈
∇Xifi(D

ν
,Xν

i ),X′i −Xν
i

〉
+
τ̂X
2

∥∥X′i −Xν
i

∥∥2
+ gi(X

′
i),

(29)
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for some given constants τ̂D > 0 and τ̂X > 0. Note that ∆D(•, •) and ∆X(•, •) are valid
merit functions, in the sense that they are continuous and ∆D(D

∞
,X∞) = ∆X(D

∞
,X∞) =

0 if and only if (D
∞
,X∞) is a stationary solution of Problem (P) (Facchinei et al., 2015).

The consensus error at iteration ν is measured by the function

eν , ||Dν − 1⊗D
ν ||∞,∞. (30)

Asymptotic convergence of D4L to stationary solutions of (P) is stated in Theorem 2 below
while the convergence rate is studied in Theorem 3.

Theorem 2 Given Problem P under Assumption A, let
{(

Dν ,Xν
)}

ν
be the sequence gen-

erated by the D4L Algorithm for a given initial point
(
D0,X0

)
and under Assumptions B,

C, D1, E, F. Then,

(a) [Consensus]: All Dν
(i)’s are asymptotically consensual, i.e., limν→∞ e

ν = 0;

(b) [Convergence]: i) {(Dν
,Xν)}ν is bounded; ii) {U(D

ν
,Xν)}ν converges to a finite

value; iii) limν→∞∆X(D
ν
,Xν) = 0; and iv) lim infν→∞∆D(D

ν
,Xν) = 0. Therefore,

{(Dν
,Xν)}ν has at least one limit point which is a stationary solution of P.

If, in particular, Assumption A5(ii) holds and D1 is reinforced by D2, then convergence in
(b) can be strengthened as follows:

(b’) Case (b) holds and limν→∞∆ν = 0, implying that all the limit points of {(Dν
,Xν)}ν

are stationary solutions of P.

Proof The proof is quite involved and is given in Appendix A.2.

The above theorem states two main convergence results under Assumptions B, C, D1, E,
F: i) existence of at least a subsequence of (D

ν
,Xν) converging to a stationary solution of

Problem P; and ii) asymptotic consensus of all Dν
(i) to a common value D

ν
. If Assumption

A5(ii) is also assumed and D1 is reinforced by D2 the stronger results in (b’) can be proven,
showing that every limit point is a stationary solution. Note that from a practical point
of view the weaker result guaranteeing existence of at least a subsequence converging to
a stationary solution is perfectly satisfying, since it guarantees that the algorithm can be
terminated after a finite number of iterations with an approximate solution.

Theorem 3 Consider either settings of Theorem 2, with the additional assumption that
the step-size sequence {γν}ν is non-increasing. For any given ε > 0, let TD,ε , min{ν ∈
N+ : ∆D(D

ν
,Xν) ≤ ε} and TX,ε , min{ν ∈ N+ : ∆X(D

ν
,Xν) ≤ ε}. Then,

(a) [Rate of consensus error]:

eν = O
(
γdθνe

)
, (31)for every θ ∈ (0, 1);

(b) [Rate of optimization errors]:

TX,ε = O
(

1

ε2

)
. (32)

Let γν = K/νp with some constant K > 0 and p ∈ (1/2, 1). Then,

TD,ε = O
(

1

ε2/(1−p)

)
. (33)
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Figure 3: Topology of a simulated (sparse) network

Proof See Appendix A.3

We remark that, while a convergence rate has been established in the literature (see,
e.g., Razaviyayn et al. (2014a)) for certain centralized algorithms applied to special classes of
DL problems, Theorem 3 represents the first rate result for a distributed algorithm tackling
the class of DL problems P.

5. Numerical Experiments

In this section, we test numerically our algorithmic framework on several classes of problems,
namely: (i) Image denoising, (ii) Biclustering, (iii) Sparse PCA, and (iv) Non-negative
sparse coding. We recall that D4L is the first provably convergent distributed algorithm for
Problem P; comparisons are thus not simple. To give the sense of the performance of D4L,
in our experiments,

(i) when available, we implemented, centralized algorithms tailored to the specific prob-
lems under consideration and used the results as benchmarks;

(ii) for undirected graphs, we extended the (distributed) Prox-PDA-IP (Zhao et al.,
2016) algorithm to the simulated instances of Problem P (generalizations of this method to
directed graphs seem not possible);

(iii) for both undirected and directed graphs, we implemented a suitable version of the
Adapt-Then-Combine (ATC) Algorithm (Chainais and Richard, 2013). Note that ATC has
no formal convergence proof, and is originally designed to handle only undirected graphs,
but we managed to make a sensible extension of this method to directed graphs too, by
using some of the ideas developed in this paper.

All codes are written in MATLAB 2016b, and implemented on a computer with Intel
Xeon (E5-1607 v3) quad-core 3.10GHz processor and 16.0 GB of DDR4 main memory.

5.1. Image Denoising

Problem formulations: We consider denoising a 512× 512 pixels image of a fishing boat
(USC, 1997)−see Fig. 5(a). We simulate a cluster computer network composed of 150 nodes
(computers). Denoting by F0 and F the noise-free and corrupted image, respectively, the
SNR (in dB) is defined as SNR , 20·log(||vec(F0)||2/

√
MSE) while the Peak SNR (in dB) is
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defined as PSNR , 20 · log(maxi(vec(F0))i/
√

MSE), where MSE is the Mean-Squared-Error
between F0 and F. The fishing boat image is corrupted by additive white Gaussian noise,
so that SNR = 15 dB and PSNR = 20.34 dB.

To perform the denoising task, we consider the elastic net sparse DL formulation (3).
We extract 255,150 square sliding s× s pixel patches (s = 8) and aggregate the vectorized
extracted patches in a single data matrix S of size 64× 255, 150. The size of the dictionary
is s2 × s2 = 64× 64; the data matrix is equally distributed across the 150 nodes, resulting
in sparse representation matrices Xi of size 64 × 1701 (K = 64 and ni = 1701). The total
number of optimization variables is then 16, 333, 696. The free parameters λ, µ and α in
(3) are set to λ = 1/s, µ = λ and α = 1, respectively.

Algorithms and tuning: We tested: i) two instances of the D4L Algorithm, corresponding
to two alternative choices of the surrogate functions; ii) the Prox-PDA-IP algorithm (Zhao
et al., 2016), adapted to problem (3) (only on undirected networks); iii) the ATC algorithm
(Chainais and Richard, 2013); and iv) the centralized K-SVD algorithm (Elad and Aharon,
2006) (KSVD-Box v13 package), used as a benchmark. More specifically, the two instances
of the D4L Algorithm are:

• Plain D4L: h̃i is chosen as in (16) (the original function) and f̃i as in (15);

• Linearized D4L: h̃i is given by (17) (first-order approximation) and f̃i is given by
(15).

The rest of the parameters in both instances of D4L is set as: γν = γν−1(1 − εγν−1), with
γ0 = 0.5 and ε = 10−2; τνD,i = 10; and τνX,i = max(L∇Xi(U

ν
(i)), 1) [cf. (24)].

Our adaptation of the Prox-PDA-IP algorithm to Problem (3) is summarized in Al-
gorithm 2. The difference with the original version in (Zhao et al., 2016) are: i) the
elastic net penalty is used in the objective function for the Xi’s variables, instead of
the `1-norm and `2-norm ball constraints; and ii) the variables D(i)’s are constrained in

D , {D : ||Dek||2 ≤ α, k = 1, 2, . . . ,K} rather than using the `2-norm regularization
in the objective function. The other symbols used in Algorithm 2 are: i) the incidence
matrix of G, denoted by M = (Mei)e,i ∈ RE×I , with E , |E|; ii) the matrices Ων

e ∈ RM×K ,
e = 1, ..., E, which are the ν-th iterate of the dual matrix variables Ωe ∈ RM×K , as intro-
duced in the original Prox-PDA-IP; and iii) {βν}ν∈N+ is the increasing penalty parameter,
set to βν = 0.002ν.

All the algorithms are initialized to the same value: D0
(i)’s coincide with randomly

(uniformly) chosen columns of S(i)’s whereas all X0
i ’s are set to zero.

While the subproblems solved at each iteration ν in Linearized D4L admit a closed-
form−see (23) and (22)−in both Plain D4L and ATC, the update of the dictionary has the
closed form expression (22), but the update of the private variables calls for the solution of
a LASSO problem (cf. Sec. 3.1). For both Plain D4L and ATC, the LASSO subproblems
at iteration ν are solved using the (sub)gradient algorithm, with the following tuning. A
diminishing step-size is used, set to γr = γr−1(1− εγr−1), where γ0 = 0.9, ε = 10−3, and r
denotes the inner iteration index. A warm start is used for the subgradient algorithm: the
initial points are set to Xν

i , where ν is the iteration index of the outer loop. We terminate
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Algorithm 2 : Prox-PDA-IP algorithm (Zhao et al., 2016)

Initialization : D0
(i) ∈ D, X0

i ∈ Xi, Ω0 = 0;

S1. If (Dν
(i),X

ν
i )i satisfies stopping criterion: STOP;

S2. Each agent i computes θνi = ||Dν
(i)X

ν
i − Si||2F and:

(a) Xν+1
i = argmin

Xi∈RK×ni
fi(D

ν
(i),Xi)+gi(Xi)+

βν+1θνi
2
||Xi−Xν

i ||2F +
βν+1

2
||Dν

(i)(Xi−Xν
i )||2F ;

(b) Dν+1
(i) = argmin

D(i)∈D
fi(D(i),X

ν+1
i ) +

∑E
e=1Mei

〈
Ων
e ,D(i)

〉
+βν+1

(
di||D(i)||2F −

〈
D(i), (di − 1)Dν

(i) +
∑

j∈Ni D
ν
(j)

〉)
;

(c) Ων+1
e = Ων

e + βν+1
∑I

i=1MeiD
ν+1
(i) , ∀e = (i, j) ∈ E ;

S3. Set ν + 1→ ν, and go to S1.

the subgradient algorithm in the inner loop when Jri ≤ 10−6, with

Jri ,

∥∥∥∥Xν,r
i −

s

1 + s
T 1
s

(
Xν,r
i −

(
∇Xifi(Uν

(i),X
ν,r
i ) + τνX,i (Xν,r

i −Xν
i )
))∥∥∥∥

∞,∞
,

where Xν,r
i denotes the value of Xi at the r-th inner iteration and outer iteration ν; and

Tθ(x) , max(|x| − θ, 0) · sign(x) is the soft-thresholding operator, applied to the matrix
argument componentwise. In all our simulations, we observed that the above accuracy was
reached within 30 (inner) iterations of the subgradient algorithm.

In the Prox-PDA-IP scheme, Step S2 (cf. Algorithm 2) calls for the solution of two sub-
problems, including a LASSO problem. As for Plain D4L and ATC, we used the (projected)
(sub)-gradient algorithm (with the same diminishing step-size rule) to solve the subprob-
lems; we terminated the inner loop when the length between two consecutive iterates of the
(projected) (sub)-gradient algorithm goes for the first time below 10−6.

We simulated both undirected and directed static graphs. In the former case, there is no
need of the φ-variables and, in the second equation of (12) [and (13)], the terms (φνj a

ν
ij)/φ

ν+1
i

reduce to aij . The weights aij are chosen according to the Metropolis-Hasting rule (Xiao
et al., 2007); the resulting matrix Aν = [aij ]ij is thus time-invariant and doubly stochastic.
When the graph is directed, we use the update of the φνi ’s as in (12), with the weights aνij
chosen according to the push-sum protocol (Kempe et al., 2003) (cf. Sec. 3.1.3).

Convergence speed and quality of the reconstruction: In the first set of simulations,
we considered an undirected graph composed of 150 nodes, clustered in 6 groups of 25 (see
Fig. 3). Starting from this topology, we kept adding random edges till a connected graph
was obtained. Specifically, an arc is added between two nodes in the same cluster (resp.
different clusters) with probability p1 = 0.2 (resp. p2 = 2× 10−3).

In Fig. 4 we plot the objective function value [subplot on the left], the consensus dis-
agreement eν as in (30) [subplot in the center], and the distance from stationarity ∆ν as in
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Figure 4: Denoising problem – D4L, Prox-PDA-IP and ATC algorithms: objective value
[subplot on the left], consensus disagreement [subplot in the center], and distance
from stationarity ∆ν [cf. (26)] [subplot on the right] vs. number of message
exchanges.

(28) [subplot on the right] versus the number of message exchanges, achieved by Plain D4L,
Linearized D4L, Prox-PDA-IP, and ATC. Note that the number of messages exchanged in
the ATC algorithm at iteration ν coincides with ν whereas for Prox-PDA-IP and the D4L
schemes is 2ν (recall that the latter schemes employ two steps of communications per itera-
tion). The figures clearly show that both versions of D4L are much faster than Prox-PDA-IP
and ATC (or, equivalently, they require fewer information exchanges). Moreover, ATC does
not seem to reach a consensus on the local copies of the dictionary, while Prox-PDA-IP and
D4L schemes reach an agreement quite soon. In Fig. 5, we plot the reconstructed images
along with their PSNR and MSE, obtained by the algorithms, when terminated after 1000
message exchanges. The figures clearly show superior performance of D4L over its com-
petitors. Also, the values of PSNR and MSE achieved by D4L are comparable with those
obtained by (centralized) K-SVD (KSVD-Box v13 package).

A closer look at Fig. 4 shows that a significant decay on the objective function occurs
in the first 200 message exchanges. It is then interesting to check the quality of the re-
constructed images, achieved by the algorithms if terminated then. In Fig. 6, we report
the images and values of PSNR and MSE obtained by terminating the schemes after 200
message exchanges (we also plot the benchmark obtained by K-SVD, run till optimality).
The figure shows that both versions of D4L attain high quality solutions even if terminated
after few message exchanges while ATC and Prox-PDA-IP lag behind. This means that, in
practice, there is no need to run D4L till very low values of eν and ∆ν are achieved.

Since the algorithms do not have the same cost-per-iteration, to get further insights
into the performance of these schemes, we also compare them in terms of running time. In
Table 2, we report the averaged elapsed time to execute one iteration of all algorithms. We
considered the same setting as in the previous figures, but we terminated all algorithms after
273 seconds, which corresponds to the time for the fastest algorithm (i.e. Linearized D4L) to
perform 200 message exchanges [cf. Fig. 6]. The associated reconstructed images are shown
in Fig. 7. Once again, these results clearly show that the linearized D4L scheme significantly
outperforms Prox-PDA-IP and ATC. Also, Linearized D4L performs considerably better
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Figure 5: Denoising outcome. (a): original image; (b): corrupted image; (c)-(f): denois-
ing achieved by D4L, Prox-PDA-IP and ATC terminated after 1000 message
exchanges; and (g): denoising achieved by centralized K-SVD (KSVD-Box v13).

than Plain D4L, when terminated early; the explanation is in Table 2 which shows that the
time of one iteration of the former algorithm is much shorter than that of Plain D4L.

