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Abstract—This paper starts by assuming a 1-2-1 network, the
abstracted noiseless model of mmWave networks that was shown
to closely approximate the Gaussian capacity in [1], and studies
secure communication. First, the secure capacity is derived for 1-
2-1 networks where a source is connected to a destination through
a network of unit capacity links. Then, lower and upper bounds
on the secure capacity are derived for the case when source
and destination have more than one beam, which allow them
to transmit and receive in multiple directions at a time. Finally,
secure capacity results are presented for diamond 1-2-1 networks
when edges have different capacities.

I. INTRODUCTION

High-frequency communication, such as mmWave and Thz,
can enable multi-gigabit communication, albeit at relatively
short range, and with the help of beamforming to compensate
for high path loss. To cover large areas, such as commercial
buildings, requires deploying networks of relays that commu-
nicate through directional beams. In [1], the authors derived
a model for high-frequency communication networks, that
they termed Gaussian 1-2-1 networks, and presented capacity
results as well as information flow algorithms. In this paper,
we start by assuming a 1-2-1 network, namely the abstracted
noiseless model of mmWave networks that was shown to
closely approximate the Gaussian capacity in [1] and, study
secure message communication over such networks.

The 1-2-1 model abstracts directivity: to establish a com-
munication link, both the mmWave transmitter and receiver
employ antenna arrays that they electronically steer to direct
their beams towards each other - termed as 1-2-1 link, as both
nodes need to focus their beams to face each other for the link
to be active. Thus, in 1-2-1 networks, instead of broadcasting
or interference, we have coordinated steering of transmit and
receive beams to activate different links at each time.

We now review a fundamental result in network security,
and then discuss how it changes over 1-2-1 networks. Consider
a source, Alice, connected to a destination, Bob, through an
arbitrary traditional network represented as a graph with unit
capacity lossless links, and assume that the min-cut between
the source and the destination equals H . That is, we can find
H edge-disjoint unit capacity paths that connect the source
to the destination. Assume that a passive eavesdropper, Eve,
wiretaps any K links of the communication network. Alice
can then securely (in the strong information theoretical sense)
communicate at rate H−K with the destination, by conveying
linear combinations of K keys with H − K information

messages [2]. The rate H −K is exactly the secure message
capacity1 - we cannot hope to do better.

In 1-2-1 networks of unit capacity edges, it turns out that
even if the 1-2-1 min-cut is H , i.e., the maximum flow using
mmWave communication is H , and Eve eavesdrops any K
edges, we may be able to securely communicate at rates higher
than H −K. Consider for example a diamond network with
N relays shown in Fig. 1c with all edges of unit capacity:
the unsecure communication capacity equals one - we cannot
do better than rate one because Alice can beamform and
transmit information at only one relay at each time, and it
does not matter which relay she communicates with, since we
assumed that all links have unit capacity. Assume that Eve
wiretaps any one edge. That is, we have H = 1 and K = 1,
which over traditional networks would result to a zero secure
communication rate. However, Alice can vary which relay she
communicates with over time; in fact, she can devote a fraction
1
N of her time to send information to Bob over any one out
of the N unit capacity paths that connect them. Because Eve
will only be observing one of these paths, as we formally
show in Section III, Alice can securely communicate at rate
of 1− 1

N . This is closer to the unsecure communication rate of
one, than to zero. That is, for security over 1-2-1 networks, we
can leverage the fact that we may have many possible choices
of paths to achieve the unsecure capacity, to communicate at
rates much higher than H −K.
Main Contributions. (a) We consider arbitrary 1-2-1 networks
with unit capacity edges, where Eve wiretaps any K edges,
and derive lower and upper bounds on the capacity, that are
tight for some networks. (b) We derive the secure message
capacity for the case where the source is connected to the
destination through one layer of non-interfering relays (i.e.,
diamond network), where now each path from the source to
the destination can have arbitrary capacity.
Related Work. In our work, we essentially leverage directivity
and multipath for security, over a “lossless” network model.
The fact that directivity can help with security has been
observed in the context of MIMO beamforming, see [3] and
later work [4]; in these works, the main observation is that,
by creating a narrow beam, we limit the locations where the
adversary Eve can collect useful information - or at least,

