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Abstract 
 

The objective of this paper is to propose and test a 
graph-based approach for detection of critical 
infrastructure disruptions in social media data in 
disasters. Understanding the situation and disruptive 
events of critical infrastructure is essential to effective 
disaster response and recovery of communities. The 
potential of social media data for situation awareness 
during disasters has been highlighted in recent studies. 
However, the application of social sensing in detecting 
disruptions of critical infrastructure is limited because 
existing approaches cannot provide complete and non-
ambiguous situational information about critical 
infrastructure. Therefore, to address this 
methodological gap, we developed a graph-based 
approach including data filtering, burst time-frame 
detection, content similarity and graph analysis. A case 
study of Hurricane Harvey in 2017 in Houston was 
conducted to illustrate the application of the proposed 
approach. The findings highlighted the temporal 
patterns of critical infrastructure events that occurred 
in disasters including disruptive events and their 
adverse impacts on communities. The findings also 
provided insights for better understanding critical 
infrastructure interdependencies in disasters. From the 
practical perspective, the proposed methodology study 
can improve the ability of community members, first 
responders and decision makers to detect and respond 
to infrastructure disruptions in disasters. 
 
 
1. Introduction  
 

Being aware of how a community’s situation 
evolves in extreme events like hurricanes, wildfires, or 
earthquakes is crucial to effective disaster response and 
recovery [1]. A key component of community is the 

critical infrastructure, the damages and failures of which 
make severe impacts on human, environment, and the 
economy [2], [3]. Hence, a better understanding of the 
situation and performance of critical infrastructure is 
important to effective disaster response and recovery.  

With the emergence of Digital Twin paradigm [4] to 
achieve more resilient and smarter cities, disaster 
response and recovery should be data-centric and 
network-centric [5] to provide better situation 
awareness regarding spatiotemporal fluctuations in 
disasters. However, the situation of critical 
infrastructure in disasters changes over time due to the 
disruptions and cascading failures. Usually, physical 
and remote sensing techniques (e.g., satellite and UAV 
platforms) are primary techniques for collecting 
infrastructure data in normal situations and disasters [6]. 
However, due to the rapidly evolving situations in the 
aftermath of a disaster, specific data about the 
performance of critical infrastructure might not be 
collected in the required time and space [7]. 
Alternatively, humans as sensors on social media share 
information about disaster situations, including critical 
infrastructure disruptions [8]. For example, “Closed due 
to flooding, in #WestSide on W Sam Houston Tollway 
Frontage Rd NB between Westheimer and the I-10 Katy 
Fwy #traffic”. This tweet is related to road closure 
during Hurricane Harvey. Hence, improving methods 
for detecting infrastructure disruptions enables 
automated evaluation of spatiotemporal changes to feed 
information into the digital twin of smart cities during 
disasters.   

Recent studies have highlighted the importance and 
applications of social sensing in detecting relevant 
events and understanding the situation for disaster 
response and recovery [9], [10]. For example, a study 
[11] about social sensing for urban crisis management 
developed an event analysis framework covering human 
emotions and behaviors in response to Singapore Haze 
on social media. This study focuses on human networks 
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and their activities that mentioned in social media 
content. Another example of social sensing for disaster 
response investigated the dynamics of social networks 
and the formation and evolution of online communities 
in the 2011 Japanese Earthquake and Tsunami [12]. This 
study processed the content of social posts and provided 
insights for understanding how patterns of human 
interaction are changed by external attacks. Another 
branch of studies related to social sensing focus on 
mapping the flood inundation and social emotions based 
on the geographic information in social media posts 
[13]. For example, Fohringer [14] utilized quantitative 
data derived from photos in social media posts in 
disasters to support the inundation mapping [14]. The 
approach enables rapid flood mapping, estimation of 
flood risks, and determination of response actions.  

While the use of social sensing in disasters is 
growing, little of the existing work focuses on detecting 
critical infrastructure disruptions. One reason is that 
effective methodologies for detecting complete and 
non-ambiguous situational information related to 
specific critical infrastructure are missing. Such 
methodology should consider the timing and severity of 
disruptions, effects of disruptions on people, and actions 
that are taken to adjust to the disruptions. Thus, to 
address such methodological gap, this paper proposed a 
graph-based approach to detect the situation and 
corresponding changes of critical infrastructure in social 
media data. A case study related to the situation of 
Barker and Addicks reservoirs in Houston area during 
Hurricane Harvey was conducted to illustrate the 
application and capability of the proposed approach.  
 