Algorithm Average Time per Iteration (sec)

Linearized D4L 2.862
Plain D4L 11.328

Prox-PDA-IP 30.98
ATC 9.838

Table 2: D4L vs. Prox-PDA-IP and ATC: Average computation time per iteration

Impact of the graph topology and connectivity: We study now the influence of
the topology and graph connectivity on the performance of the algorithms. We consider
directed, static graphs. We generated 5 instances of digraphs, with different connectivity,
according to the following procedure. There are 500 nodes (I = 500), which are clustered
in nc = 50 clusters, each of them containing 10 = I/nc nodes. Each node has an outgoing
arc to another node in the same cluster with probability p1 while p2 is the probability of
an outgoing arc to a node in a different cluster. We chose the values of p1 and p2, as in
Table 3; we simulated three scenarios, namely: N1 corresponds to a “highly” connected
network, N3 describes a “poorly” connected scenario, and N2 is an intermediate case. For
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Figure 6: Denoising outcome. (a): original image; (b): corrupted image; (c)-(f): denois-
ing achieved by D4L, Prox-PDA-IP and ATC terminated after 200 message ex-
changes; and (g): denoising achieved by centralized K-SVD (KSVD-Box v13).

Figure 7: Denoising outcome. (a): Linearized D4L; (b): Plain D4L; (c): Prox-PDA-IP;
(d) ATC; all terminated after after 273 seconds run-time (corresponding to 200
message exchanges of the Linearized D4L).

each scenario, we generated 5 random instances (if a generated graph was not strongly
connected we discarded it and generated a new one) and then ran Plain and Linearized
D4L and ATC on the resulting 15 graphs. Recall that ATC was not designed to work on
directed networks. We thus modified it by using our new consensus protocol (but not the
gradient tracking mechanism); we term it Modified ATC.

In Fig. 8 we plot the average value of the objective function [subplot on the left], the
consensus disagreement eν [subplot in the center], and the distance from stationarity ∆ν

[subplot on the right], achieved by Plain D4L, Linearized D4L, and Modified ATC, versus
the number of message exchanges, for the three scenarios N1 [subplot (a)], N2 [subplot (b)]
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Figure 8: Denoising problem–D4L and Modified ATC algorithms: objective value [subplots
on the left], consensus disagreement [subplots in the center], and distance from
stationarity ∆ν [cf. (26)] [subplots on the right] vs. number of message ex-
changes. Comparison over three network settings [cf. Table 3]: N1 [subplots (a)],
N2 [subplots (b)], and N3 [subplots (c)].
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Network # I nc p1 p2

N1 500 50 0.9 0.9
N2 500 50 0.1 0.01
N3 500 50 0.05 0.01

Table 3: Network setting

and N3 [subplot (c)]. The average is taken over the aforementioned 5 digraph realizations.
While also this batch of tests confirms the better behavior of D4L schemes over ATC, it is
interesting to observe that there seems to be little influence of the degree of connectivity on
the behavior of Linearized and Plain D4L. The only aspect for which a reasonable influence
can be seen is on consensus. In fact, with respect to consensus, Linearized D4L seems to
improve over Plain D4L, when connectivity decreases. This has a natural interpretation.
Plain D4L solves much more accurate subproblems at each iteration and this is, in some
sense useless, especially in early iterations, when information has not spread across the
network. It seems clear that the less connected the graph, the more time information needs
to spread. Therefore, in scenario N1, the two methods are almost equivalent and, looking
at consensus error, we see that initially Linearized D4L is better than Plain D4L, but soon,
as information spreads, Plain D4L becomes, even if slightly, better than Linearized D4L.
The same behavior can be observed for scenario N2, but this time the initial advantage of
Linearized D4L is larger and the switching point is reached much later. This is consistent
with the fact that information needs more time to spread and therefore solving the accurate
subproblem is not advantageous. If one passes to N3, where connectivity is very loose, there
is no switching point within the first 1000 message exchanges.

5.2. Biclustering

Biclustering has been shown to be useful in several applications, including biology, infor-
mation retrieval, and data mining; see, e.g., (Madeira and Oliveira, 2004).

Problem Formulation: We consider a Biclustering problem in the form (6), applied
to genetic information. We solved the problem simulating a networked computer cluster
composed of 500 nodes (see Table 3). The genetic data is borrowed from (Lee et al.,
2010) (centered and normalized): the data matrix S of size 56 × 12, 625 (M = 56 and
N = 12, 625) contains microarray gene expressions of 56 patients (rows); each patient is
either identified to be normal (Normal) or belonging to one of the following three types
of lung cancer: pulmonary carcinoid tumors (Carcinoid), colon metastases (Colon), and
small cell carcinoma (SmallCell). We considered the unsupervised instance of the problem,
meaning that none of the a-priori information about the type of patients’ cancer is used
to perform biclustering. Following the numerical experiments of (Lee et al., 2010), we seek
rank-3 sparse matrices Xi, and the data matrix S is equally distributed across the 500
nodes, resulting thus in K = 3 and ni = 26. The total number of variables is then 39, 168.
The other parameters are set as follows: α = 1, λX = µX = 0.1, and λD = µD = 0.1.

Algorithms and tuning: We tested the instance of D4L where f̃i and h̃i are chosen
according to (14) and (16), respectively. The rationale behind this choice is to exploit the
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extra structure of the original function fi, plus, in case of f̃i, there is no certain benefit
in using the linear approximation (15) as it does not lead to any closed form solution of
the subproblem (8). Note that the Prox-PDA-IP scheme is not applicable here since the
network is directed.

The other parameters of the algorithm are set to: γν = γν−1(1− εγν−1), with γ0 = 0.2
and ε = 10−2; and τνD,i = 100 and τνX,i = max(L∇Xi(U

ν
(i)), 100). We term such an instance

of D4L Plain D4L. We compared Plain D4L with the following algorithms: i) (a modi-
fied version of) the distributed ATC algorithm (Chainais and Richard, 2013), where the
optimization of D is adjusted to solve (6) (the elastic-net penalty is added), and the con-
sensus mechanism is modified with our new consensus protocol to handle directed network
topologies; we termed this instance Modified ATC ; and ii) the centralized SSVD algorithm
proposed in Lee et al. (2010) (implemented using the MATLAB code provided by the au-
thors), to benchmark the results obtained by the distributed algorithms. All the distributed
algorithm are initialized setting each X0

i = 0, and each D0
(i) equal to some randomly chosen

columns of Si.
In D4L, the subproblems (8) and (11) at iteration ν do not have a closed form solution;

they are solved using the projected (sub)gradient algorithm, with diminishing step-size
γr = γr−1(1 − εγr−1), where γ0 = 0.9, ε = 10−3, and r denotes the inner iteration index.
A warm start is used for the projected subgradient algorithm; the initial points are set to
Dν

(i) and Xν
i in problems (8) and (11), respectively, where ν is the iteration index of the

outer loop. We terminate the projected subgradient algorithm solving (8) and (11) when
JrD,i , ‖D̂

ν,r
(i) −Dν,r

(i) ‖∞,∞ ≤ 10−6 and JrX,i , ‖X̂
ν,r
i −Xν,r

i ‖∞,∞,≤ 10−6, respectively, where

D̂ν,r
(i) , argmin

D(i)∈D

〈
∇Dfi(Dν,r

(i) ,X
ν
i ) + IΘν

(i) −∇Dfi(D
ν
(i),X

ν
i ) + τνD,i

(
Dν,r

(i) −Dν
(i)

)
,D(i) −Dν,r

(i)

〉
+

100

2

∥∥∥D(i) −Dν,r
(i)

∥∥∥2
+G

(
D(i)

)
,

X̂ν,r
i , argmin

Xi∈RK×ni

〈
∇Xifi(Uν

(i),X
ν,r
i ) + τνX,i (Xν,r

i −Xν
i ) ,Xi −Xν,r

i

〉
+

100

2
‖Xi −Xν,r

i ‖
2

+ gi (Xi) ,

with Dν,r
(i) and Xν,r

i denoting the value of D(i) and Xi at the ν-th outer and r-th inner
iteration, respectively. In all our simulations, the above accuracy was reached within 50
(inner) iterations of the projected subgradient algorithm.

Convergence speed and quality of the reconstruction: We simulated 3 directed static
network topologies, namely: N1-N3, as given in Table 3. In Fig. 9 we plot he average value
of the objective function [subplot on the left], the consensus disagreement eν [subplot in
the center], and the distance from stationarity ∆ν [subplot on the right], achieved by Plain
D4L and Modified ATC, versus the number of message exchanges, for the three scenarios
N1 [subplot (a)], N2 [subplot (b)] and N3 [subplot (c)]. The average is taken over 5 digraph
realizations. Fig. 9 shows that Plain D4L algorithm attains satisfactory merit values in
all network scenarios, while Modified ATC fails to reach consensus/convergence, even in
highly connected networks. The poor performance of Modified ATC seem mainly due to
the incapability of locking the consensus.
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Figure 9: Biclustering problem–Plain D4L and Modified ATC algorithms: objective value
[subplots on the left], consensus disagreement [subplots in the center], and dis-
tance from stationarity ∆ν [cf. (26)] [subplots on the right] vs. number of message
exchanges. Comparison over three network settings [cf. Table 3]: N1 [subplots
(a)], N2 [subplots (b)], and N3 [subplots (c)].
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In order to assess the quality of the solutions achieved by the three algorithms, we
employ the following procedure. Given the limit point (up to the fixed accuracy) D∞ of
the algorithm under consideration, patients’ information is in form of (unlabeled clusters
of) data points {D∞m,:}56

m=1, where D∞m,: denotes the m-th row of D∞ and represents an
individual patient. In order to compare D∞ with the labeled ground truth, we need to tag
labels to the clustered points of D∞. To do so, we run the K-means clustering algorithm
on {D∞m,:}56

m=1. Specifically, we first run K-means 100 times and, in each run, we perform
a preliminary clustering using 10% of the points (randomly chosen). Then, among the
100 obtained clustering configurations, we picked the one with the smallest “within-cluster
sum of point-to-centroid distances”.1 Finally, we assign to each cluster the label associated
with the most populated type of cancer in the cluster. Denoting the ground truth classes
by {Ci}4i=1 (recall that there are 4 classes/types of cancer), where each Ci consists of the

group of patients with the same type of cancer, and by {C̃i}4i=1 the clustering obtained by
the procedure described above applied to the outcome D∞ of the simulated algorithms, we
measure the quality of the clustering by the Jaccard index, defined as

J =

∣∣∣⋃i

(
Ci ∩ C̃i

)∣∣∣∑
i

∣∣∣Ci ∪ C̃i∣∣∣ .
Clearly 0 ≤ J ≤ 1, and the higher the index value, the better the quality of the clustering.

In Table 4, we report the average and Maximum Absolute Deviation (MAD) of the
Jaccard indices from their average, computed over the aforementioned 5 realizations of the
three graph topologies, as in Table 3 (see also Fig. 9). The values in the table clearly show
that Plain D4L achieves better results than those produced by Modified ATC or centralized
methods. Moreover, the value of the Jaccard index from Plain D4L does not depend on the
specific network topology. which is not the case for Modified ATC.

Network # Plain D4L Modified ATC Lee et al. (2010)

N1 0.8983/0 0.7778/0 –
N2 0.8983/0 0.7045/0.3218 –
N3 0.8983/0 0.7892/0.0172 –

Centralized – – 0.7231/–

Table 4: Biclustering problem−Average/MAD of Jaccard indices over 5 realizations of di-
graphs.

5.3. Non-negative Sparse Coding (NNSC) and Sparse PCA (SPCA)

Problem Formulation: We consider the Non-negative Sparse Coding (NSC) formula-
tion (7) (Hoyer, 2004) and the Sparse PCA problem (6) (Mairal et al., 2010). For both
formulations, we run experiments using the following two datasets:

• MIT-CBCL face database #1 (Sung, 1996): a pool of N = 2, 429 vectorized face
images of size 19× 19 pixels each (i.e. M = 361);

1. Given a clustering partition {Ci}4i=1, the “within-cluster sum of point-to-centroid distances” mea-
sures the quality of the k-means clustering, and is defined as

∑4
i=1

∑
j∈Ci ||D

∞
j,: − D

∞
Ci ||

2, where

DCi ,
1
|Ci|

∑
j∈Ci D∞j,: and |Ci| denotes the cardinality of the set Ci.
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• The VOC 2006 database (Everingham et al., 2010): a pool of N = 10, 000 vectorized
natural image patches of size 16 × 16 pixels each (i.e. M = 256).

Consistently with (Mairal et al., 2010), the free parameters are set as:

• NNSC (7): K = 49, λ = µ = 1/
√
M , and α = 1;

• Sparse PCA (6): K = 49, λX = µX = 1/
√
M , λD = µD = 1/

√
M , and α = 1.

The total number of variables for the above optimization problems are 136,710 for the
MIT-CBCL dataset, and 502,544 for the VOC 2006 dataset.

We simulated the communication network as static directed graphs of size I, clustered
in nc groups, where each node has an outgoing arc to another node in the same cluster with
probability p1, while p2 is the probability of an outgoing arc to a node in a different cluster.
We run our tests over 6 different network scenarios, with various size I and probability pair
(p1, p2), as given in Table 5. Note that if N/I is not an integer, we pad zero columns to
the data matrix S so that all the agents own equal-size partitions Si’s, thus ni = dN/Ie in
both problems (6) and (7).

Network # I nc p1 p2

N4 10 2 0.9 0.3
N5 10 2 0.2 0.1
N6 50 5 0.9 0.3
N7 50 5 0.2 0.1
N8 250 10 0.9 0.3
N9 250 10 0.2 0.1

Table 5: Network setting for the NNSC and Sparse PCA problems.

5.3.1. Non-negative Sparse Coding

Algorithms and tuning: We test the Plain D4L, with f̃i and h̃i chosen according to (15)
and (16), respectively. The other parameters of the algorithm are set to: γν = γν−1(1 −
εγν−1), with γ0 = 0.2 and ε = 10−2; and τνD,i = 10 and τνX,i = max(L∇Xi(U

ν
(i)), 10). We

compare the proposed scheme with a modified version of ATC, equipped with our new
consensus protocol, implementable on directed networks. All the distributed algorithm are
initialized setting X0

i = 0 and D0
(i) equal to some randomly chosen columns of Si. Both Plain

D4L and Modified ATC call for solving a LASSO problem in updating the private variables
(cf. Sec. 3.1); the update of the dictionary has instead a closed form expression, see (22). For
both Plain D4L and Modified ATC, the LASSO subproblems at iteration ν are solved using
the projected (sub)gradient algorithm with diminishing step-size γr = γr−1(1 − εγr−1),
where γ0 = 0.9, ε = 10−3, and r denoting the inner iteration index. We terminate the
projected subgradient algorithm in the inner loop when JrX,i , ‖X̂

ν,r
i −Xν,r

i ‖∞,∞ ≤ 10−4,
where

X̂ν,r
i , argmin

Xi∈Xi

〈
∇Xifi(Uν

(i),X
ν,r
i ) + τνX,i (Xν,r

i −Xν
i ) ,Xi −Xν,r

i

〉
+

1

2
‖Xi −Xν,r

i ‖
2
+gi (Xi) ,
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and Xν,r
i denotes the value of Xi at the ν-th outer and r-th inner iteration. In all our

simulations, the above accuracy was reached within 30 (inner) iterations of the projected
subgradient algorithm.