1This holds under some standard assumptions in the literature [2], in
particular under the assumption that only Alice can generate randomness.
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significantly weaken her channel, so as to utilize wiretapping
coding. However, to the best of our knowledge, these ideas
have not been extended to networks. Exploiting multipath for
security over lossless networks with unit capacity links has
notably been used in secure network coding [2]. This was
followed by a number of works such as [5], [6], [7], [8].
For edges with non-uniform capacities, Cui et al. [9] designed
a secure achievable scheme. These results however, consider
only the “traditional network”, where a node can communicate
to other nodes using all the edges it is connected with, and not
1-2-1 networks where a node with one beam can only transmit
to one among its neighbors at each point in time.
Paper Organization. Section II presents the 1-2-1 network
model and results on the unsecure capacity for arbitrary
networks with unit edge capacities. Section III contains secure
capacity results for arbitrary networks with unit edge capac-
ities and Section IV presents our secure capacity results for
diamond networks with arbitrary edge capacities. Section V
concludes the paper.

II. SYSTEM MODEL AND UNSECURE CAPACITY

Notation. [m] := {1, 2, . . . , m}, [a : b] is the set of integers
from a to b ≥ a and A[m] = {A1, A2, A3, . . . , Am}.
1-2-1 Model. The work in [1] examined capacity characteri-
zations for unsecure communication, and showed that we can
approximately achieve the capacity of a Gaussian mmWave
network within a constant gap, by considering instead of
the underlying Gaussian network, a lossless network that
was termed 1-2-1 network model. In this paper, we examine
security over such 1-2-1 networks, that we describe next.
We consider a source connected to a destination through
a directed acyclic graph G = (V,E) with edges of fixed
finite capacities, where each link can be activated according
to the 1-2-1 constraints. That is, at any particular time, an
intermediate node can simultaneously receive and transmit but
it can at most listen to one node (one incoming edge) and
direct its transmission to one node (one outgoing edge) in the
network. The source (respectively, destination) can transmit to
(respectively, receive from) M other nodes i.e., on M outgoing
edges (respectively, on M incoming edges), simultaneously
with no interference.

Adversary Model and Security. We assume that the source
wishes to communicate a message W of entropy rate R
securely from a passive external adversary Eve who can
wiretap any K edges of her choice.

If Eve wiretaps edges in the set S ⊆ E, |S| = K, and the
symbols transmitted on these edges over n network uses are
denoted by {Tn

e , e ∈ S}, then we require that:

I(W ; {Tn
e , e ∈ S}) ≤ ε, ∀S ⊆ E, |S| = K. (1)

We are interested in characterizing the secure message capacity
C, using the standard definition of the maximum rate at which
the source can communicate with the destination under (1).

Unsecure Capacity: Here, we derive the capacity in the
absence of the eavesdropper Eve. 1-2-1 networks with arbitrary

edge capacities, and M = 1, under Gaussian channel models
are analyzed in [1], where the main result is that over such
networks, one can approximately (i.e., up to a gap that only
depends on N ) achieve the capacity by routing information
across paths; moreover, out of an exponential number (in N )
of paths that potentially connect the source to the destination,
capacity can be achieved by utilizing at most a linear number
(in N ) of them. In this section, we derive an additional results,
namely the exact capacity for any M when all the edges are
of unit capacity.

Theorem 1. For arbitrary 1-2-1 networks with unit capacity
edges, the capacity in absence of Eve is given by,

Cu = min(M,Hv), (2)

where Hv is the maximum number of vertex disjoint paths in
the network.