2. Background  
 

Detecting situational information including human 
behaviors and physical events on social media during 
occurrences of disasters has been studied by a number 
of researchers. In our survey of the related work, this 
paper focused on the approaches that could be applied 
to large-scale datasets such as millions of tweets. The 
existing techniques for event detection include 
clustering [15],[16] and network analysis [17]. 

Most of the techniques for unspecified event 
detection on social media data is based on clustering. 
Features including words and phrases extracted from 
social messages are the primary objects in the processes. 
For example, Weng and Lee developed an Event 
Detection with Clustering of Wavelet-based Signal of 
words (EDCoW) [18]. However, this approach treats 
each word independently. The identified events are 
likely to be a group of words associated with different 
events. Thus, the information detected from this 
approach is not reliable for situation awareness in 

disasters. Besides, Pohl et al. proposed a two-phase 
clustering approach to identifying individual sub-events 
within a crisis automatically [19]. However, the results 
are summarized into several discrete words which are 
difficult to be understood by users. To aggregate and 
categorize significant events, Ritter et al. discovered 
event categories and classified events based on latent 
variable models [20]. However, the approach is for 
open-domain analysis. Thus, the outcomes of this 
approach are comparatively general and cannot identify 
specific infrastructure disruptions in the context of 
disasters.  

Some studies conducted event detection on social 
posts by using graphs or networks [21]. However, some 
of them only focused on social networks and cannot 
demonstrate the relationships between social actors and 
events [22]. For example, Zhao et al. detected events by 
combining text-based clustering, temporal segmentation 
and graph cuts of social networks [23]. This study 
provides insights into exploring temporal and social 
information together with text content. But, their 
relationships cannot be validated, and the results are 
token-based. Thus, this approach is limited to improving 
situation awareness of specific infrastructure 
disruptions. Another example is developed by Wang 
and Taylor [24]. They explored geographical and 
semantical dimensions of events from tweets. However, 
the approach can only be applied to geotagged tweets 
which are very limited in the complete Twitter dataset. 
As a result, events detected by this approach could be 
missing important information related to the evolving 
nature and timing of infrastructure disruptions. 

In summary, existing approaches and techniques for 
event detection on social media data are feature-based 
methods, which study the distribution of words and 
detect the events by grouping words together. The users 
need to infer the logic and meaning behind the words 
and come up with the scenarios based on their 
inferences. Such results would lack ground truth 
evidence, and the findings are mostly subjective. The 
situational information of critical infrastructure 
disruption should involve when disruption happened, 
how it affected residents, what caused this event and 
what actions were taken. However, such information 
cannot be obtained by using existing approaches for 
social media data analysis. Improving event detection 
for social media data is essential to evaluate 
infrastructure disruptions in disasters. Hence, the 
findings from social sensing data for detecting 
infrastructure disruption events can play an important 
role in developing a digital twin paradigm for a city 
impacted by natural disasters [4]. 
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3. Graph-based approach  

Tweets, which allow up to 280 characters in one 
message, tend to deliver complete and non-ambiguous 
information about critical infrastructure situations. That 
is because the tweets can include complete sentences 
and informative phrases talking about situations in 
disasters [25],[26]. Also, high-impact events and 
credible information tend to be repeated on tweets and 
retweeted many times, so the frequency of tweets about 
the same event is supposed to show a burst in a short 
period [27]. Based on above observations and 
assumptions, the underlying premise of this study is to 
identify and analyze high-impact events and credible 
tweets that inform about critical infrastructure 
disruptions. The proposed graph-based approach 
includes four steps: data filtering, burst detection, 
content similarity, and graph analysis to identify critical 
tweets and better understand the situation of critical 
infrastructure disruption (see Figure 1). The details of 
our approach are described in the following sections. 
The outputs of our graph-based approach are critical 
tweets which contain the complete information about 
high-impact critical infrastructure disruption events in 
each detected timeframe. 
 