Convergence speed and quality of the reconstruction: We run the Plain D4L and
Modified ATC algorithms over different network settings, as listed in Table 5, and we
terminated them after 1500 message exchanges. We replicated the tests for 5 independent
realizations and we reported the average of the final values of the objective function, the
consensus disagreement, and the distance from stationarity in Table 6 and Table 7, for the
MIT-CBCL and VOC 2006 datasets, respectively. In Fig. 10 and Fig. 11 (for MIT-CBCL
and VOC 2006 datasets, respectively), we plot the average value (over the aforementioned 5
graph realizations) of the objective function [subplot on the left], the consensus disagreement
eν [subplot in the center], and the distance from stationarity ∆ν [subplot on the right],
versus number of message exchanges, for the two extreme network scenarios N4 [subplot
(a)] and N9 [subplot (b)]. These results show that the proposed Plain D4L significantly
outperforms the Modified ATC algorithm. They also show a remarkable stability of Plain
D4L with respect to the simulated network graphs, which is not observed for the Modified
ATC, whose performance deteriorates significantly going from N4 to N9.

Network # objective value consensus disagreement distance from stationarity

N4 169.8/171.9 9.17e-7/2.9e-4 4.7e-4/8.8e-2
N5 169.9/172.2 4.5e-6/6.7e-4 5.3e-4/9.8e-2
N6 169.8/177.2 2.4e-7/1.9e-4 5.1e-4/6.3e-2
N7 169.9/177.3 1.1e-6/6.3e-4 5.5e-4/6.1e-2
N8 169.8/191.0 2.1e-7/1.2e-4 5.1e-4/2.2e-2
N9 169.8/190.9 5.8e-7/3.1e-4 6.6e-4/1.1e-2

Table 6: NNSC problem (MIT-CBCL dataset)–Plain D4L/Modified ATC algorithms: ob-
jective value, consensus disagreement, and distance from stationarity obtained
after 1500 message exchanges.

Network # objective value consensus disagreement distance from stationarity

N4 845.2/848.8 2.9e-6/1.3e-4 1.1e-3/4.1e-3
N5 845.9/850.1 1.5e-5/5.3e-4 1.5e-3/6.1e-3
N6 844.8/879.5 5.7e-7/2.2e-4 1.3e-3/4.4e-2
N7 844.5/879.3 1.9e-6/1.2e-3 1.3e-3/3.9e-2
N8 844.8/941.2 5.6e-7/1.5e-4 1.6e-3/4.8e-2
N9 845.0/941.8 1.5e-6/3.6e-4 1.1e-3/5.1e-2

Table 7: NNSC problem (VOC 2006 dataset)–Plain D4L/Modified ATC algorithms: objec-
tive value, consensus disagreement, and distance from stationarity obtained after
1500 message exchanges.
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Figure 10: NNSC problem (MIT-CBCL dataset)–Plain D4L and Modified ATC algorithms:
objective value [subplots on the left], consensus disagreement [subplots in the
center], and distance from stationarity ∆ν [cf. (26)] [subplots on the right]
vs. number of message exchanges. Comparison over the network settings N4
[subplots (a)] and N9 [subplots (b)] (cf. Table 5).

5.3.2. Sparse Principal Component Analysis (SPCA)

Algorithms and tuning: We test the same D4L version as used in the Biclustering
experiments (cf. Subsec. 5.2), i.e., f̃i and h̃i are chosen according to (14) and (16), re-
spectively; we set γν = γν−1(1 − εγν−1), with γ0 = 0.2 and ε = 10−2; and τνD,i = 10 and

τνX,i = max(L∇Xi(U
ν
(i)), 10). We term it Plain D4L. We compare Plain D4L with a modified

version of the ATC algorithm, which has been adapted to solve (6) and equipped with our
new consensus protocol to handle directed network topologies. All the distributed algorithm
are initialized, setting X0

i = 0 and D0
(i) equal to some randomly chosen columns of Si. The

subproblems (8) and (11) at iteration ν are solved using the projected (sub)gradient algo-
rithm; the setting is the same as that used in the Biclustering problem (cf. Subsec. 5.2).
We terminate the projected subgradient algorithm in the inner loop when JrD,i ≤ 10−4 (in
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Figure 11: NNSC problem (VOC 2006 dataset)–Plain D4L and Modified ATC algorithms:
objective value [subplots on the left], consensus disagreement [subplots in the
center], and distance from stationarity ∆ν [cf. (26)] [subplots on the right]
vs. number of message exchanges. Comparison over the network settings N4
[subplots (a)] and N9 [subplots (b)] (cf. Table 5).

solving subproblem (8)) and JrX,i ≤ 10−4 (in solving subproblem (11)), where JrD,i and JrX,i
are defined as those in Subsec. 5.2. In all our simulations, the above accuracy was reached
within 30 (inner) iterations of the projected subgradient algorithm.

Convergence speed and quality of the reconstruction: We test the Plain D4L and
the Modified ATC in different network settings, as listed in Table 5. The setting of the
experiments and the averaging procedure of the reported values is the same of those used
for the NNSC problem. The results of our experiments are reported in Table 8 and Figure 12
for the MIT-CBCL dataset; and in Table 9 and Figure 13 for the VOC 2006 dataset. The
behaviors or the algorithms are very similar to those described in the NNSC case and
confirm all previous observations.
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Figure 12: SPCA problem (MIT-CBCL dataset)–Plain D4L and Modified ATC algorithms:
objective value [subplots on the left], consensus disagreement [subplots in the
center], and distance from stationarity ∆ν [cf. (26)] [subplots on the right]
vs. number of message exchanges. Comparison over the network settings N4
[subplots (a)] and N9 [subplots (b)] (cf. Table 5).

Network # objective value consensus disagreement distance from stationarity

N4 181.9/453.1 3.5e-5/6.1e-4 2.2e-3/21.39
N5 185.1/446.4 2.6e-5/1.5e-3 1.3e-3/136.2
N6 182.7/517.3 5.2e-6/4.3e-4 1.3e-3/1.2e-1
N7 186.3/512.0 2.3e-5/9.2e-4 1.4e-3/1.18
N8 181.9/566.0 4.0e-5/1.7e-4 2.6e-3/1.5e-1
N9 182.6/566.9 1.7e-4/2.9e-4 4.2e-3/1.0e-1

Table 8: SPCA problem (MIT-CBCL dataset)–Plain D4L/Modified ATC algorithms: ob-
jective value, consensus disagreement, and distance from stationarity obtained
after 1500 message exchanges.
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Figure 13: SPCA problem (VOC 2006 dataset)–Plain D4L and Modified ATC algorithms:
objective value [subplots on the left], consensus disagreement [subplots in the
center], and distance from stationarity ∆ν [cf. (26)] [subplots on the right]
vs. number of message exchanges. Comparison over the network settings N4
[subplots (a)] and N9 [subplots (b)] (cf. Table 5).

Network # objective value consensus disagreement distance from stationarity

N4 849.3/2516.0 5.7e-6/1.3e-3 2.3e-3/6532
N5 866.0/2533.6 1.8e-5/3.5e-3 2.0e-3/1.3e+4
N6 864.8/2621.0 7.2e-6/4.3e-4 3.4e-3/1.7e+4
N7 859.1/2624.1 5.3e-5/1.1e-3 2.4e-3/1.6e+4
N8 872.7/2643.2 6.6e-5/2.3e-4 1.1e-2/2.9e+4
N9 869.1/2642.0 2.3e-4/4.6e-4 5.6e-3/3.4e+4

Table 9: SPCA problem (VOC 2006 dataset)–Plain D4L/Modified ATC algorithms: objec-
tive value, consensus disagreement, and distance from stationarity obtained after
1500 message exchanges.
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6. Conclusions

This paper studied a fairly general class of distributed dictionary learning problems over
time-varying multi-agent networks, with arbitrary topologies. We proposed the first de-
centralized algorithmic framework−the D4L Algorithm−with provable convergence for this
class of problems. Numerical experiments showed promising performance of our scheme
with respect to state-of-the-art distributed methods.
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Appendix A. Appendix

In this section we prove the major results of the paper, Theorems 2 and 3. We begin
rewriting the D4L Algorithm in an equivalent vector-matrix form (cf. Sec. A.1), which is
more suitable for the analysis. Theorem 2 and Theorem 3 are then proved in Sec. A.2 and
Sec. A.3, respectively. Some miscellanea results supporting the main proofs are collected
in Appendix A.4. Table 10 below summarizes the symbols appearing in the proofs.

Symbol Definition Member of Reference

Dφν (1/I)
∑I
i=1 φ

ν
i Dν

(i) D ⊆ RM×K (41)

Uφν (1/I)
∑I
i=1 φ

ν
i Uν

(i) D ⊆ RM×K (41)

D̃ν [D̃νᵀ
(1), D̃

νᵀ
(2), . . . , D̃

νᵀ
(I)]

ᵀ RM×KI (34)

Uν [Uνᵀ
(1),U

νᵀ
(2), . . . ,U

νᵀ
(I)]

ᵀ RM×KI (34)

Θν [Θνᵀ
(1),Θ

νᵀ
(2), . . . ,Θ

νᵀ
(I)]

ᵀ RM×KI (34)

Gν [∇Df1(Dν
(1),X

ν
1)ᵀ, . . . , ∇DfI(Dν

(I),X
ν
I )ᵀ]ᵀ RM×KI (34)

Wν (wνij)
I
i,j=1 = (aνij φ

ν
j /φ

ν+1
i )Ii,j=1 = (Φν+1)−1AνΦν RI×I (35)

Wν:l Wν ·Wν−1 · · ·Wl, ν > l RI×I (44)

Ŵν Wν ⊗ IM RMI×MI (36)

Ŵν:l Wν:l ⊗ IM , ν > l RMI×MI (44)

φν [φν1 , φ
ν
2 , . . . , φ

ν
I ]ᵀ RI (34)

Φν diag (φν) RI×I (34)

Φ̂
ν Φν ⊗ IM RMI×MI (36)

Jφν (1/I)1φνᵀ RI×I (45)

Ĵφν Jφν ⊗ IM RMI×MI (45)

Table 10: Table of notation (appendix)
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A.1. D4L in vector-matrix form

We rewrite Algorithm 1 in a more convenient vector-matrix form. To do so, we introduce
the following notation. Recalling the definitions of D̃ν

(i) [cf. (8)], Uν
(i) [cf. (10)], φνi [cf.

(12)], and Θν
(i) [cf. (13)], define the corresponding aggregate quantities

D̃ν , [D̃νᵀ
(1), D̃

νᵀ
(2), . . . , D̃

νᵀ
(I)]
ᵀ,

Uν , [Uνᵀ
(1),U

νᵀ
(2), . . . ,U

νᵀ
(I)]
ᵀ,

φν , [φν1 , φ
ν
2 , . . . , φ

ν
I ]ᵀ, Φν , diag (φν) ,

Θν , [Θνᵀ
(1),Θ

νᵀ
(2), . . . ,Θ

νᵀ
(I)]
ᵀ,

Gν ,

[
∇Df1(Dν

(1),X
ν
1)ᵀ, ∇Df2(Dν

(2),X
ν
2)ᵀ, . . . , ∇DfI(Dν

(I),X
ν
I )ᵀ
]ᵀ
,

(34)

where diag(x) is a diagonal matrix whose diagonal entries are the components of the vector
x. Combining the weights aνij and the variables φνi in the update of Dν

(i) [cf. (12)] in the
single coefficient

wνij ,
aνijφ

ν
j∑

k a
ν
ikφ

ν
k

,

we define the weight matrix Wν , whose entries are [Wν ]i,j = wνij . Note that Wν has the
same zero-pattern of Aν , and the following properties hold (the latter under Assumption
F)

Wν =
(
Φν+1

)−1
AνΦν , and Wν1 = 1. (35)

Finally, we define the following “augmented” matrices

Ŵν ,Wν ⊗ IM and Φ̂
ν
, Φν ⊗ IM , (36)

where IM is the M -by-M identity matrix.
Using the above notation, the main iterates of the D4L Algorithm, i.e., (10), (12), and

(13), can be rewritten in compact form as

Uν = Dν + γν(D̃ν −Dν), (37)

φν+1 = Aνφν , (38)

Dν+1 = ŴνUν , (39)

Θν+1 = ŴνΘν +
(
Φ̂
ν+1)−1 (

Gν+1 −Gν
)
. (40)

Instrumental to the analysis of the consensus disagreement are the following weighted
average quantities:

Dφν ,
1

I

I∑
i=1

φνi Dν
(i), Uφν ,

1

I

I∑
i=1

φνi Uν
(i). (41)

Using (12), (41) and the column stochasticity of Aν (cf. Assumption F3), it is not difficult
to check that

Dφν+1 = Uφν , (42)
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which, together with (10), leads to the following dynamics for Dφν :

Dφν+1 = Dφν +
γν

I

I∑
i=1

φνi

(
D̃ν

(i) −Dν
(i)

)
. (43)

A.2. Proof of Theorem 2

We prove Theorem 2 in the following order (consistent with the statements in the theorem):

Step 1–Asymptotic consensus & related properties: We prove that consensus is asymp-
totically achieved, that is, limν→∞ e

ν = 0 [statement (a)], along with some properties
on related quantities, which will be used in the other steps–see Sec. A.2.1;

Step 2–Boundedness of the iterates and Lipschitz continuity of ∇fi: We prove that
the sequence

{(
Dν ,Xν

)}
ν

generated by the algorithm is bounded [statement (b-i)],

and, as a consequence, ∇fi, ∇Df̃i, and ∇Xi h̃i are Lipschitz continuous on a (suitably
defined) compact set containing

{(
Dν ,Xν

)}
ν

[Remarks 8 and 9]–see Sec. A.2.2;

Step 3–Decrease of {U(D
ν
,Xν)}ν: By leveraging the Lipschitz continuity of the gra-

dients as in Step 2, we study the decrease properties of {U(D
ν
,Xν)}ν [statement

(b-ii)]–see Sec. A.2.3;

Step 4–Vanishing X-stationarity: We prove that limν→∞∆X(D
ν
,Xν) = 0 [statement

(b-iii)]–see Sec. A.2.4;

Step 5–Vanishing liminf D-stationarity: We prove lim infν→∞∆D(D
ν
,Xν) = 0 [state-

ment (b-iv)]–see Sec. A.2.5;

Step 6–Vanishing D-stationarity: Finally, we prove limν→∞∆D(D
ν
,Xν) = 0 [state-

ment (b’)]–see Sec. A.2.6.

A.2.1. Step 1–Asymptotic consensus and related properties

1) Preliminaries: To analyze the dynamics of the consensus disagreement, we first in-
troduce the following product matrices and their augmented counterparts: Given Wν [cf.
(35)], and ν, l ∈ N+, let

Wν:l ,


Wν ·Wν−1 · · ·Wl, ν > l,

Wν , ν = l,

0I , ν < l,

and Ŵν:l ,Wν:l ⊗ IM . (44)

Define also the weight-average matrices

Jφν ,
1

I
1φνᵀ, Ĵφν , Jφν ⊗ IM . (45)

For notational simplicity, when φν = 1, we use J instead of Jφν and Ĵ , J ⊗ IM . Using
(35) and (41), it is not difficult to check that the following hold:

ĴφνD
ν = 1⊗Dφν , (46)

Ĵφν+1Ŵν:l = Ĵ Φ̂
l

= Ĵφl . (47)
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The dynamics of the consensus disagreement eν boils down to studying the decay of
‖Wν:l−Jφl‖2 (this will be clear in the proof of Proposition 5 below). The following lemma

shows that Wν:l converges geometrically to Jφl , as ν →∞.