Proof: Achievability: Let p[Hv ] be the Hv vertex disjoint
paths. The fact that paths are vertex disjoint is crucial under
the 1-2-1 constraints. This is because intermediate nodes can
transmit and receive from only one node each, and this ensures
that multiple paths (depending on the number of source and
destination beams) can be simultaneously operated at each
time. We pick min(M,Hv) such paths and use these for the
transmission and thus achieve a rate of min(M,Hv).
Outer Bound: Whenever there are direct edges from the
source to the destination, we add a virtual node in between,
so that a direct edge turns into a two-hop path. This does not
change the transmission rate as if there was a transmission on
the direct edge in G, it can also be performed using the added
virtual node with no extra resources. Thus, we can assume that
there are no direct edges from the source to the destination.

Now, we consider the minimum vertex cut of the network,
i.e., the minimum number of vertices (excluding the source and
the destination), such that when we remove them there is no
path from the source to the destination. This minimum number
of vertices is equal to the maximum number of vertex disjoint
paths, i.e., Hv . We denote these vertices as V1, V2, , . . . , VHv

.
Each of these intermediate nodes can transmit only on one of
its outgoing edges. We denote the symbols transmitted on the
outgoing edges of these nodes over n network uses as Tn

V[Hv ]
,

where Tn
Vi

denotes the symbols transmitted by vertex Vi. We
represent the symbols received by the destination as Tn

D.
By Fano’s inequality, we obtain

nR ≤ H(W )
(a)
= H(W )−H(W |Tn

D)

(b)

≤ H(W )−H(W |Tn
V[Hv ]

)

= I(W ;Tn
V[Hv ]

) ≤ H(Tn
V[Hv ]

)
(c)

≤ nHv.

nR ≤ H(W )−H(W |Tn
D) = I(W ;Tn

D)

≤ H(Tn
D)

(d)

≤ Mn.

R ≤ min(M,Hv),

where (a) is due to the reliable decoding constraint; (b)
follows from the ‘conditioning does not increase the entropy’



principle and since V[Hv ] is a vertex cut and thus all the
information going to the destination passes through these
vertices (i.e., Tn

D is a deterministic function of Tn
V[Hv ]

); (c)
is because there are Hv symbols for every instance and there
are n such instances; and (d) holds because the destination
can receive only on M incoming edges from M nodes.

III. ARBITRARY NETWORKS WITH UNIT LINK CAPACITY

In this section, we prove lower and upper bounds on the
secure capacity.

Theorem 2. Consider an arbitrary 1-2-1 network with unit
capacity edges.
(a) For M = 1: If He is the maximum number of edge

disjoint paths connecting the source to the destination
on the underlying graph, then the 1-2-1 secure capacity
C can be lower bounded as follows:

C ≥
(
1− K

He

)
. (3)

(b) For M > 1: If Hv is the maximum number of vertex
disjoint paths connecting the source to the destination
on the underlying graph, then the 1-2-1 secure capacity
C can be lower bounded as follows:

C ≥ min(M,Hv)

(
1− K

Hv

)
. (4)

Proof. The main intuition behind the proof is that we can
apply the optimal secure communication scheme we would
have used on the underlying graph if we did not have the
1-2-1 constraints, and then use this scheme under the 1-2-1
constraints, as described in what follows.
(a) For M = 1: Let p[He] be the edge disjoint paths. We
start by generating K random packets and make He linear
combinations of these using an MDS code matrix of size
K ×He. We refer to these packets as X[He]. Any K of these
combinations are mutually independent. Next, we take He−K
message packets, and add (i.e., encode) these with the first
He − K random packets. In other words, after this coding
operation we obtain

Ti =

{
Wi +Xi if i ≤ He −K
Xi else ,

where W[He−K] are message packets.
We use the network He times, and in each instance we

use one of the paths from p[He]. Thus, we would be able
to communicate all encoded symbols in He time instances.
Moreover, the destination will be able to cancel out the keys
and thereby decode He−K messages, as there are K symbols
T[He−K+1:THe ]

, which are just independent combinations of
the K random packets we started with.