 
 
Figure 1. Framework of graph-based approach 
 
3.1. Data filtering 
 

To construct datasets specific to certain critical 
infrastructure, this paper filtered out the tweets using 
specific names of critical infrastructure as well as their 
abbreviations such as “Interstate highway 10 (I-10)”, 
“George Bush Airport (IAH)” and “Barker reservoir 

(Barker)”. This strict restriction of data filtering 
contributes to the recognition and tagging of specific 
infrastructure and locations. Therefore, the results of the 
following processes can be targeted to specific 
infrastructure and the findings can be used by residents 
and responders directly. To lessen the effects of 
uninformative words and characters, we remove the 
stopwords, punctuations, URL, and emoticons. 
 
3.2. Burst detection of timeframes 
 

A burst of frequencies of tweets indicates a change 
of situation or an impact of disruption on humans. The 
frequency means the number of relevant tweets posted 
in one hour. Disruptions of critical infrastructure often 
happen in a very short period and lead to human 
activities on social media, such as reporting damages 
and complain its adverse effects [28]. Hence, the burst 
of tweets related to critical infrastructure can indicate 
the changes of situation and the impacts of such changes 
on society. During that period, the frequencies of 
relevant tweets are much more significant than usual, 
then reach a peak when the situational information is 
disseminated across the social media platform, and then 
decrease with the dissipation of adverse effects of this 
damage. High-impact failures of critical infrastructure 
and changes of related situation would lead to 
differences in frequencies of associated tweets over 
time. The phenomenon is illustrated in Figure 2. Thus, 
an important step is to identify the burst timeframes 
based on the trend of tweets’ frequencies in the context 
of disasters. 

 

 
Figure 2. Illustration of burst timeframes 
 
Based on the understanding of bursts related to 

critical infrastructure on social media, the following 
equations were derived to identify the burst timeframes 
(e.g., tf-1, tf-2 and tf-3 in Figure 2). First, the 
frequencies of relevant tweets stay within a relatively 
consistent range. The relevant tweets frequency can be 
computed as: 
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𝑓𝑟𝑒𝑞(𝑡, 𝑆) = 	 𝑐𝑜𝑢𝑛𝑡(𝑤, 	𝑆1)
2∈4

 (1) 

𝑎𝑣𝑔(𝑘, 	𝑡, 	𝑆) = 	
𝑓𝑟𝑒𝑞(𝑗, 	𝑆)1:;

<=;

𝑘
	 (2) 

where 𝑆 is a data stream between 𝑡 − 1 and 𝑡, 𝑡 is the 
time slice 𝑡 in hours, 𝑤 is a relevant tweet, 𝑊 is a set of 
relevant tweets, and 𝑘 is the number of past time slices. 
This approach is an improved extension of an existing 
technique which was developed to identify key 
moments on social media streams from a set of 
keywords [29]. The average frequency of relevant 
tweets is the stable frequency before bursts. The bursts 
can be identified as: 

𝑓𝑟𝑒𝑞(𝑡, 	𝑆)
𝑎𝑣𝑔(𝑘, 	𝑡, 	𝑆)

> 	𝛿	 (3) 

where 𝛿 is the threshold of burst frequency in social 
media streams. The value of 𝛿 typically ranges from 2 
to 15 and is determined by the requirement of precision 
[29]. The larger the value, the more distinguishing the 
burst time-frame. There could be cases that a certain 
infrastructure component or facility may be rarely or 
never noticed and discussed on social media, until it is 
impacted by extreme events causing major disruptions 
to services. However, the perceived impacts of damages 
(service disruptions) on users is as important as the 
damages to components for disaster response and 
recovery. For example, the information obtained from 
social sensing may not inform about damages to 
electricity transformer substations. But, it will help 
detecting electricity outages as a result or impacts on 
residents (e.g., inability to cook). Hence, the tweets 
collected and analyzed by the proposed approach enable 
capturing the impacts of service disruptions, as well as 
damages to infrastructure components and facilities. In 
addition, this approach can identify the discrete time 
when there is a burst frequency. First, the continuous 
points are grouped together to form a time-frame. Then, 
the tweets posted in each time frame are filtered out in 
each subset. 
 
3.3. Content similarity and graph mapping 
 

Similar content between tweets posted by different 
users indicate the similarity of situational information 
that these tweets deliver and the potential relation 
between them, which can be computed as [30]: 

𝑐𝑜𝑠𝜃E< = 	
𝑣F ∙ 𝑣H

‖𝑣F‖‖𝑣H‖
 (4) 

where 𝑣𝑖 and 𝑣𝑗 are the vectors of two different tweets. 
There are multiple matured methods to convert the list 
of tokens into vectors in Python for being better 
processed on computers. This paper employs one of the 
most common method, tf-idf (i.e., term frequency-
inverse document frequency) to obtain numeric matrices 
of tweets. In this study, each tweet is considered as a 
document, and a tweet is represented as the frequencies 
of tokens. Once vectors of tweets are obtained, we can 
calculate the content similarity between these tweets 
using Eq. (4). The results vary from 0 to 1, showing the 
extent of content similarity between two tweets. The 
higher the value, the greater the content similarity.  