Lemma 4 (Scutari and Sun (2018)-Lemma 4.13, Ch. 3.4.2.5) Let {Gν}ν be a se-
quence of digraphs satisfying Assumption B; let {Aν}ν be a sequence of matrices satisfying
Assumption F; and let {Wν}ν be the sequence of matrices defined in (35). Then, there
holds ∥∥∥Wν:l − Jφl

∥∥∥
2
≤ cW (ρ)ν−l+1, ∀ν ≥ l, ν, l ∈ N+,

where cW > 0 is a (proper) constant, and ρ ∈ (0, 1) is defined as

ρ =
(

1− κ̃−(I−1)B
) 1
B(I−1)

< 1, (48)

with κ̃ = κIB+1/I; and κ is defined in Assumption F.
Furthermore, the sequence {φνi }ν satisfies

εφ , inf
ν∈N+

(
min

1≤i≤I
φνi

)
≥ κIB, and ε̄φ , sup

ν∈N+

(
max
1≤i≤I

φνi

)
≤ I − (I − 1)κIB. (49)

If all the matrices Aν are doubly-stochastic, then εφ = ε̄φ = 1.

2) Proof of limν→∞ e
ν = 0. Using (30), we can write

eν
(a)

≤ K
∥∥Dν − 1⊗D

ν∥∥
F

(b)

≤ K
∥∥Dν − 1⊗Dφν

∥∥
F

+K
√
I
∥∥Dν −Dφν

∥∥
F

(c)

≤ 2K
∥∥Dν − 1⊗Dφν

∥∥
F
,

(50)

where (a) follows from the equivalence of norms; (b) is due to the triangle inequality; and
in (c) we used

∑I
i=1 ai ≤

√
I||a||, with a = (ai)

I
i=1 ∈ RI .

The following proposition concludes the proof of statement (a), proving that ‖Dν −1⊗
Dφν‖F is square summable, along with some additional properties on related quantities.

Proposition 5 In the above setting, there hold:

lim
ν→∞

||Dν − 1⊗Dφν ||F = 0; (51)

lim
ν→∞

ν∑
t=1

||Dt − 1⊗Dφt ||
2
F <∞; (52)

lim
ν→∞

ν∑
t=1

||Ut − 1⊗Uφt ||
2
F <∞. (53)

Proof To prove (51), let us first expand Dν − 1⊗Dφν as follows: for any ν ≥ 1,

Dν (39)
= Ŵν−1Uν−1 = Ŵν−1Dν−1 + Ŵν−1

(
Uν−1 −Dν−1

)
= Ŵν−1:0D0 +

ν−1∑
t=0

Ŵν−1:t
(
Ut −Dt

)
,

(54)
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where the last equality follows from induction and the definition of Ŵν:l [cf. (44)]. Similarly,
we expand the subtrahend as

1⊗Dφν
(46)
= ĴφνD

ν (54)
= Ĵφν

(
Ŵν−1:0D0 +

ν−1∑
t=0

Ŵν−1:t
(
Ut −Dt

))
(47)
= Ĵ

(
D0 +

ν−1∑
t=0

Φ̂
t (

Ut −Dt
))

.

(55)

Subtracting (55) from (54) and using (37), yields∥∥Dν − 1⊗Dφν
∥∥
F
≤
∥∥∥Ŵν−1:0 − Ĵ

∥∥∥
2

∥∥D0
∥∥
F

+
ν−1∑
t=0

γt
∥∥∥Ŵν−1:t − Ĵφt

∥∥∥
2

∥∥∥D̃t −Dt
∥∥∥
F

(a)

≤ c1(ρ)ν + c2

ν−1∑
t=0

γt (ρ)ν−t
(b)−→

ν→∞
0,

(56)

for some finite constants c1, c2 > 0, where (a) is due to Lemma 4 and the boundedness of
{||D̃ν −Dν ||}ν ; and (b) follows from Lemma 13(a) in Appendix A.4.

Let us now proceed to prove (52). Using (56), we have

lim
ν→∞

ν∑
t=1

∥∥∥Dt − 1⊗Dφt

∥∥∥2

F
≤ lim

ν→∞

ν∑
t=1

(
c1(ρ)t + c2

t−1∑
l=0

γl (ρ)t−l

)2

(a)

≤ 2c2
1

1− (ρ)2
+ 2 c2

2 lim
ν→∞

ν∑
t=1

t−1∑
l=0

t−1∑
k=0

γlγk(ρ)t−k(ρ)t−l

(b)

≤ 2c2
1

1− (ρ)2
+ c2

2 lim
ν→∞

ν∑
t=1

t−1∑
l=0

(γl)2(ρ)t−l
t−1∑
k=0

(ρ)t−k + c2
2 lim
ν→∞

ν∑
t=1

t−1∑
k=0

(γk)2(ρ)t−k
t−1∑
l=0

(ρ)t−l

≤ 2c2
1

1− (ρ)2
+

2c2
2

1− ρ
lim
ν→∞

ν∑
t=1

t−1∑
l=0

(γl)2(ρ)t−l
(c)
< ∞,

where in (a) and (b) we used (a+ b)2 ≤ 2(a2 + b2) and ab ≤ (a2 + b2)/2, respectively, and
(c) is due to Lemma 13(b) (cf. Appendix A.4).

We prove now (53). Using (41) and (37), we get∥∥∥Ut − 1⊗Uφt

∥∥∥2

F
=

∥∥∥∥∥γt(D̃t − 1⊗ 1

I

I∑
i=1

φti D̃
t
(i)

)
+
(
1− γt

) (
Dt − 1⊗Dφt

)∥∥∥∥∥
2

F

≤ 2
(
γt
)2 ∥∥∥D̃t − 1⊗ 1

I

I∑
i=1

φti D̃
t
(i)

∥∥∥2

F
+ 2

∥∥∥Dt − 1⊗Dφt

∥∥∥2

F
,

(57)

where in the last inequality we used Jensen’s inequality and (1 − γt) ≤ 1. Therefore,

lim
ν→∞

ν∑
t=1

∥∥∥Ut − 1⊗Uφt

∥∥∥2

F
≤ lim

ν→∞
2 c3

ν∑
t=1

(
γt
)2

+ lim
ν→∞

2
ν∑
t=1

∥∥∥Dt − 1⊗Dφt

∥∥∥2

F

(a)
< ∞,

where c3 is a positive finite constant, and (a) follows from Assumption E and (52).
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Remark 6 (On L∇Xi(Uφν ) and L∇Xi(U
ν
(i))) Recall that ∇Xifi(Uφν , •) is Lipschitz con-

tinuous on Xi, with constant L∇Xi(Uφν ) (cf. Assumption A2). Since ||Uν
(i)−Uφν ||F −→

ν→∞
0

[cf. (53), Proposition 5] and L∇Xi(D) is continuous, we have∣∣∣L∇Xi(Uφν )− L∇Xi(Uν
(i))
∣∣∣ −→
ν→∞

0, i = 1, 2, . . . I. (58)

A.2.2. Step 2–Boundedness of the iterates

We show that the sequence
{(

Dν ,Xν
)}

ν
generated by the D4L Algorithm is bounded

[statement (b-i)]. We prove the result only for h̃i given by (17); the proof can be easily
tailored to the other choice of h̃i. If the sets Xi are bounded [Assumption A5(i)], the result
follows readily. Therefore, we consider next the setting under A5(ii).

Throughout the proof, we will use the following properties of f̃i and h̃i.

Remark 7 The surrogate functions f̃i and h̃i as in Assumption C have the following prop-
erties: for all i = 1, 2, . . . , I,

(a) f̃i(•; D,Xi) is strongly convex on D, uniformly with respect to (D,Xi) ∈ D×Xi, with
constant τνD,i > 0; and ∇Df̃i(D; D,Xi) = ∇Dfi(D,Xi), for all (D,Xi) ∈ D × Xi.

(b) h̃i(•; D,Xi) is strongly convex on Xi, uniformly with respect to (D,Xi) ∈ D×Xi, with
constant τνX,i > 0; and ∇Xi h̃i(Xi; D,Xi) = ∇Xifi(D,Xi), for all (D,Xi) ∈ D × Xi.

By the optimality of Xν+1
i in (11), there exist Ξ0

i ∈ ∂Xigi(X0
i ) and Ξν+1

i ∈ ∂Xigi(X
ν+1
i )

such that

0 ≤
〈
∇Xi h̃i(X

ν+1
i ; Uν

(i),X
ν
i ) + Ξν+1

i ,X0
i −Xν+1

i

〉
=
〈
Ξν+1
i −Ξ0

i + τνX,i(X
ν+1
i −X0

i ),X
0
i −Xν+1

i

〉
+
〈
∇Xifi(Uν

(i),X
ν
i )−∇Xifi(Uν

(i),X
0
i ),X

0
i −Xν+1

i

〉
−
〈
τνX,i(X

ν
i −X0

i ),X
0
i −Xν+1

i

〉
+
〈
∇Xifi(Uν

(i),X
0
i ) + Ξ0

i ,X
0
i −Xν+1

i

〉
.

Using Remark 7(b) and the µi-strongly convexity of gi’s, we obtain

(τνX,i + µi)
∥∥Xν+1

i −X0
i

∥∥2

F
≤
〈
τνX,iX

ν
i −∇Xifi(Uν

(i),X
ν
i ),Xν+1

i −X0
i

〉
−
〈
τνX,iX

0
i −∇Xifi(Uν

(i),X
0
i ),X

ν+1
i −X0

i

〉
−

〈
∇Xifi(Uν

(i),X
0
i ) + Ξ0

i︸ ︷︷ ︸
,Zνi ∈∂XiU(Uν

(i)
,X0
i )

,Xν+1
i −X0

i

〉
.

(59)

Define Υν
i (Xi) , τνX,iXi −∇Xifi(Uν

(i),Xi) and rewrite (59) as

(τνX,i + µi) ||Xν+1
i −X0

i ||F ≤
∥∥Υν

i (Xν
i )−Υν

i (X0
i )
∥∥
F

+ ‖Zνi ‖F . (60)
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Since D is compact and X0
i is given, we have ||Zνi ||F ≤ BZ , for all i, ν ≥ 1, and some

finite BZ > 0. Let us bound next ||Υν
i (Xν

i )−Υν
i (X0

i )||F . We write∥∥Υν
i (Xν

i )−Υν
i (X0

i )
∥∥2

F
= (τνX,i)

2
∥∥Xν

i −X0
i

∥∥2

F
+
∥∥∥∇Xifi(Uν

(i),X
ν
i )−∇Xifi(Uν

(i),X
0
i )
∥∥∥2

F

− 2τνX,i

〈
∇Xifi(Uν

(i),X
ν
i )−∇Xifi(Uν

(i),X
0
i ),X

ν
i −X0

i

〉
(a)

≤ (τνX,i)
2
∥∥Xν

i −X0
i

∥∥2

F

+

(
1−

2τνX,i
L∇Xi(U

ν
(i))

)∥∥∥∇Xifi(Uν
(i),X

ν
i )−∇Xifi(Uν

(i),X
0
i )
∥∥∥2

F
,

(61)
where in (a) we used the 1/L∇Xi(U

ν
(i))-co-coercivity of ∇Xifi(Uν

(i), •) [due to the convexity

of fi(U
ν
(i), •) and the L∇Xi(U

ν
(i))-Lipschitianity of ∇Xifi(Uν

(i), •) (Rockafellar and Wets,

1998, Prop.12.60)], i.e.,〈
∇Xifi(Uν

(i),Xi)−∇Xifi(Uν
(i),Yi),Xi −Yi

〉
≥

1

L∇Xi(U
ν
(i))
·
∥∥∥∇Xifi(Uν

(i),Xi)−∇Xifi(Uν
(i),Yi)

∥∥∥2

F
, ∀Xi,Yi ∈ Xi.

Note that ||Υν
i (Xν

i )−Υν
i (X0

i )||F ≤ τνX,i||Xν
i −X0

i ||F as long as τνX,i ≥
1
2L∇Xi(U

ν
(i)), which

is satisfied under D1. Therefore, we can bound (60) as

(τνX,i + µi)||Xν+1
i −X0

i ||F ≤ τνX,i
∥∥Xν

i −X0
i

∥∥
F

+BZ . (62)

We can now prove that, starting from X0
i , the iterates Xν

i stays in the ball Bi(Ri,X0
i ) ,

{Xi ∈ RK×ni : ‖Xi −X0
i ‖F ≤ Ri}, for all ν ≥ 1, where Ri ≥ BZ/µi. Let us prove it by

induction. Evidently X0
i ∈ Bi(Ri,X0

i ). Let Xν
i ∈ Bi(Ri,X0

i ); by (62), we get

||Xν+1
i −X0

i ||F ≤
τνX,i

τνX,i + µi
||Xν

i −X0
i ||F +

BZ
τνX,i + µi

≤ Ri,

where the second inequality is due to Xν
i ∈ Bi(R,X0

i ) and R ≥ BZ/µ. Hence Xν+1
i ∈

Bi(Ri,X0
i ). Therefore, Xν

i ∈ Bi(Ri,X0
i ), for all ν ≥ 0. Since D is bounded (cf. Assumption

A3), it follows that (Dν
(i),X

ν
i ) ∈ D × Bi(Ri,X0

i ), for all ν ≥ 0. �

Remark 8 (On the Lipschitz continuity of ∇fi’s) Since fi is C2, a direct consequence
of the boundedness of

{(
Dν ,Xν

)}
ν

is that ∇fi [the gradient of fi with respect to (D,Xi)]
is Lipschitz continuous on D×Bi(Ri,X0

i ), that is, there exists some positive finite constant
L∇,i such that

||∇fi(D,Xi)−∇fi(D′,X′i)||F ≤ L∇,i ||(D,Xi)− (D′,X′i)||F , (63)

for all (D,Xi), (D
′,X′i) ∈ D × Bi(Ri,X0

i ), and i = 1, 2, . . . , I. We define L∇ , maxi L∇,i.
The above result also implies that ∇DF : D× (X1× · · · ×XI)→ D [cf. (P)] is Lipschitz

continuous on D × (B1(R1,X
0
1)× · · · × BI(RI ,X0

I)), with constant L∇D , I · L∇.

40



Decentralized Dictionary Learning Over Time-Varying Digraphs

Remark 9 (On the Lipschitz continuity of ∇Df̃i and ∇Xi h̃i) ∇Df̃i : D × RK×ni ×
RK×ni → RM×K and ∇Xi h̃i : RK×ni × D × RK×ni → RK×ni are Lipschitz continuous on
D×D×Bi(Ri,X0

i ) and Bi(Ri,X0
i )×D×Bi(Ri,X0

i ), respectively, with constants L̃D∇,i and

L̃X∇,i. Let us denote L̃D∇ , maxi L̃
D
∇,i and L̃X∇ , maxi L̃

X
∇,i.

A.2.3. Step 3–Decrease of {U(D
ν
,Xν)}ν

We study here the properties of {U(D
ν
,Xν)}ν showing, in particular, that it is convergent

[statement (b-ii)].