Moreover, in each instance, Eve will receive a symbol if
the edges she eavesdrops are part of the path that is used in
that particular instance. Since her K edges can at most be
part of K paths, Eve will receive at most K symbols, all of
which are encoded with independent keys. Thus, the scheme
securely transmits He−K message packets in He uses of the

network. Hence, we get a rate R = He−K
He

= 1 − K
He

, which
is precisely the one in (3). Note that security follows from the
security of the underlying scheme, that is a standard scheme
for multipath security.
(b) For M > 1: Let p[Hv ] be the vertex disjoint paths. Again,
the fact that paths are vertex disjoint is crucial under the 1-2-
1 constraints. This is because intermediate nodes can transmit
and receive from only one node each, and this ensures that M
paths can be simultaneously operated at each time (note that
having vertex disjoint paths is a sufficient but not a necessary
condition).

Let M̂ = min(M,Hv). We start by generating K
(Hv−1
M̂−1

)
random packets and extend them to M̂

(Hv

M̂

)
packets using an

MDS code matrix. Then, similar to the case M = 1, we
take the first M̂

(Hv

M̂

)
− K

(Hv−1
M̂−1

)
of these random packets

and add (i.e., encode) them with the same amount of message
packets. More formally, if

{
Xi, i∈

[
M̂
(Hv

M̂

)]}
are the random

packets after the extension using the MDS code matrix, and{
Wi, i∈

[
M̂
(Hv

M̂

)
−K

(Hv−1
M̂−1

)]}
are the message packets, then

Ti =

{
Xi +Wi if i ≤ M̂

(Hv

M̂

)
−K

(Hv−1
M̂−1

)
Xi else

.

We use this network
(Hv

M̂

)
times, and in each instance we use a

different choice of M̂ paths to communicate. It is not difficult
to see that each of the K edges eavesdropped by the adversary
will intersect with

(Hv−1
M̂−1

)
such network uses. This is because,

for a fixed choice of edge, there are
(Hv−1
M̂−1

)
network instances

where a symbol in carried via this edge. Hence, in total
the adversary will receive only K

(Hv−1
M̂−1

)
symbols, which are

encoded with independent keys. The receiver, after the
(Hv

M̂

)
network uses will be able to cancel out the keys. Thus, we can
securely communicate M̂

(Hv

M̂

)
−K

(Hv−1
M̂−1

)
over

(Hv

M̂

)
instances

of the network, and achieve a rate R equal to

R =
M̂
(Hv

M̂

)
−K

(Hv−1
M̂−1

)(Hv

M̂

)
= M̂ − KM̂

Hv

= min(M,Hv)

(
1− K

Hv

)
,

which is precisely the one in (4). This concludes the proof of
Theorem 2.

Theorem 3. Let He be the maximum number of edge disjoint
paths connecting the source to the destination on the under-
lying directed graph, then the 1-2-1 secure capacity C can be
upper bounded as follows:

C ≤ min(M,He)

(
1− K

He

)
.

Proof. From the min-cut, max-flow theorem there are He

edges such that, when removed, the source gets disconnected
from the destination. Let e1, e2, . . . , eHe denote these
edges. Assume that the network is used n times, and let



Tn
ei , i ∈ {1, 2, . . . ,He} be the symbols transmitted on these
He edges over n uses of the network. By denoting the symbols
transmitted by the source on n network instances by Tn

S , then,

nM ≥ H(Tn
S )

(a)
= H(Tn

S , {Tn
ei , i ∈ [He]})

≥ H({Tn
ei , i ∈ [He]}),

where (a) follows because {Tn
ei , i ∈ [He]} is a deterministic

function of Tn
S . Moreover, H({Tn

ei , i ∈ [He]}) ≤ nHe. Thus,

H({Tn
ei , i ∈ [He]}) ≤ min(nHe, nM). (5)

In the remaining part of the proof, we use the result in the
following lemma, which is proved in the Appendix.