 Edges in graphs represent the relationships between 
different nodes. Here, tweets can be considered as nodes 
and their content similarity can be represented by edges 
in graphs. The undirected graph 𝐺 is defined as follows: 

𝐺 = 	(𝑉(𝐺), 	𝐸(𝐺), 	𝑤) (5) 

where 𝑤 is the weights of edges. The graph is composed 
by nodes 𝑣	𝜖	𝑉(𝐺) and edges 𝑒	𝜖	𝐸(𝐺). The weights of 
edges are defined based on the content similarity 
between two tweets: 
𝑤(𝑒O) = [10×𝑐𝑜𝑠𝜃E< + 0.5], 	𝑒O = (𝑣E, 𝑣<) 

0.2 < 	𝑐𝑜𝑠𝜃E< 	< 0.9	
(6) 

As shown in Eq. (6), an edge cannot be established 
unless the content similarity is greater than 0.2 and 
smaller than 0.9. Retweeted tweets, the similarity of 
which is greater than 0.9, cannot be an evidence of the 
credibility of the content in such tweets. Nevertheless, 
those tweets can be the supplementary materials to show 
the importance of the information delivered by these 
tweets. Thus, in the proposed approach, the weight of 
the edges between retweeted tweets is set as 2. 
Meanwhile, two tweets with an edge weight which is 
less than 2 are considered to be irrelevant. Thus, we 
ignore the relations between these tweets and does not 
establish the edges between them. As shown in Eq. (6), 
the weights of the edges are integers obtained based on 
integer conversion. Based on the identified nodes, edges 
and computed weights, the semantic graph can be 
mapped in each timeframe. Such representation 
provides a simplified model of complex relationships 
among tweets, where network core could contain 
complete and reliable situation information about 
certain critical infrastructure.  
 
3.4. Graph analysis with weighted degrees 
 

Critical tweets with the most similarity to other 
tweets in the same timeframe can contain situation 
information related to certain critical infrastructure 
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disruptions. The degree in the semantic graph represents 
the similarity of a tweet to other tweets. Thus, the tweets 
with the highest degree can be considered as critical 
tweets. In our weighted graphs, the weights of edges 
vary depending on the extent of similarity of a tweet to 
other tweets. Hence, the weighted degree considering 
the similarity of tweets can be obtained as: 

𝑑𝑒𝑔[\ = 	 (𝑤(𝑒))]
^_[\×`

	 (7) 

where 𝑣E ∈ 𝑉(𝐺) are the nodes, and 𝛼 is a parameter 
that contributes to reducing the impacts of a large 
number of low weight degrees. The value of 𝛼 should 
be greater than 1 and be determined based on the 
required precision. The larger the 𝛼, the more important 
the close similarity between tweets for identifying 
critical tweets. The definition of 𝛼	  indicates the 
importance of close similarity of a tweet to other tweets. 
Hence, the identified tweets with close similarity are 
more representative than the tweets with a number of 
low similarities. It should be mentioned that there may 
be some discrete components in a semantic graph. It 
would be possible that a critical tweet is identified from 
a small component (rather than a giant component of the 
network) when a topic is the focus of only a small group 
of people. To overcome this challenge, we developed an 
equation to identify the giant components in the graph 
before identifying critical tweets: 

𝑔b = 𝑀𝑎𝑥( 𝑑𝑒𝑔[\)[\∈`(e)
 (8) 

where 𝑔b represents the giant component in a graph, and 
𝐻 ⊂ 𝐺, which is a component of graph G. As shown in 
Eq. (8), the giant component is obtained from the sum 
of weighted degree in a component rather than the size 
of a component. The weighted degree is the 
representation of content similarity which emphasizes 
the criticality and credibility of a tweet. Hence, the giant 
component in the tweets graph is a collection of tweets 
with critical and credible information. In the giant 
component, the critical tweet can be obtained as: 

𝑣b = 𝑀𝑎𝑥(𝑑𝑒𝑔[\), 	𝑣E𝜖𝑉(𝑔b) (9) 

Based on the definition of critical tweets discussed 
earlier, a critical tweet is the node with the highest 
weighted degree in the giant component, which can be 
identified by Eq. (9). There could be a case that more 
than one tweets have the highest weighted degree 
because of retweets. Our algorithm can detect all the 
tweets with the highest weighted degrees and convert 
them to their original tweets. The results of this 
algorithm are informative and effective for 

understanding the disruption and situation of critical 
infrastructure in disasters.  
 