We begin with the following intermediate result.

Proposition 10 Consider the setting of Theorem 2(b); there exist positive constants sX ,
τ̄D, c7, c8, and a sufficiently large ν̄ ∈ N+ such that the following holds: for all ν ≥ ν̄,

U(Dφν+1 ,Xν+1) ≤ U(Dφν̄ ,X
ν̄)−

ν∑
l=ν̄

Y l +

ν∑
l=ν̄

W l + Eν,ν̄ , (64)

where

Y l , sX

(
||Xl+1 −Xl||F −

Z l

2sX

)2

+
τ̄D
I
γl
(
||D̃l −Dl||F −

Iε̄φ
2 τ̄D

T l
)2

, (65)

Zl , c7

∞∑
t=l

γt(ρ)t−l + LX‖Ul − 1⊗Uφl‖F , (66)

W l ,
I ε̄2φ
4τ̄D

γl
(
T l
)2

+
1

4 sX

(
Z l
)2

+ LGγ
l
∥∥∥Dl − 1⊗Dφl

∥∥∥
F
, (67)

Eν,ν̄ ,

[
c6

1− ρ
((ρ)ν̄ − (ρ)ν+1) +

c7BX
(1− ρ)2

]
·
(

max
t≥ν̄

γt
)
, (68)

{T ν}ν is such that
∞∑
ν=1

(T ν)2 <∞, (69)

with ρ ∈ (0, 1) and ε̄φ defined in (48) and (49), respectively.

Proof See Appendix A.4.3

Note that the sequences {Z l}l, {W l}l, and {Eν,ν̄}ν,ν̄ above satisfy

lim
ν→∞

ν∑
l=ν̄

(Z l)2 <∞; (70)

lim
ν→∞

ν∑
l=ν̄

W l <∞; (71)

lim
ν̄→∞

(
lim
ν→∞

Eν,ν̄
)

︸ ︷︷ ︸
,E∞,ν̄<∞

= 0, (72)
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where (70) follows from (53) [cf. Prop. 5], Assumption E, and Lemma 13(b) [cf. (107)] in
Appendix A.4.1; (71) is a consequence of limν→∞

∑ν
l=ν1

γl(T l)2 <∞ [due to (69)], (52) [cf.
Prop. 5], and (70); and eq. (72) is proved by inspection.

It follows from (64), (70)-(72) and the lower-boundedness of U (due to Assumption A1)
that {U(D

ν
,Xν)}ν is convergent. Indeed, taking the limsup of the LHS of (64) and using

(71) and (72), we get

−∞ < lim sup
ν→∞

U(Dφν+1 ,Xν+1) ≤ U(Dφν̄ ,X
ν̄) +

∞∑
l=ν̄

W l + E∞,ν̄ <∞.

Taking now the liminf of the RHS of the above inequality with respect to ν̄ while using (72)
and limν̄→∞

∑∞
l=ν̄W

l = 0, yields

−∞ < lim sup
ν→∞

U(Dφν+1 ,Xν+1) ≤ lim inf
ν̄→∞

U(Dφν̄ ,X
ν̄) <∞,

which implies the convergence of {U(Dφν ,X
ν)}ν to a finite value, and

lim
ν→∞

ν∑
l=ν̄

(
||Xl+1 −Xl||F −

Z l

2sX

)2

<∞, (73)

lim
ν→∞

ν∑
l=ν̄

γl
(
||D̃l −Dl||F −

Iε̄φ
2τ̄D

T l
)2

<∞. (74)

Finally, we deduce that {U(D
ν
,Xν)}ν converges to the same limit point of {U(Dφν ,X

ν)}ν ,

due to i)
√
I
∥∥Dν −Dφν

∥∥
F
≤
∥∥Dν − 1⊗Dφν

∥∥
F

(51)−→
ν→∞

0; ii) the continuity of U ; and iii) the

boundedness of
{(

Dν ,Xν
)}

ν
[cf. Sec. A.2.2]. This concludes the proof. �

A.2.4. Step 4–Vanishing X-stationarity

Building on the results in the previous step, we prove here limν→∞∆X(D
ν
,Xν) = 0 [state-

ment (b-iii)]. For notational simplicity, we will use the shorthand X̂ν
i , X̂i(D

ν
,Xν) and

X̂ν , X̂(D
ν
,Xν), with X̂i(D

ν
,Xν) and X̂(D

ν
,Xν) defined in (29).

Using the equivalence of norms and the triangle inequality, we have

∆X(D
ν
,Xν) ≤ KX‖X̂ν −Xν‖F ≤ KX‖Xν+1 −Xν‖F︸ ︷︷ ︸

term I

+KX‖Xν+1 − X̂ν‖F︸ ︷︷ ︸
term II

,

for some KX > 0. The rest of the proof consists in showing that term I and term II above
are asymptotically vanishing.
• On term I: Term I can be bounded as

1

2
||Xν+1 −Xν ||2F ≤

(
||Xν+1 −Xν ||F −

Zν

2sX

)2

+

(
Zν

2sX

)2

, (75)

for all ν ∈ N+, where the inequality follows from 1
2a

2 ≤ (a − b)2 + b2, with a, b ∈ R. This,
together with (70) and (73), yields

∞∑
ν=0

||Xν+1 −Xν ||2F <∞ =⇒ lim
ν→∞

||Xν+1 −Xν ||F = 0. (76)
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• On term II: Invoking the optimality of X̂ν
i [cf. (29)] and Xν+1

i [cf. (11)], yields〈
∇Xifi(D

ν
,Xν

i ) + τ̂X(X̂ν
i −Xν

i ),Xν+1
i − X̂ν

i

〉
+ gi(X

ν+1
i )− gi(X̂ν

i ) ≥ 0,〈
∇Xi h̃i(X

ν+1
i ; Uν

(i),X
ν
i ), X̂ν

i −Xν+1
i

〉
+ gi(X̂

ν
i )− gi(Xν+1

i ) ≥ 0.

Summing the two inequalities above and using Remark 7(b), lead to

τ̂X ||Xν+1
i − X̂ν

i ||2F ≤
〈
τ̂X
(
Xν+1
i −Xν

i

)
+∇Xifi(D

ν
,Xν

i )−∇Xifi(Uν
(i),X

ν
i ),Xν+1

i − X̂ν
i

〉
+
〈
∇Xi h̃i(Xν

i ; Uν
(i),X

ν
i )−∇Xi h̃i(X

ν+1
i ; Uν

(i),X
ν
i ),Xν+1

i − X̂ν
i

〉
.

(77)

Using the L̃X∇,i-Lipschitz continuity of ∇Xi h̃i [cf. Remark 9] and the L∇,i-Lipschitz
continuity of ∇fi, and (10), it is not difficult to show that (77) implies

||Xν+1
i − X̂ν

i ||F

≤
L̃X∇,i + τ̂X

τ̂X

∥∥Xν+1
i −Xν

i

∥∥
F

+
L∇,i
τ̂X

∥∥∥Dν −Dν
(i)

∥∥∥
F

+
L∇,i
τ̂X

γν
∥∥∥D̃ν

(i) −Dν
(i)

∥∥∥
F
,

≤
L̃X∇,i + τ̂X

τ̂X

∥∥Xν+1
i −Xν

i

∥∥
F

+
L∇,i
τ̂X

∥∥∥Dν −Dν
(i)

∥∥∥
F

+
L∇,i
τ̂X

γν BD,

(78)

for some BD > 0, where in the last inequality we used the boundedness of {||D̃ν −Dν ||F }ν .
Eq. (78) together with (76), Theorem 2(a), and γν

ν→∞−→ 0 (cf. Assumption E), yield

lim
ν→∞

‖Xν+1
i − X̂ν

i ‖F = 0. (79)

This concludes the proof of statement (b-iiii). �

A.2.5. Step 5–Vanishing liminf D-stationarity

We prove lim infν→∞∆D(D
ν
,Xν) = 0 [statement (b-iv)] and {(Dν

,Xν)}ν has at least one
limit point which is a stationary solution of P. For notational simplicity, we will use the
shorthand D̂ν , D̂(D

ν
,Xν), with D̂(D

ν
,Xν) defined in (28).

We begin bounding ∆D(D
ν
,Xν) as

∆D(D
ν
,Xν) ≤ KD‖D̂ν−D

ν‖F ≤ KD‖D̃ν
(i) −Dν

(i)‖F︸ ︷︷ ︸
term I

+KD‖D̃ν
(i) − D̂ν‖F︸ ︷︷ ︸
term II

+KD‖Dν
(i)−D

ν‖F ,

for someKD>0. Note that ‖Dν
(i)−D

ν‖F→0 [Theorem 2(a)]. We show next that lim infν→∞

‖D̃ν
(i) −Dν

(i)‖F = 0 and ‖D̃ν
(i) − D̂ν‖F → 0, which proves lim infν→∞ ∆D(D

ν
,Xν) = 0.

• On term I: Similarly to the derivations of (75), there holds

γν

2
||D̃ν −Dν ||2F ≤ γν

(
||D̃ν −Dν ||F −

Iε̄φ
2 τ̄D

T ν
)2

+

(
Iε̄φ
2 τ̄D

)2

γν(T ν)2, (80)
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for all ν ∈ N+. By eq. (74) and
∑∞

ν=0 (T ν)2 <∞ [cf. (69)], we have

∞∑
ν=0

γν ||D̃ν −Dν ||2F <∞
Assumption E

=⇒ lim inf
ν→∞

||D̃ν −Dν ||F = 0. (81)

• On term II: Using the optimality of D̂ν [cf. (28)] and D̃ν
(i) [cf. (8)], yields〈

∇DF (D
ν
,Xν) + τ̂D(D̂ν −D

ν
), D̃ν

(i) − D̂ν
〉

+G(D̃ν
(i))−G(D̂ν) ≥ 0,〈

∇Df̃i(D̃ν
(i); D

ν
(i),X

ν
i ) + I ·Θν

i −∇Dfi(Dν
(i),X

ν
i ), D̂ν − D̃ν

(i)

〉
+G(D̂ν)−G(D̃ν

(i)) ≥ 0.

Summing the two inequalities above and using Remark 7(a), yields

τ̂D||D̃ν
(i) − D̂ν ||2F

≤
〈
τ̂D(D̃ν

(i) −Dν
(i)) + τ̂D(Dν

(i) −D
ν
) +∇DF (D

ν
,Xν)−∇DF (Dφν ,X

ν), D̃ν
(i) − D̂ν

〉
+
〈
∇DF (Dφν ,X

ν)− I ·Θν
i , D̃

ν
(i) − D̂ν

〉
−
〈
∇Df̃i(D̃ν

(i); D
ν
(i),X

ν
i )−∇Df̃i(Dν

(i); D
ν
(i),X

ν
i ), D̃ν

(i) − D̂ν
〉
.

(82)
Using the L̃D∇,i-Lipschitz continuity of ∇Df̃i [cf. Remark 9] and the L∇D -Lipschitz

continuity of ∇DF [cf. Remark 8], it is not difficult to check that (82) implies∥∥∥D̃ν
(i) − D̂ν

∥∥∥
F
≤
L̃D∇,i + τ̂D

τ̂D

∥∥∥D̃ν
(i) −Dν

(i)

∥∥∥
F

+
∥∥∥Dν −Dν

(i)

∥∥∥
F

+
L∇D
τ̂D
√
I

∥∥Dν − 1⊗Dφν
∥∥

+
I

τ̂D

∥∥∥∥Θν
i −

1

I
∇DF (Dφν ,X

ν)

∥∥∥∥
F

,

(83)
for all i = 1, . . . , I . Since lim infν→∞ ‖D̃ν

(i) − Dν
(i)‖F = 0 [cf. (81)], ‖Dν − Dν

(i)‖F → 0

[Theorem 2(a)], and
∥∥Dν − 1⊗Dφν

∥∥→ 0 [cf. (51)], to prove lim infν→∞ ‖D̃ν
(i)−D̂ν‖F = 0,

it is sufficient to show that the last term on the RHS of the above inequality is asymptotically
vanishing, which is done in the lemma below.

Lemma 11 (Vanishing gradient-tracking error) In the setting above, there holds:

∞∑
ν=0

∥∥∥Θν − 1⊗ 1

I
∇DF (Dφν ,X

ν)
∥∥∥2

F
<∞. (84)

Proof See Sec. A.4.4.

By lim infν→∞∆D(D
ν
,Xν) = 0, it follows that there exists an infinte subset N ⊆ N+

such that limN3ν→∞∆D(D
ν
,Xν) = 0. Since {(Dν ,Xν)}ν is bounded [cf. Sec. A.2.2],

it has a convergent subsequence {(Dν ,Xν)}ν∈N′ , with N′ ⊆ N; let (D
∞
,X∞) denote its

limit point. Then, it must be limN ′3ν→∞∆D(D
ν
,Xν) = 0. Combining this result with

limν→∞∆X(D
ν
,Xν) = 0 (cf. Sec. A.2.4), one can conclude limN ′3ν→∞∆ν = 0; hence,

(D
∞
,X∞) is a stationary solution of Problem P.
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A.2.6. Step 6–Vanishing D-stationarity

Finally, we prove limν→∞∆D(D
ν
,Xν) = 0 [statement (b’)]. In view of the results already

proved in Step 5, it is sufficient to show that lim supν→∞ ||D̃ν −Dν ||F = 0.

1) Preliminaries: We begin introducing the following preliminary results.