Lemma 1. ∀m, there exists a set S ⊂ [L], |S| = m, such that
H({Xi, i ∈ Sc}|{Xi, i ∈ S}) ≤ L−m

L H({Xi, i ∈ [L]}).

Without loss of generality, for m = K, we assume S =
[K] ⊂ [He] in Lemma 1. Then, by Fano’s inequality, we have

nR ≤ H(W ) = H(W )−H(W |{Tn
ei , i ∈ [He]})

= I(W ; {Tn
ei , i ∈ [He]})

= I(W ; {Tn
ei , i ∈ [K]})+

I(W ; {Tn
ei , i ∈ [He] \ [K]}|{Tn

ei , i ∈ [K]})
(a)

≤ ε+ I(W ; {Tn
ei , i ∈ [He] \ [K]}|{Tn

ei , i ∈ [K]})
≤ ε+H({Tn

ei , i ∈ [He] \ [K]}|{Tn
ei , i ∈ [K]})

(b)

≤ ε+
He −K
He

min(nHe, nM)

=⇒ R ≤ min(M,He)

(
1− K

He

)
,

where (a) follows since, for security, I(W ; {Tn
ei , i ∈ [K]}) ≤

ε and (b) is because of Lemma 1 and (5). This concludes the
proof of Theorem 3.

A. Discussion

For some special cases, we can exactly characterize the
capacity (i.e., the upper and lower bounds previously derived
coincide). In particular, these include:
• Networks where the number of edge disjoint paths is

equal to the number of vertex disjoint paths. For these net-
works, the capacity if given by C=min(M,He)(1− K

He
).

• For networks where the source and the destination have
one transmit and one receive beam each, i.e., M = 1. For
these networks, the capacity is given by C = 1− K

He
.

We next provide two different network examples where: 1) the
upper bound is tight (Example 1) and 2) the outer bound is
not tight, but the lower bound is tight (Example 2).

Example 1: In Fig. 1a, there are four edge disjoint paths
from the source to the destination, i.e., He = 4. Assume that
M = 2, i.e., both the source and the destination can transmit
and receive from two nodes and K = 1, i.e., Eve wiretaps
any one edge of her choice. From Fig. 1a, we refer to these
four paths as p1, p2, p3 and p4, ordered from top to bottom.
To achieve the outer bound, one can first use p1 and p4 and

then use p2 and p3 to communicate two symbols in each
instance of network use. Thus, on two time instances, one
can communicate 4 messages (3 securely since K = 1). This
gives a secure rate of 3

2 , which matches the outer bound.
Example 2: Fig. 1b has also He = 4. However, for

M = 2 and K = 1, it can be shown that the secure capacity
is 1, whereas our outer bound in Theorem 3 is still 3

2 . In order
to achieve a secure rate of one, we can select the two paths on
the top and on the bottom, which are node disjoint, and use
them to communicate. We next derive an outer bound for the
network in Fig. 1b that is tighter than the one in Theorem 3.
Assume that, at any time instant t, node 1 transmits symbol
X

(t)
1 (it can transmit only one symbol even though it has

three outgoing edges) and node 2, transmits X(t)
2 . Suppose

the network is used n times, then by Fano’s inequality,

nR ≤ H(W ) = H(W )−H
(
W |{X(t)

i , i ∈ [2], t ∈ [n]}
)

= I(W ; {X(t)
i , i ∈ [2], t ∈ [n]})

= I(W ; {X(t)
2 , t ∈ [n]})+

I(W ; {X(t)
1 , t ∈ [n]}|{X(t)

2 , t ∈ [n]})
(a)

≤ ε+ n =⇒ R ≤ 1,

where (a) is because, if Eve wiretaps the edge outgoing from
node 2, then I(W ; {X(t)

2 , t ∈ [n]}) ≤ ε and there are only n
symbols in {X(t)

1 , t ∈ [n]}.