4. Case study of Hurricane Harvey  
 

To illustrate the capabilities of this graph-based 
approach, we conducted a case study of Hurricane 
Harvey in Houston. In this paper, the investigated 
critical infrastructure includes Barker and Addicks 
reservoirs.  
 
4.1. Context and data filtering 
 

Hurricane Harvey, a category four tropical storm 
landed in Texas from August 25th to August 29th. Harvey 
caused significant infrastructure disruptions. For 
example, more than 200 road sections were closed due 
to flooding, all flights were suspended at Houston 
Intercontinental Airport System, and the water level in 
Addicks and Barker reservoirs reached their maximum 
capacity, which led to water release from the reservoirs 
[31].  

We collected all tweets which are around 21 million, 
over Houston area from August 22nd to September 30th. 
This dataset includes the tweets that posted by the users 
whose profiles have a location of Houston, or the tweets 
that are geotagged in the bounding box of Houston. 
People whose profiles mentioned Houston might have 
been in other places. They may or may not comment the 
state of infrastructure (e.g., what they learned from news 
pages or word of mouth). The collection of tweets with 
localized information about infrastructure is a subset of 
our total dataset. Hence, the requirement for data 
collection proposed in this study would need acquiring 
a complete dataset of tweets with critical situational 
information and improve the accuracy of our findings.  

To demonstrate the application of the proposed 
graph-based approach, we investigated the disruptions 
in the reservoirs (i.e., Barker and Addicks) in West 
Houston, filtered out 14728 tweets related to these 
reservoirs from August 22nd to September 4th in our 
entire dataset, and mapped the trend of frequencies for 
the relevant tweets (see Figure 3). In this case, the 
reservoirs were safe. However, because of the heavy 
rainfall from Hurricane Harvey, the reservoirs were full, 
a large amount of water was released, and subsequently 
the nearby neighborhoods were flooded.  

As shown in Figure 3, there are some distinguishing 
crests and bottoms. The labels are designated as 
“year_month_day_time (in hour)”. For example, there 
is a burst at 9 PM on August 26th when Hurricane landed 
in Texas. After that, bursts of relevant tweets at 2 AM 
on August 28th, at 1 PM on August 29, at 1 PM on 
August 31 and at 10 PM on September 2 appeared 
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because of the changes in the situation of the reservoirs 
and their adverse impacts on the residents. The 
following sections will examine how the situation 
changed and what were the specific events related to the 
reservoirs according to the graph-based approach.  

 

 
Figure 3. Frequencies of relevant tweets 

during disasters 
 
4.2. Results 
 

Sixteen burst time-frames were detected by applying 
the graph-based approach to the filtered dataset (see 
Figure 4). The spans of the time-frames varied because 
of the duration of the disruption and the impacts on 
people. The comparison of time-frames with Figure 3 
shows that the detected timeframes were consistent with 
the crests of the frequencies of relevant tweets. Then, 
the tweets posted in the detected timeframes were 
grouped into sixteen clusters. The content similarities 
between the tweets in the same clusters were 
implemented for the establishment of the graph edges. 
Based on their content similarities, the semantic graph 
in each time frame was mapped to exhibit the 
correlations between tweets. Figure 5 shows the 
representation of nodes and edges for each graph. As 
shown in Figure 5, the numbers of nodes and edges in 
the first four graphs were much greater than the other 
graphs. The corresponding time-frames for these four 
graphs were from August 26th to September 30th. After 
Harvey passed, the weather went better, and the 
flooding receded. The water levels in the reservoirs were 
dropping down. Thus, fewer people talked about the 
situation of the reservoirs. The number of nodes and 
edges in the other graphs were expectedly less than the 
nodes and edges in the first four graphs. 