Proposition 12 In the setting of Theorem 2(a), the following hold for D̃ν [cf. (8)] and
Xν [cf. (11)]:

(a) There exists some constant LD > 0 and sequence {T̃ ν}ν , with limν→∞ T̃
ν = 0, such

that, for any ν1, ν2 ∈ N+,

||D̃ν2 − D̃ν1 ||F ≤ LD
(
||Dφν2 −Dφν1 ||F + ||Xν2 −Xν1 ||F

)
+ T̃ ν1 + T̃ ν2 ; (85)

(b) There exist some constants 0 < pX < 1 and qX > 0, and a sufficiently large νX ∈ N+

such that, for all ν ≥ νX ,

||Xν+1 −Xν ||F ≤ pX ||Xν −Xν−1||F + qX ||Uν −Uν−1||F . (86)

Proof See Appendix A.4.5

2) Proof of lim supν→∞ ||D̃ν −Dν ||F = 0. For notational simplicity, let us define ∆D̃ν ,
D̃ν−Dν . Suppose by contradiction that lim supν→∞ ||∆D̃ν ||F > 0; since lim infν→∞ ||∆D̃ν ||F
= 0 [cf. (81)], there exists δ > 0 such that ||∆D̃ν ||F > 2δ and ||∆D̃ν′ ||F < δ for infinitely
many ν, ν ′ ∈ N+. Therefore, one can find an infinite subset of indices, denoted by K, having
the following properties: for any ν ∈ K, there exists an index iν > ν such that

||∆D̃ν ||F < δ, ||∆D̃iν ||F > 2δ, (87)

δ ≤||∆D̃j ||F ≤ 2δ, ν < j < iν . (88)

Let ν2 be a sufficiently large integer such that (64) holds and T ν < 2τ̄D δ
Iε̄φ

, for all ν ≥ ν2

[such ν2 exists, due to (69)]. Note that there exists a δ̄ > 0 such that δ− Iε̄φ
2τ̄D

T ν ≥ δ̄, for all
ν ≥ ν2. Choose K 3 ν ≥ ν2; using (64), with ν = iν and ν̄ = ν + 1, yields

U(Dφiν+1 ,Xiν+1) ≤U(Dφν+1 ,Xν+1)− c8

(
δ̄
)2 iν∑

l=ν+1

γl +

iν∑
l=ν+1

W l + Eiν ,ν+1, (89)

for some finite constant c8 > 0. Using the convergence of {U(Dφν ,X
ν)}ν ,

∑∞
l=1W

l < ∞
[cf. (71)], and limK3ν→∞E

iν ,ν+1 = 0 [cf. (72)], inequality (89) implies

lim
K3ν→∞

iν∑
l=ν+1

γl = 0. (90)

We show next that (90) leads to a contradiction.
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It follows from (87) and (88) that, for all K 3 ν ≥ ν2,

δ <||∆D̃iν ||F − ||∆D̃ν ||F
(a)

≤||∆D̃iν −∆D̃ν ||F = ||D̃iν −Diν − D̃ν + Dν ||F
(b)

≤‖D̃iν − D̃ν‖+ ‖Dν ± 1⊗Dφν ± 1⊗Dφiν −Diν‖F
(85)

≤
(
LD +

√
I
)
||Dφiν −Dφν ||F + Ẽiν ,ν ,

(91)

with

Ẽiν ,ν , LD||Xiν −Xν ||F + ||Dν − 1⊗Dφν ||F + ||Diν − 1⊗Dφiν ||F + T̃ ν + T̃ iν ,

where in (a) we used the reverse triangle inequality (i.e. ||A||F−||B||F ≤ ||A−B||F , ∀A,B ∈
RMI×K); and in (b) we add/subtracted some dummy terms and used the triangle inequality.

We prove next that limν→∞ Ẽiν ,ν = 0. Clearly, if limν→∞ ||Xiν −Xν ||F = 0, then (51)
[cf. Proposition 5] and T̃ ν

ν→∞−→ 0 [cf. Proposition 12(a)] imply limν→∞ Ẽiν ,ν = 0. It is
then sufficient to show limν→∞ ||Xiν −Xν ||F = 0.

First, we bound ||Xiν −Xν ||F properly.

Summing (86) from ν > ν2 to iν − 1, yields

iν−1∑
t=ν

||Xt+1 −Xt||F ≤ pX
iν−1∑
t=ν

||Xt −Xt−1||F + qX

iν−1∑
t=ν

||Ut −Ut−1||F , (92)

implying

||Xiν −Xν ||F ≤
iν−1∑
t=ν

||Xt+1 −Xt||F ≤
pX

1− pX
||Xν −Xν−1||F +

qX
1− pX

iν−1∑
t=ν

||Ut −Ut−1||F .

Since limν→∞ ||Xν − Xν−1||F = 0 [cf. (76)], it follows from the above inequality that
limK3ν→∞ ||Xiν − Xν ||F = 0, if limK3ν→∞

∑iν−1
t=ν ||Ut − Ut−1||F = 0, which is proved

next. Rewrite first ||Ut −Ut−1||F as

||Ut −Ut−1||F ≤ ||Ut − 1⊗Uφt ||F + ||Ut−1 − 1⊗Uφt−1 ||F +
√
I||Uφt −Uφt−1 ||F

(42)−(43)
= ||Ut − 1⊗Uφt ||F + ||Ut−1 − 1⊗Uφt−1 ||F +

γt√
I

∥∥∥∥∥
I∑
i=1

φti

(
D̃t

(i) −Dt
(i)

)∥∥∥∥∥
F

.

Since ||
∑I

i=1 φ
t
i (D̃t

(i)−Dt
(i))||F is bounded (due to φti ≤ ε̄φ [cf. (49)] and compactness of D)

and limK3ν→∞
∑iν

t=ν γ
t = 0 [cf. (90)], there holds limK3ν→∞

∑iν
t=ν γ

t||
∑I

i=1 D̃t
(i)−Dt

(i)||F =

0. Therefore, to prove limK3ν→∞
∑iν−1

t=ν ||Ut − Ut−1||F = 0, it is sufficient to show that
limK3ν→∞

∑iν
t=ν ||Ut − 1 ⊗ Uφt ||F = 0 [which implies also limK3ν→∞

∑iν
t=ν ||Ut−1 − 1 ⊗

Uφt−1 ||F = 0, due to limν→∞ ||Uν − 1 ⊗Uφν ||F = 0, see (53)]. By (57), the boundedness
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of {D̃ν}ν , and (90), it is sufficient to show that limK3ν→∞
∑iν

t=ν ||Dt− 1⊗Dφt ||F = 0. We
have

lim
K3ν→∞

iν∑
l=ν

||Dl − 1⊗Dφl ||F
(56)

≤ lim
K3ν→∞

iν∑
l=ν

(
c1(ρ)l + c2

l−1∑
t=0

γt (ρ)l−t

)

= c2 lim
K3ν→∞

iν∑
l=ν

l−1∑
t=0

γt (ρ)l−t = c2 lim
K3ν→∞

iν−1∑
t=0

iν∑
l=max(t+1,ν)

γt (ρ)l−t

= c2 lim
K3ν→∞

ν−1∑
t=0

iν∑
l=ν

γt (ρ)l−t + c2 lim
K3ν→∞

iν−1∑
t=ν

iν∑
l=t+1

γt (ρ)l−t

≤ c2 lim
K3ν→∞

ν−1∑
t=0

iν∑
l=ν

γt (ρ)l−t +
c2

1− ρ
lim

K3ν→∞

iν−1∑
t=ν

γt︸ ︷︷ ︸
=0 by (90)

≤ c2

1− ρ
lim

K3ν→∞

ν−1∑
t=0

γt (ρ)ν−t
(104)
= 0.

This proves limν→∞ ||Xiν −Xν ||F = 0 and thus limν→∞ Ẽiν ,ν = 0.
We can now prove that (90) leads to a contradiction. Since Ẽiν ,ν

ν→∞−→ 0, there exists a
sufficiently large integer ν3 ∈ K, such that ν3 > ν2 and Ẽiν ,ν < δ, for all ν > ν3. Define δ′

such that 0 < δ′ ≤ δ − Ẽiν ,ν . Using (43) and 1ᵀφν = I, (91) implies

δ′

(LD + 1)
√
I
<

iν−1∑
t=ν

γt ||∆D̃t||F
(87)−(88)

≤ 2δ

iν−1∑
t=ν

γt, (93)

for allK 3 ν > ν3. Equation (93) contradicts (90). Hence, it must be lim supν→∞ ||∆D̃ν ||F =
0, and thus limν→∞ ||D̃ν −Dν ||F = 0. �

A.3. Proof of Theorem 3

(a) Rate of consensus error. Fix θ ∈ (0, 1). Combining (50) and (56), we obtain

eν ≤c8

ν∑
l=1

γν−l (ρ)l = c8

b(1−θ)νc∑
l=1

γν−l (ρ)l + c8

ν∑
l=b(1−θ)νc+1

γν−l (ρ)l

≤c8 γ
ν−b(1−θ)νc

b(1−θ)νc∑
l=0

(ρ)l + c8 γ
0

ν∑
l=b(1−θ)νc+1

(ρ)l,

(a)
=c8 γ

dθνe 1− (ρ)b(1−θ)νc+1

1− ρ
+ c8 γ

0 (ρ)b(1−θ)νc+1 · 1− (ρ)dθνe

1− ρ

≤c9

(
γdθνe + (ρ)(1−θ)ν

) (b)

≤ c9

(
γdθνe +

(
(ρ)

1−θ
θ

)dθνe−1
)

(c)
= O

(
γdθνe

)
,

(94)

for some positive constants c8 and c9, where in (a) we used ν−b(1−θ)νc = dθνe; (b) follows
from x ≥ dxe − 1, x ∈ R; and in (c) we used (ρ̃)ν = o(γν), for any ρ̃ ∈ (0, 1). This proves
statement (a).
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(b) Rate of optimization errors. In the following we will use the shorthand: X̂ν
i ,

X̂i(D
ν
,Xν) and X̂ν , X̂(D

ν
,Xν), with X̂i(D

ν
,Xν) and X̂(D

ν
,Xν) defined in (29); and

D̂ν , D̂(D
ν
,Xν), with D̂(D

ν
,Xν) defined in (28).

1) Proof of (32): We begin bounding ∆X(D
ν
,Xν) as

1

2
(∆X(D

ν
,Xν))2

(a)

≤ K1

2
||X̂ν −Xν ||2F ≤ K1||Xν+1 − X̂ν ||2F +K1||Xν+1 −Xν ||2F , (95)

where (a) holds by equivalence of the norms with K1 being a proper positive constant.
By squaring both sides of (78) and using 1

n(
∑n

i=1 ai)
2 ≤

∑n
i=1 a

2
i , ∀ai ∈ R (by Jensen

inequality), the first term on the RHS of (95) can be bounded as

1

3K2
||Xν+1

i − X̂ν
i ||2F ≤

∥∥Xν+1
i −Xν

i

∥∥2

F
+
∥∥∥Dν −Dν

(i)

∥∥∥2

F
+ (γν)2, (96)

for some positive constant K2 > 0. Summing (96) over i = 1, . . . , I , yields

1

3K2
||Xν+1 − X̂ν ||2F ≤

∥∥Xν+1 −Xν
∥∥2

F
+
∥∥Dν − 1⊗D

ν∥∥2

F
+ I(γν)2

≤
∥∥Xν+1 −Xν

∥∥2

F
+ 4

∥∥Dν − 1⊗Dφν
∥∥2

F
+ I(γν)2.

(97)

Finally, combining (95) and (97), yields

1

2K1
(∆X(D

ν
,Xν))2 ≤ (3K2 + 1)

∥∥Xν+1 −Xν
∥∥2

F
+ 12K1

∥∥Dν − 1⊗Dφν
∥∥2

F
+ 3K2I(γν)2.

(98)
It follows from (98) together with (76), (52) and Assumption E

∞∑
ν=0

(∆X(D
ν
,Xν))2 <∞.

By the definition of TX,ε, there holds

TX,εε
2 ≤

TX,ε∑
ν=0

(∆X(D
ν
,Xν))2 <∞,

which proves (32).
2) Proof of (33): Following the same approach as above, we can bound ∆D(D

ν
,Xν) as

1

3
(∆D(D

ν
,Xν))2 ≤ K3

3
||D̂ν−D

ν ||2F ≤ K3||D̂ν−D̃ν
(i)||

2
F+K3||D̃ν

(i)−Dν
(i)||

2
F+K3||Dν

(i)−D
ν ||2F ,
(99)

for some K3 > 0. Using (83), the first term on the RHS of (99) can be bounded as

1

4K4
‖D̃ν

(i) − D̂ν‖2F ≤‖D̃ν
(i) −Dν

(i)‖
2
F +

∥∥∥∥Θν
(i) −

1

I
∇DF (Dφν ,X

ν)

∥∥∥∥2

F

+ ‖Dν −Dν
(i)‖

2
F

+
∥∥Dν − 1⊗Dφν

∥∥2

(100)

48



Decentralized Dictionary Learning Over Time-Varying Digraphs

with some constant K4 > 0. Summing (100) over i = 1, . . . , I , we get

1

4K4
‖D̃ν − 1⊗ D̂ν‖2F

≤‖D̃ν −Dν‖2F +

∥∥∥∥Θν − 1⊗ 1

I
∇DF (Dφν ,X

ν)

∥∥∥∥2

F

+
∥∥Dν − 1⊗D

ν∥∥2

F
+ I

∥∥Dν − 1⊗Dφν
∥∥2

F

≤‖D̃ν −Dν‖2F +

∥∥∥∥Θν − 1⊗ 1

I
∇DF (Dφν ,X

ν)

∥∥∥∥2

F

+ (4 + I)
∥∥Dν − 1⊗Dφν

∥∥2

F
.

(101)

Summing (99) over i = 1, . . . , I and using (101), yields

I

3K3
(∆D(D

ν
,Xν))2

≤(4K4 + 1)‖D̃ν −Dν‖2F + 4K4

∥∥∥∥Θν − 1⊗ 1

I
∇DF (Dφν ,X

ν)

∥∥∥∥2

F

+ 4((4 + I)K4 + 1)
∥∥Dν − 1⊗Dφν

∥∥2

F
.

(102)

It follows from (102) together with (81), (84), and (52)

∞∑
ν=0

γν(∆D(D
ν
,Xν))2 <∞.

By definition of TD,ε and non-increasing property of {γν}ν , we get

γTD,ε TD,ε ε
2 ≤

TD,ε∑
ν=0

γν(∆D(D
ν
,Xν))2 <∞. (103)

Using γν = K/νp, with some constant K > 0 and p ∈ (1/2, 1), (103) provides the desired
result as in (33). �

A.4. Miscellaneous results

This section contains some miscellaneous results used in the proofs of Theorems 2 and 3.

A.4.1. Sequence properties

The following lemma summarizes some summability properties of suitably chosen sequences,
which appear in some of the proofs.

Lemma 13 Given the sequences {aν}ν and {bν}ν , and a scalar λ ∈ [0, 1), the following
hold:

(a) If limν→∞ a
ν = 0, then,

lim
ν→∞

ν∑
t=1

at(λ)ν−t = 0. (104)
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(b) If limν→∞
∑ν

t=1

(
at
)2
<∞ and limν→∞

∑ν
t=1

(
bt
)2
<∞, then

lim
ν→∞

ν∑
l=1

l∑
t=1

atbl(λ)l−t <∞, (105)

lim
ν→∞

ν∑
l=1

l∑
t=1

(
at
)2

(λ)l−t <∞, (106)

lim
ν,ν′→∞

ν∑
l=1

(
ν′∑
t=l

at(λ)t−l

)2

<∞. (107)

Proof For the proof of (a) and (105)-(106) in (b), see (Nedić et al., 2010, Lemma 7). We
prove next (107). Expand the LHS of (107) as:

lim
ν,ν′→∞

ν∑
l=1

(
ν′∑
t=l

at(λ)t−l

)2

= lim
ν,ν′→∞

ν∑
l=1

ν′∑
t=l

ν′∑
k=l

atak(λ)t−l(λ)k−l

≤ lim
ν,ν′→∞

ν∑
l=1

ν′∑
t=l

ν′∑
k=l

(at)2 + (ak)2

2
(λ)t−l(λ)k−l = lim

ν,ν′→∞

ν∑
l=1

ν′∑
t=l

(at)2(λ)t−l
ν′∑
k=l

(λ)k−l,

where the inequality is due to a · b ≤ (a2 + b2)/2. Using the bound on the sum of the
geometric series, the above inequality yields

lim
ν,ν′→∞

ν∑
l=1

(
ν′∑
t=l

at(λ)t−l

)2

≤ 1

1− λ
lim

ν,ν′→∞

ν∑
l=1

ν′∑
t=l

(at)2(λ)t−l =
1

1− λ
lim
ν′→∞

ν′∑
t=1

lim
ν→∞

min(ν,t)∑
l=1

(at)2(λ)t−l

≤ 1

1− λ
lim
ν′→∞

ν′∑
t=1

(at)2
t∑
l=1

(λ)t−l ≤ 1

(1− λ)2
lim
ν′→∞

ν′∑
t=1

(at)2 <∞.