IV. DIAMOND NETWORKS WITH NON-UNIFORM PATH
CAPACITIES

For the N -relay diamond network (shown in Fig. 1c) with
unit edge capacities, the lower and upper bounds in Theorem 2
and Theorem 3 match (since all the N edge disjoint paths are
also vertex disjoint, namely He = Hv = N ), and thus the
secure capacity equals C = min(M,N)(1− K

N ).
We next consider the case where the edges have non-

uniform capacities. In particular, we assume that path i ∈ [N ]
that connects the source to the destination through relay i has
capacity Ci, as depicted in Fig. 1c. In general, even over
traditional networks, the problem of security over unequal
capacity edges is everything but easily solvable [9]. The main
reason is that we need to consider all possible subsets of edges
that Eve may wiretap.

Theorem 4. For the diamond network with M = 1 and N
relays as shown in Fig. 1c, the secure capacity equals

C = max
fi ≥ 0, ∀i∑
i

fi = 1


N∑
i=1

fiCi − max
S ⊆ [N ]
|S| = K

∑
i∈S

fiCi

 . (6)

Proof. Achievability: It is clear that we can transmit
N∑
i=1

fiCi

symbols from the source to the destination, by using for a
fraction fi of time the path with capacity Ci. Thus, each



S D

(a)

S
2

1
D

(b)

S ...

C1

C2

CN

D

C1

C2

CN

(c)

Fig. 1: (a) Network example He = 4 for which the outer bound is tight for M = 2. (b) Network example with He = 4 for
which the outer bound is not tight for M = 2.(c) Diamond network with non-uniform path capacities.

of the N outgoing edges from the source (and similarly
each of the N incoming edges to the destination) will carry
f1C1, f2C2, . . . fNCN packets, respectively. The adver-
sary, in the worst case wiretaps K edges, which carry the
maximum number of packets. Using a similar encryption
scheme as we designed in Section III, ensures a secure rate[

N∑
i=1

fiCi −max
S

∑
i∈S

fiCi

]
, where S ⊆ [N ], |S| = K. By

optimizing over the fi’s we get that C in (6) is achievable.
Outer Bound: Since M = 1, at any time instant, the source
can transmit on at most one of its N outgoing edges. We
let {T t

eit
, t ∈ [n]} be the symbols transmitted over n such

instances, where eit denotes the edge used in the t-th instance.
Some of these symbols will flow through e1, some through
e2, and similarly some through eN , where ei is the edge
of capacity Ci outgoing from the source. Let Tei denote
the symbols transmitted on ei in all such instances. Thus,
{T t

eit
, t ∈ [n]} = {Tei , i ∈ [N ]}. Let |Tei | = ni, i ∈ [N ] such

that
∑
i

ni = n. Because of the edge capacity constraints we

have H(Tei) ≤ niCi, ∀i ∈ [N ]. Now, by Fano’s inequality,

nC ≤ H(W ) = H(W )−H(W |{T t
eit
, t ∈ [n]})

= I(W ; {Tei , i ∈ S})+I(W ; {Tei , i /∈ S}|{Tei , i ∈ S})
(a)

≤ ε+ min
S⊆[N ],|S|=K

I(W ; {Tei , i /∈ S}|{Tei , i ∈ S})

= ε+ min
S⊆[N ],|S|=K

H({Tei , i /∈ S}|{Tei , i ∈ S})

≤ ε+ min
S ⊆ [N ]
|S| = K

∑
i/∈S

niCi

= ε+
∑
i∈[N ]

niCi − max
S ⊆ [N ]
|S| = K

∑
i∈S

niCi

C ≤

∑
i∈[N ]

niCi − max
S ⊆ [N ]
|S| = K

∑
i∈S

niCi

∑
i∈[N ]

ni

=⇒ C ≤
∑
i∈[N ]

fiCi − max
S ⊆ [N ]
|S| = K

∑
i∈S

fiCi,

where (a) follows from the security condition and the choice
of S to have the tightest bound, and fi = ni∑

i∈[N] ni
≥

0,
∑

i∈[N ] fi = 1. Optimizing over all such choices of ni, i ∈
[N ], we get that C in (6) is an outer bound on the secure
capacity. This concludes the proof of Theorem 4.