The next step includes examining the weighted 
degrees of tweets. Figure 6 shows the graphs in two 
burst timeframes: No.5 and No.15, as examples of 
semantic similarity among tweets. The weighted 
degrees vary from 0 to 750, which are distinguished by 
the intensity of the color and size of the nodes in both 
graphs. Distinctly, in Figure 6(a), there should be one 
tweet having the highest similarity to other tweets. In 

Figure 6(b), multiple tweets have the highest similarity 
to other tweets. Our approach can identify all such 
tweets and investigate if their close-similarity was 
caused by retweeting. Meanwhile, a number of tweets 
with low similarity to other tweets can be seen in the 
graphs. These low-similarity tweets were associated 
with the situation of reservoirs, but they may not deliver 
complete and informative messages related to the high-
impact disruptive events.  

 

 
Figure 4. Identified burst timeframes 

 
 

 
Figure 5. Graph information in burst 

timeframes 
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(a) 

 
(b) 

Figure 6. Semantic graphs in two burst 
timeframes: (a) burst timeframe No.5; and (b) 

burst timeframe No.15 
 
The critical tweets in each burst time-frame were 

identified based on their weighted degrees by using Eq. 
(9). Table 1 displays all original critical tweets that users 
posted. As shown in these tweets, the situation of the 
reservoirs can be fully interpreted and understood by 
humans because it is presented completely and 
logically. According to the identified critical tweets, we 
deduced the temporal unfolding of events related to 
Barker and Addicks reservoirs. At the beginning of 
Hurricane Harvey, there was an early warning on social 
media, which indicated that an extreme weather 
condition would occur affecting the reservoirs (i.e., 
No.0 in Table 1.). Then, when Harvey landed in 
Houston, the reservoirs had to release water to eliminate 
possible breach (dam safety) (i.e., No.1 in Table 1.). 
These events led to flooding in nearby neighborhoods 
(in the downstream of Addicks and Barker reservoirs) 
and affected other critical infrastructure such as 
Interstate Highway 10 (i.e., No.6 in Table 1.), and 
Buffalo Bayou (i.e., No.7 in Table 1.). Emerging 
information spreaders (such as Twitter user Jeff Linder) 
updated the conditions of reservoirs and eased residents’ 
concerns about the danger of dam spills (i.e., No.8 in 
Table 1.). Meanwhile, to reduce the adverse impacts of 

the water release, response actions (e.g., mandatory 
evacuation) were taken by stakeholders (e.g., Harris 
County Flood Control) (i.e., No.9, No.12 and No.14 in 
Table 1.). Finally, when Hurricane Harvey ended, and 
flooding receded, water levels in the reservoirs declined 
and water release stopped (i.e., No.15 in Table 1.).  

The information shared via the critical tweets guided 
residents to adequately respond to the adverse effects of 
critical infrastructure disruptions, helped voluntary 
organizations to provide relief efforts to worst-hit areas, 
and supported responders to distribute relief resources 
and personnel. Thus, the critical tweets provided reliable 
and useful situational information for community 
members and first responders to better understand the 
disruptions of critical infrastructure during the 
occurrence of disasters.  
 

 
Table 1. Identified critical tweets in 

timeframes 
No. Identified critical tweets 

0 
'RT @abc13houston: A possible tornado was 

reported in northwest Harris County on Barker 
Cypress ' 

1 
'Harris County Flood Control says the release 

of water from the Addicks and Barker Reservoirs 
has started. khou11 ' 

2 
'KATY - Many shelters have reached capacity, 

but you can go to the Berry Center, 8877 Barker 
Cypress and they can get you to an open shelter.' 

3 'Addicks and Barker dams have NOT 
breached! ' 

4 'UPDATE on Addicks and Barker Reservoirs. 
@KPRC2 ' 

5 
'RT @JeffLindner1: News conference at 

800am on watershed updates and Addicks/Barker 
and Buffalo Bayou #houwx #hounews' 

6 
'Crews are getting creative along I-10 to dam 

up rising water from the Addicks and Barker 
Reservoir releases. ' 

7 

'NEW: Buffalo Bayou continues to rise 
because of releases from Addicks reservoir, says 
@JeffLindner1 from Harris Co. Flood Control 
district' 

8 
'RT @JeffLindner1: Addicks and Barker 

Dams are completely safe and are NOT in danger 
of failing #houwx #hounews #txwx' 

9 'New Mandatory Evacuation for Barker 
Reservoir Area Communities - ' 