A.4.2. On the properties of the best-response map

Some key properties of the best-response maps defined in (8) and (11) are summarized and
proved next.

Proposition 14 Let
{(

Dν ,Xν
)}

ν
be the sequence generated by the D4L Algorithm, in the

setting of Theorem 2(a). Given the solution maps defined in (8) and (11), the following
hold:

(a) There exist some constants sD > 0 and η > 0, and a sequence {T ν}ν , with
∑∞

ν=1 (T ν)2 <
∞, such that: for all ν ≥ 1,〈
∇DF (Dφν ,X

ν),

I∑
i=1

φνi

(
D̃ν

(i) −Dν
(i)

)〉
+

I∑
i=1

φνi

(
G(D̃ν

(i))−G(Dν
(i))
)

≤ −sD
(
||D̃ν −Dν ||F −

Iε̄φ
2 sD

T ν
)2

+ η ||D̃ν −Dν ||F
ν∑
t=1

(ρ)ν−t||Xt −Xt−1||F +
I2 ε̄2φ
4 sD

(T ν)2 ,

(108)

50



Decentralized Dictionary Learning Over Time-Varying Digraphs

where ρ ∈ (0, 1) and ε̄φ are defined in (48) and (49), respectively;

(b) There exist finite constants sX > 0 and LX > 0, such that: for all ν ≥ 1,

I∑
i=1

〈
∇Xifi(Dφν+1 ,Xν

i ),Xν+1
i −Xν

i

〉
+

I∑
i=1

(
gi(X

ν+1
i )− gi(Xν

i )
)

≤ −
I∑
i=1

τνX,i||Xν+1
i −Xν

i ||2F + LX ||Uν − 1⊗Uφν ||F ||Xν+1 −Xν ||F .

(109)

Proof (a) It follows from the optimality of D̃ν
(i) [cf. (8)] and convexity of G that〈

∇Df̃i(D̃ν
(i); D

ν
(i),X

ν
i ) + IΘν

(i) −∇Dfi(D(i),Xi),D
ν
(i) − D̃ν

(i)

〉
+G(Dν

(i))−G(D̃ν
(i)) ≥ 0.

(110)
Adding and subtracting inside the first term

∑
j ∇Dfj(Dφν ,X

ν
j ) and using∇Df̃i(Dν

(i); D
ν
(i),X

ν
i ) =

∇Dfi(Dν
(i),X

ν
i ) [cf. Remark 7], inequality (110) becomes〈
∇Df̃i(D̃ν

(i); D
ν
(i),X

ν
i )−∇Df̃i(Dν

(i); D
ν
(i),X

ν
i ), D̃ν

(i) −Dν
(i)

〉
+
〈
I ·Θν

(i) −
I∑
j=1

∇Dfj(Dφν ,X
ν
j ), D̃ν

(i) −Dν
(i)

〉

+
〈 I∑
j=1

∇Dfj(Dφν ,X
ν
j ), D̃ν

(i) −Dν
(i)

〉
+G(D̃ν

(i))−G(Dν
(i)) ≤ 0.

Invoking the uniform strongly convexity of f̃i(•; Dν
(i),X

ν
i ), the definition of Θν

(i) in (13), and

recalling that ∇DF (Dφν ,X
ν) =

∑
j ∇Dfj(Dφν ,X

ν
j ), we get〈

∇DF (Dφν ,X
ν), D̃ν

(i) −Dν
(i)

〉
+G(D̃ν

(i))−G(Dν
(i))

≤ −τνD,i
∥∥∥D̃ν

(i) −Dν
(i)

∥∥∥2
+ I

∥∥∥∥∥∥Θν
(i) −

1

I

I∑
j=1

∇Dfj(Dφν ,X
ν
j )

∥∥∥∥∥∥
F

∥∥∥D̃ν
(i) −Dν

(i)

∥∥∥
F
.

Multiplying both side of the above inequality by the positive quantities φνi and summing
over i = 1, 2, . . . , I while using φνi ≤ ε̄φ [cf. (49)], yields

〈
∇DF (Dφν ,X

ν),

I∑
i=1

φνi

(
D̃ν

(i) −Dν
(i)

)〉
+

I∑
i=1

φνi

(
G(D̃ν

(i))−G(Dν
(i))
)

≤ −sD||D̃ν −Dν ||2 + Iε̄φ

∥∥∥∥∥Θν − 1⊗ 1

I

I∑
i=1

∇Dfi(Dφν ,X
ν
i )

∥∥∥∥∥
F︸ ︷︷ ︸

gradient tracking error

∥∥∥D̃ν −Dν
∥∥∥
F
,

(111)
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where sD is any positive constant such that sD ≤ mini,ν φ
ν
i τ

ν
D,i [note that such a constant

exists because φνi ≥ εφ, with εφ > 0 defined in (49), and all τνD,i are uniformly bounded
away from zero–see Assumption D1].

Now let us bound the gradient tracking error term in (111). Using (40) recursively, Θν

can be rewritten as

Θν = Ŵν−1:0 Θ0 +
ν−1∑
t=1

Ŵν−1:t
(
Φ̂
t
)−1 (

Gt −Gt−1
)

+
(
Φ̂
ν
)−1 (

Gν −Gν−1
)
. (112)

Using the definition of Gν [cf. (34)] and Ĵ [cf. (45)], write

1⊗ 1

I

I∑
i=1

∇Dfi(Dν
(i),X

ν
i ) = ĴGν = ĴG0 +

ν∑
t=1

Ĵ
(
Gt −Gt−1

)
,

which, using Θ0 = G0, leads to the following expansion for 1⊗ 1
I

∑I
i=1∇Dfi(Dφν ,X

ν
i ):

1⊗ 1

I

I∑
i=1

∇Dfi(Dφν ,X
ν
i ) = Ĵ Θ̃

0
+

ν∑
t=1

Ĵ
(
Gt −Gt−1

)
+ 1⊗ 1

I

I∑
i=1

(
∇Dfi(Dφν ,X

ν
i )−∇Dfi(Dν

(i),X
ν
i )
)
.

(113)

Using (112) and (113), the gradient tracking error term in (111) can be upper bounded as

∥∥∥Θν − 1⊗ 1

I

I∑
i=1

∇Dfi(Dφν ,X
ν
i )
∥∥∥
F

(a)

≤
∥∥∥Ŵν−1:0 − Ĵ

∥∥∥
2

∥∥∥Θ0
∥∥∥
F

+
1

εφ

ν−1∑
t=1

∥∥∥Ŵν−1:t − Ĵφt
∥∥∥

2

∥∥∥Gt −Gt−1
∥∥∥
F

+
∥∥∥(Φ̂

ν
)−1
− Ĵ

∥∥∥
2

∥∥Gν −Gν−1
∥∥
F

+
1√
I

I∑
i=1

∥∥∥∇Dfi(Dφν ,X
ν
i )−∇Dfi(Dν

(i),X
ν
i )
∥∥∥
F

(b)

≤ c4 (ρ)ν + c5 L∇

ν∑
t=1

(ρ)ν−t
(∥∥Dt −Dt−1

∥∥
F

+
∥∥Xt −Xt−1

∥∥
F

)
+ L∇

∥∥∥Dν − 1⊗Dφν

∥∥∥
F

(c)
= T ν + c5 L∇

ν∑
t=1

(ρ)ν−t
∥∥Xt −Xt−1

∥∥
F
,

(114)
for some positive finite constants c4 and c5, where in (a) we used the lower bound φνi ≥ εφ

[cf. (49)] and Ĵφt = Ĵ Φ̂
t

[cf. (47)]; and in (b) we used (34), (63) (cf. Remark 8), and
Lemma 4; and in (c) we defined T ν as

T ν , c4 (ρ)ν + c5 L∇

ν∑
t=1

(ρ)ν−t
∥∥Dt −Dt−1

∥∥
F

+ L∇
∥∥Dν − 1⊗Dφν

∥∥
F
. (115)
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Substituting (114) into (111) yields〈
∇DF (Dφν ,X

ν),
I∑
i=1

φνi

(
D̃ν

(i) −Dν
(i)

)〉
+

I∑
i=1

φνi

(
G(D̃ν

(i))−G(Dν
(i))
)

≤ −sD||D̃ν −Dν ||2F + Iε̄φT
ν ||D̃ν −Dν ||F

+ I ε̄φ c5 L∇ ||D̃ν −Dν ||F
ν∑
t=1

(ρ)ν−t
∥∥Xt −Xt−1

∥∥
F

= −sD
(
||D̃ν −Dν ||F −

I ε̄φ
2 sD

T ν
)2

+
I2 ε̄2φ
4 sD

(T ν)2

+ η ||D̃ν −Dν ||F
ν∑
t=1

(ρ)ν−t
∥∥Xt −Xt−1

∥∥
F
,

with η = Iε̄φc5L∇.
To complete the proof, we need to show that

∑∞
ν=1 (T ν)2 <∞. Note that the first term

on the RHS of (115) is square summable, and so is the third one, due to Proposition 5 [cf.
(52)]. Invoking Jensen’s inequality, it is sufficient to show that the second term on RHS of
(115) is square summable. Following the same approach used to prove (52), we have

lim
ν→∞

ν∑
t=1

(
t∑
l=1

(ρ)t−l
∥∥∥Dl −Dl−1

∥∥∥
F

)2

≤ lim
ν→∞

ν∑
t=1

t∑
l=1

t∑
k=1

(ρ)t−l(ρ)t−k
∥∥∥Dl −Dl−1

∥∥∥
F

∥∥∥Dk −Dk−1
∥∥∥
F

(a)

≤ 1

1− ρ
lim
ν→∞

ν∑
t=1

t∑
l=1

(ρ)t−l(γl)2
∥∥∥D̃l−1 −Dl−1

∥∥∥2

F

(b)
< ∞,

where (a) follows from ab ≤ (a2 + b2)/2, and (b) is due to Lemma 13 and Assumption A3.
Hence

∑∞
ν=1 (T ν)2 <∞.

(b) We prove this statement using the definition (15) of f̃i; the same conclusion holds also
using the alternative choice (14) of f̃i; the proof is thus omitted. Invoking the optimality
of Xν+1 [cf. (11)] together with the convexity of gi, yield〈

∇Xi h̃i(X
ν+1
i ; Uν

(i),X
ν
i )−∇Xi h̃i(Xν

i ; Uν
(i),X

ν
i ),Xν

i −Xν+1
i

〉
+
〈
∇Xi h̃i(Xν

i ; Uν
(i),X

ν
i )−∇Xi h̃i(Xν

i ; Uφν ,X
ν
i ),Xν

i −Xν+1
i

〉
+
〈
∇Xi h̃i(Xν

i ; Uφν ,X
ν
i ),Xν

i −Xν+1
i

〉
+ gi (Xν

i )− gi(Xν+1
i ) ≥ 0.

Using Remark 7 and Uφν = Dφν+1 [cf. (42)], we obtain〈
∇Xifi(Dφν+1 ,Xν

i ),Xν+1
i −Xν

i

〉
+ gi(X

ν+1
i )− gi (Xν

i )

≤ −τνX,i
∥∥Xν+1

i −Xν
i

∥∥2

F
+
〈
∇Xifi(Uφν ,X

ν
i )−∇Xifi(Uν

(i),X
ν
i ),Xν+1

i −Xν
i

〉
,

which, together with (63), leads to the desired result (109), with LX =
√
IL∇.

53



Daneshmand, Sun, Scutari, Facchinei, Sadler

A.4.3. Proof of Proposition 10

We begin observing that

G(Dφν+1) ≤ G(Dφν ) +
γν

I

I∑
i=1

φνi

(
G(D̃ν

(i))−G(Dν
(i))
)

+
γν

I

I∑
i=1

φνi

(
G(Dν

(i))−G(Dφν )
)
,

(116)
due to (43) and the convexity of G [together with 1ᵀφν = 1].

Invoking the descent lemma for fi(Uφν , •) and using Uφν = Dφν+1 [cf. (42)], we get:
for sufficiently large ν, say ν ≥ ν0,

U(Dφν+1 ,Xν+1)

≤
I∑
i=1

{
fi(Dφν+1 ,Xν

i ) + gi(X
ν
i )
}

+G(Dφν+1) +

I∑
i=1

{
gi(X

ν+1
i )− gi(Xν

i )
}

+

I∑
i=1

〈
∇Xifi(Dφν+1 ,Xν

i ),Xν+1
i −Xν

i

〉
+

1

2

I∑
i=1

L∇Xi(Uφν )
∥∥Xν+1

i −Xν
i

∥∥2

F

(a)

≤ U(Dφν+1 ,Xν)−
I∑
i=1

{(
τνX,i −

1

2
L∇Xi(Uφν )

)∥∥Xν+1
i −Xν

i

∥∥2

F

}
+ LX ||Uν − 1⊗Uφν ||F ||Xν+1 −Xν ||F

(b)

≤ U(Dφν+1 ,Xν)− sX ||Xν+1 −Xν ||2F + LX ||Uν − 1⊗Uφν ||F ||Xν+1 −Xν ||F ,

(117)

where in (a) we used Proposition 14(b); and in (b) sX > 0 is a constant such that
infν≥ν0(τνX,i −

1
2L∇Xi(Uφν )) ≥ sX , for all i = 1, . . . , I . Note that such a constant exists

because of (58) and Assumption D1.
To upper bound U(Dφν+1 ,Xν), we apply the descent lemma to F (•,Xν). Recalling that

∇DF (•,Xν) is Lipschitz continuous with constant L∇D and using (43), we get

U(Dφν+1 ,Xν) ≤ F (Dφν ,X
ν) +

γν

I

〈
∇DF (Dφν ,X

ν),
I∑
i=1

φνi

(
D̃ν

(i) −Dν
(i)

)〉

+
L∇D

2

(
γν

I

)2
∥∥∥∥∥

I∑
i=1

φνi

(
D̃ν

(i) −Dν
(i)

)∥∥∥∥∥
2

F

+

I∑
i=1

gi(X
ν
i ) +G(Dφν+1),

(a)

≤ U(Dφν ,X
ν)− sD · γν

I

(
||D̃ν −Dν ||F −

Iε̄φ
2sD

T ν
)2

+
η · γν

I
||D̃ν −Dν ||F

ν∑
t=1

(ρ)ν−t||Xt −Xt−1||F +
Iε̄2φγ

ν

4sD
(T ν)2

+
L∇D

2
(γν)2 ||D̃ν −Dν ||2F +

γν

I

I∑
i=1

φνi

(
G(Dν

(i))−G(Dφν )
)

︸ ︷︷ ︸
≤LGγν‖Dν−1⊗Dφν‖F

,

(118)
where in (a) we used (116) and Proposition 14(a), and the Lipschitz continuity of G, due
to the convexity of G (G is thus locally Lipschitz continuous) and the compactness of D;
we denoted by LG > 0 the Lipschitz constant.