Example 3: Consider a diamond network with N = 4,
and C1 = 3, C2 = 2, C3 = 2 and C4 = 1 and assume K = 1.
If we were to use each path the same number of times, we
would get a secure rate of 5

4 . In constrast, the optimal scheme
from Theorem 4 uses the first path twice, the second and third
three times each, and does not use the last path, achieving a
secure rate of 3

2 . Thus, we see that different from the traditional
network, here we might need to discard some of the resources.

V. CONCLUSIONS

We explored security over 1-2-1 networks where, since we
need to use beamforming and align beams to activate links,
we cannot use all the underlying graph links simultaneously,
but instead we can use each link for a fraction of time that we
can decide. Over such networks, we have shown that we can
achieve a secure capacity that in some cases can be very close
to the unsecure capacity; we have derived upper and lower
bounds for arbitrary unit capacity networks, and exact capacity
characterizations for some special classes of networks.
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APPENDIX

PROOF OF LEMMA 1

Lemma 1. ∀m, there exists a set S ⊂ [L], |S| = m, such that H({Xi, i ∈ Sc}|{Xi, i ∈ S}) ≤ L−m
L H({Xi, i ∈ [L]}).

Proof: Assume for all choices of S ⊂ [L],|S| = m, H({Xi, i ∈ Sc}|{Xi, i ∈ S}) > L−m
L H({Xi, i ∈ [L]}). Then,(

L

m

)
H({Xi, i ∈ [L]}) (a)

=
∑

S ⊂ [L]
|S| = m

(H({Xi, i ∈ S}) +H({Xi, i ∈ Sc}|{Xi, i ∈ S}))

(b)

≥
∑

S ⊂ [L]
|S| = m

((∑
i∈S

H(Xi|{Xj , j < i})

)
+H({Xi, i ∈ Sc}|{Xi, i ∈ S})

)

(c)
=

(
L− 1

m− 1

)∑
i∈[L]

H(Xi|{Xj , j < i})

+
∑

S ⊂ [L]
|S| = m

H({Xi, i ∈ Sc}|{Xi, i ∈ S})

(d)
=

(
L− 1

m− 1

)
H({Xi, i ∈ [L]}) +

∑
S ⊂ [L]
|S| = m

H({Xi, i ∈ Sc}|{Xi, i ∈ S})

(e)
>

(
L− 1

m− 1

)
H({Xi, i ∈ [L]}) +

∑
S ⊂ [L]
|S| = m

L−m
L

H({Xi, i ∈ [L]})

=

(
L− 1

m− 1

)
H({Xi, i ∈ [L]}) +

(
L

m

)
L−m
L

H({Xi, i ∈ [L]})

=

(
L

m

)(
m

L
H({Xi, i ∈ [L]}) + L−m

L
H({Xi, i ∈ [L]})

)
=

(
L

m

)
H({Xi, i ∈ [L]}),

and hence we get a contradiction. Here (a) is because there are
(
L
m

)
ways of breaking {Xi, i ∈ [L]} into two sets of size m

and L−m, and then it follows from the chain rule of entropy; (b) follows because for any S ⊂ [L], we can order {Xi, i ∈ S}
according to their index, and then we use the chain rule of entropy followed by the condition reduces entropy principle; (c)
follows because for each i ∈ [L], there will be

(
L−1
m−1

)
choices of S where this i will be part of S; (d) follows again from

the chain rule of entropy; and (e) follows because of the assumption in the proof that for all choices of S ⊂ [n], |S| = m,
H({Xi, i ∈ Sc}|{Xi, i ∈ S}) > L−m

L H({Xi, i ∈ [L]}).
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