54



Decentralized Dictionary Learning Over Time-Varying Digraphs

Combining (117) with (118) and defining τ̄νD , sD − γν
IL∇D

2 , we get: for ν ≥ ν0,

U(Dφν+1 ,Xν+1) ≤ U(Dφν ,X
ν)− sX ||Xν+1 −Xν ||2F + LX ||Uν − 1⊗Uφν ||F ||Xν+1 −Xν ||F

−
τ̄νD γ

ν

I

(
||D̃ν −Dν ||F −

I ε̄φ
2 τ̄νD

T ν
)2

+
I ε̄2φ γ

ν

4 τ̄νD
(T ν)2

+
η γν

I
||D̃ν −Dν ||F

ν∑
t=1

(ρ)ν−t||Xt −Xt−1||F︸ ︷︷ ︸
≤c5 (ρ)ν+ρ−1

∑ν
t=1(ρ)ν−t||Xt+1−Xt||F

+LG γ
ν
∥∥Dν − 1⊗Dφν

∥∥
F
,

(119)
where c5 , (ρ)−1 ||X1 − X0||F . Since γν ↓ 0, there exists an integer ν1 ≥ ν0 and some
τ̄D such that τ̄νD ≥ τ̄D > 0, for all ν ≥ ν1. Let ν̄ be any integer ν̄ ≥ ν1. Then, applying

(119) recursively on ν, ν − 1, . . . , ν̄ + 1, ν̄, and using the boundedness of {||D̃ν −Dν ||F }ν ,
we obtain

U(Dφν+1 ,Xν+1)

≤ U(Dφν̄ ,X
ν̄)− sX

ν∑
l=ν̄

||Xl+1 −Xl||2F + LX

ν∑
l=ν̄

||Ul − 1⊗Uφl ||F ||X
l+1 −Xl||F

− τ̄D
I

ν∑
l=ν̄

γl
(
||D̃l −Dl||F −

Iε̄φ
2 τ̄D

T l
)2

+
Iε̄2φ
4 τ̄D

ν∑
l=ν̄

γl
(
T l
)2

+ c6

ν∑
l=ν̄

γl(ρ)l + c7

ν∑
l=ν̄

l∑
t=1

γl(ρ)l−t
∥∥Xt+1 −Xt

∥∥
F

+ LG

ν∑
l=ν̄

γl
∥∥∥Dl − 1⊗Dφl

∥∥∥
F
,

(120)
for some finite constants c6, c7 > 0. Using the boundedness of {||Xν+1 −Xν ||F }ν (cf. Step
2), i.e., ||Xν+1 −Xν ||F ≤ BX , for all ν and some BX > 0, we can bound the double-sum
term on the RHS of (120) as

ν∑
l=ν̄

l∑
t=1

γl(ρ)l−t
∥∥Xt+1 −Xt

∥∥
F

=
ν∑
l=1

ν∑
t=max(ν̄,l)

γt(ρ)t−l
∥∥∥Xl+1 −Xl

∥∥∥
F

=
ν̄−1∑
l=1

∥∥∥Xl+1 −Xl
∥∥∥
F

ν∑
t=ν̄

γt(ρ)t−l +
ν∑
l=ν̄

∥∥∥Xl+1 −Xl
∥∥∥
F

ν∑
t=l

γt(ρ)t−l

(a)

≤ BX ·
(

max
ν̄≤t≤ν

γt
)
·

(1− (ρ)ν̄)
(
1− (ρ)ν−ν̄+1

)
(1− ρ)2

+
ν∑
l=ν̄

∥∥∥Xl+1 −Xl
∥∥∥
F

∞∑
t=l

γt(ρ)t−l

≤ BX
(1− ρ)2

(
max
t≥ν̄

γt
)

+
ν∑
l=ν̄

∥∥∥Xl+1 −Xl
∥∥∥
F

∞∑
t=l

γt(ρ)t−l,

(121)

where in (a) we used the summability of
∑ν

t=l γ
t(ρ)t−l, and the following bound

ν̄−1∑
l=1

ν∑
t=ν̄

γt(ρ)t−l ≤
(

max
t≥ν̄

γt
)

(1− (ρ)ν̄)
(
1− (ρ)ν−ν̄+1

)
(1− ρ)2

.
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Substituting (121) in (120), yields

U(Dφν+1 ,Xν+1) ≤ U(Dφν̄ ,X
ν̄)− sX

ν∑
l=ν̄

∥∥∥Xl+1 −Xl
∥∥∥2

F

+

ν∑
l=ν̄

(
c7

∞∑
t=l

γt(ρ)t−l + LX ||Ul − 1⊗Uφl ||F

)
︸ ︷︷ ︸

,Zl

∥∥∥Xl+1 −Xl
∥∥∥
F

− τ̄D
I

ν∑
l=ν̄

γl
(
||D̃l −Dl||F −

Iε̄φ
2 τ̄D

T l
)2

+
Iε̄2φ
4 τ̄D

ν∑
l=ν̄

γl
(
T l
)2

+

[
c6

1− ρ
(
(ρ)ν̄ − (ρ)ν+1

)
+

c7BX
(1− ρ)2

]
·
(

max
t≥ν̄

γt
)

︸ ︷︷ ︸
,Eν,ν̄

+LG

ν∑
l=ν̄

γl
∥∥∥Dl − 1⊗Dφl

∥∥∥
F

which complete the proof. �

A.4.4. Proof of Lemma 11

The result follows by squaring both sides of eq. (114) [in the proof of Proposition 14 (a)],
using

∑∞
ν=1(T ν)2 <∞ [cf. Proposition 14 (a)], and

lim
ν→∞

ν∑
t=1

(
t∑
l=1

(ρ)t−l
∥∥∥Xl −Xl−1

∥∥∥
F

)2

≤ lim
ν→∞

ν∑
t=1

t∑
l=1

t∑
k=1

(ρ)t−l(ρ)t−k
∥∥∥Xl −Xl−1

∥∥∥
F

∥∥∥Xk −Xk−1
∥∥∥
F

(a)

≤ 1

1− ρ
lim
ν→∞

ν∑
t=1

t∑
l=1

(ρ)t−l
∥∥∥Xl −Xl−1

∥∥∥2

F

(b)
< ∞,

where (a) follows from ab ≤ (a2 + b2)/2, ∀a, b ∈ R, and (b) is due to (76) and Lemma 13. �

A.4.5. Proof of Proposition 12

(a) Using the optimality of D̃ν
(i) defined in (8) together with convexity of G, yields〈

∇Df̃i(D̃ν1

(i); D
ν1

(i),X
ν1
i ) + I ·Θν1

(i) −∇Dfi(D
ν1

(i),X
ν1
i ), D̃ν2

(i) − D̃ν1

(i)

〉
+G(D̃ν2

(i))−G(D̃ν1

(i)) ≥ 0,〈
∇Df̃i(D̃ν2

(i); D
ν2

(i),X
ν2
i ) + I ·Θν2

(i) −∇Dfi(D
ν2

(i),X
ν2
i ), D̃ν1

(i) − D̃ν2

(i)

〉
+G(D̃ν1

(i))−G(D̃ν2

(i)) ≥ 0.

Summing the two inequalities above while adding/subtracting inside the inner product
∇Df̃i(D̃ν2

(i); D
ν1

(i),X
ν1
i ) and using (13), yield〈

∇Df̃i(D̃ν2

(i); D
ν1

(i),X
ν1
i )−∇Df̃i(D̃ν2

(i); D
ν2

(i),X
ν2
i ), D̃ν2

(i) − D̃ν1

(i)

〉
−
〈
∇Dfi(Dν1

(i),X
ν1
i )−∇Dfi(Dν2

(i),X
ν2
i ), D̃ν2

(i) − D̃ν1

(i)

〉
+ I

〈
Θν1

(i) −Θν2

(i), D̃
ν2

(i) − D̃ν1

(i)

〉
≥
〈
∇Df̃i(D̃ν1

(i); D
ν1

(i),X
ν1
i )−∇Df̃i(D̃ν2

(i); D
ν1

(i),X
ν1
i ), D̃ν1

(i) − D̃ν2

(i)

〉
≥ τν1

D,i ||D̃
ν2

(i) − D̃ν1

(i)||
2
F ,

(122)
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where the second inequality follows from the τν1
D,i-strong convexity of f̃i(•; Dν1

(i),X
ν1
i ) [cf.

Remark 7]. To bound the first term on the LHS of the above inequality, let us use the
expression (15) of f̃i, and write

∇Df̃i(D̃ν2

(i); D
ν1

(i),X
ν1
i )−∇Df̃i(D̃ν2

(i); D
ν2

(i),X
ν2
i )

= ∇Dfi(Dν1

(i),X
ν1
i )−∇Dfi(Dν2

(i),X
ν2
i ) + τν1

D,i

(
Dν2

(i) −Dν1

(i)

)
+ (τ ν1

D,i − τ
ν2
D,i)

(
D̃ν2

(i) −Dν2

(i)

)
.

(123)
Substituting (123) in (122), we get

∥∥∥D̃ν2

(i) − D̃ν1

(i)

∥∥∥
F

≤
|τν1
D,i − τ

ν2
D,i|

τν1
D,i

∥∥∥D̃ν2

(i) −Dν2

(i)

∥∥∥
F

+
∥∥∥Dν1

(i) −Dν2

(i)

∥∥∥
F

+
I

τν1
D,i

∥∥∥Θν1

(i) −Θν2

(i)

∥∥∥
F

(a)

≤
|τν1
D,i − τ

ν2
D,i|

τν1
D,i

∥∥∥D̃ν2

(i) −Dν2

(i)

∥∥∥
F

+
∥∥Dφν2 −Dφν1

∥∥
F

+
∥∥∥Dν1

(i) −Dφν1

∥∥∥
F

+
∥∥∥Dν2

(i) −Dφν2

∥∥∥
F

+
I

τν1
D,i

∥∥∥∥∥Θν1

(i) −
1

I

I∑
i=1

∇Dfi(Dφν1 ,X
ν1
i )

∥∥∥∥∥
F

+
I

τν1
D,i

∥∥∥∥∥Θν2

(i) −
1

I

I∑
i=1

∇Dfi(Dφν2 ,X
ν2
i )

∥∥∥∥∥
F

+
L∇D
τν1
D,i

∥∥(Dφν1 ,X
ν1)− (Dφν2 ,X

ν2)
∥∥ ,

(124)
where (a) holds by add/subtracting average quantities 1

I

∑I
i=1∇Dfi(Dφν ,X

ν
i ) and D

ν
(i),

triangle inequality, and invoking the Lipschitz continuity bound (63). By the compactness
of D, we have ||D̃ν2

(i) −Dν2

(i)||F ≤ BD, for some finite BD > 0. Furthermore, by Assumption
D, τνD,i is convergent to some τ∞D,i > 0 and there exists a sufficiently small s̃D > 0 such that

s̃D ≤ τνD,i ≤ s̃
−1
D , for all ν and i. Thus (124) gives

∥∥∥D̃ν2

(i) − D̃ν1

(i)

∥∥∥
F
≤
(
L∇D
s̃D

+ 1

)∥∥(Dφν1 ,X
ν1)− (Dφν2 ,X

ν2)
∥∥+ T̃ ν1

i + T̃ ν2
i (125)

with T̃ νi ,
I
s̃D
||Θ̃

ν

i − 1
I

∑I
i=1∇Dfi(Dφν ,X

ν
i )||F + ||Dν

(i) −Dφν ||F + BD
s̃D
|τνD,i − τ∞D,i|. Con-

vergence of τνD,i (Assumption D2), Lemma 11 and Proposition 5 yield T̃ νi → 0 as ν → ∞.

Summing (125) leads to the desired result, with LD = I(
L∇D
s̃D

+ 1) and T̃ ν ,
∑I

i=1 T̃
ν
i .

It is clear that the claim also holds when (14) is chosen for f̃i [specifically, trivial extension
is to modify the RHS of (123) and following a similar steps as in the rest of the proof]; we
omit further details.

(b) We prove (86) when h̃i is given by (17); we leave the proof under (16) to the reader,
since it is almost identical to that under (17).
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Invoking optimality of each Xν
i and Xν+1

i defined in (11) while using the strong convexity
of h̃i(•; Uν

(i),X
ν
i ) and gi’s, it is not difficult to show that the following holds:

(τνX,i + µi)
∥∥Xν+1

i −Xν
i

∥∥2

F
≤〈

∇Xi h̃i(Xν
i ; Uν

(i),X
ν
i )−∇Xi h̃i(Xν

i ; Uν−1
(i) ,Xν−1

i ),Xν
i −Xν+1

i

〉
.

Using (17), the definition Υν
i (Xi) , τνX,iXi − ∇Xifi(Uν

(i),Xi), and the Cauchy-Schwarz
inequality, the above inequality yields

(τνX,i + µi)
∥∥Xν+1

i −Xν
i

∥∥2

F
≤
∥∥Υν

i (Xν
i )−Υν

i (Xν−1
i )

∥∥
F

∥∥Xν+1
i −Xν

i

∥∥
F

+
∥∥∥∇Xifi(Uν

(i),X
ν−1
i )−∇Xifi(U

ν−1
(i) ,Xν−1

i )
∥∥∥
F

∥∥Xν+1
i −Xν

i

∥∥
F

+ |τνX,i − τν−1
X,i |

∥∥Xν
i −Xν−1

i

∥∥
F

∥∥Xν+1
i −Xν

i

∥∥
F
.

(126)
Following the same steps used to prove (61), it is not difficult to check that, under Assump-
tion D1, ||Υν

i (Xν
i )−Υν

i (X0
i )||F ≤ τνX,i||Xν

i −X0
i ||F . Using in (126) this bound together with

the Lipschitz continuity of ∇Xifi(•,X
ν−1
i ) [cf. Remark 8] and summing over i, yield

||Xν+1 −Xν ||2F =
I∑
i=1

||Xν+1
i −Xν

i ||2F

≤
I∑
i=1

τνX,i + |τνX,i − τ
ν−1
X,i |

τνX,i + µi
||Xν

i −Xν−1
i ||F ||Xν+1

i −Xν
i ||F

+
I∑
i=1

L∇
τνX,i + µi

||Uν
(i) −Uν−1

(i) ||F ||X
ν+1
i −Xν

i ||F .

(127)

Define

pνX , max
i

τνX,i + |τνX,i − τ
ν−1
X,i |

τνX,i + µi
, and qνX , max

i

L∇
τνX,i + µi

. (128)

Note that 0 < pνX , q
ν
X <∞. Then, (127) becomes

||Xν+1 −Xν ||2F ≤ pνX
I∑
i=1

||Xν
i −Xν−1

i ||F ||Xν+1
i −Xν

i ||F + qνX

I∑
i=1

||Uν
(i) −Uν−1

(i) ||F ||X
ν+1
i −Xν

i ||F

≤ pνX ||Xν −Xν−1||F ||Xν+1 −Xν ||F + qνX ||Uν −Uν−1||F ||Xν+1 −Xν ||F ,

where in the last inequality we used
∑

i aibi ≤ ||a|| · ||b||. Therefore,

||Xν+1 −Xν ||F ≤ pνX ||Xν −Xν−1||F + qνX ||Uν −Uν−1||F . (129)

If, in addition, Assumption D2 holds, then it follows from (128) that there exists a suffi-
ciently large νX > 0 such that pνX ∈ (0, δ0), for all ν ≥ νX and some δ0 ∈ (0, 1). �
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