10 
'There are no problems with Addicks and 

Barker Reservoirs, the dams are safe and 
operating as designed #houwx #hounews #txwx' 

Burst timeframe No. 5

Nodes: 236

Links: 1432

Burst timeframe No. 15

Nodes: 63

Links: 313



 

 

11 
'NOW: @JeffLindner1 with @hcfcd joins us 

for updates on Barker &amp; Addicks reservoirs 
#Harvey #houstonflooding #hounews' 

12 
'Mayor asking residents w/ water in homes to 

leave if S of I-10, W of Gessner, N of Briarforest, 
E of reservoirs. ' 

13 '‚ö†Ô∏èALERT: Addicks Dam will NOT 
break!! ' 

14 

'Ordering MANDATORY evacuation of West 
Houston dwellings already flooded by release of 
water from Addicks and Barker-Cypress 
reservoirs.' 

15 'RT @JeffLindner1: Barker is currently at 
99.14 ft and falling #houwx #hounews ' 

 
4.3. Validation 
 

To demonstrate the reliability of our graph-based 
approach and the credibility of the identified situational 
information, we plotted the weighted degree distribution 
on log-log scales for semantic graphs and referred to 
some new articles to validate the content of critical 
tweets.  

Figure 7 shows the weighted degree distribution of 
two semantic graphs in burst timeframes No.5 and 
No.15. As shown in Figure 7(a), only one node has the 
highest degree, which indicates there is only one tweet 
has the most complete information based on the 
definition of the weighted degree in our approach. The 
weighted degrees of tweets varied among the nodes in 
the graph. In Figure 7(b), however, there are multiple 
tweets with the highest weighted degree, which may 
indicate that the critical tweets with most complete 
situational information were retweeted several times in 
that timeframe. Our approach can identify all those 
critical tweets. Like Figure 7(a), the weighted degrees 
are various from 0 to 750, which are consistent with the 
semantic graphs in Figure 6. 

To validate the content of detected critical tweets, 
we examined the critical tweets comparing to recorded 
information from news articles. For example, “It took 
Harris County officials until late Sunday, Aug. 27, to 
begin issuing similar warnings for communities 
upstream of both Barker and Addicks.” [32] This is 
consistent with critical tweet No.1 in Table 1. Also, as 
shown in Figure 8, Interstate Highway 10 Barker and 
Addicks reservoirs, and water was released from the 
reservoirs to Buffalo Bayou. This information can 
validate the physical interdependencies between the 
reservoirs, I-10 and Buffalo Bayou and provides 
evidence regarding the reliability of the information in 
critical tweets No.6 and No.7. Another news article 
stated, “Late Sunday night, local officials issued 
voluntary evacuation notices for residents around the 

reservoirs” [33] This information can validate that the 
mandatory evacuation identified in critical tweet No.9. 
“HCFCD officials said the reservoir levels peaked on 
Aug. 30 at 109 feet at Addicks and 101.5 at Barker. With 
the releases, the reservoir levels are dropping.” [34] 
The information that reported in this article can 
demonstrate the event of declining water level identified 
in the critical tweet No.15 and No.11. Another news 
article informed that “Water levels in the two reservoirs 
had already reached record levels Monday evening, 
measuring 105 feet at Addicks and 99 feet at Barker” 
[33]. The water level reported in critical tweet No.15 is 
consistent with the statistics in the above news post.   

Based on the comparison between the news articles 
and the identified critical tweets, the situational 
information in the critical tweets related to Barker and 
Addicks reservoirs were verified. Also, no other 
important situational information related to the water 
release from reservoirs is found missing in identified 
critical tweets, and the timing of the burst events are 
corresponding to the information posted in news 
articles. Hence, the results and findings obtained from 
the graph-based approach are credible and reliable for 
community members and first responders to better 
understand the situation in disasters. 

 
(a) 

 
(b) 

Figure 7. Weighted degree distribution on log-
log scales in two timeframes: (a) burst 

timeframe No.5; and (b) burst timeframe No.15 
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Figure 8. Reservoir map: main structures, 

locations and water outflow [34] 
 
5. Concluding remarks  
 

This paper proposed a graph-based approach to 
detect the critical infrastructure disruptions from social 
media data in disasters. The application of the proposed 
approach was demonstrated in a case study of Hurricane 
Harvey in Houston. The results showed that the primary 
disruptive events related to the flood control reservoirs 
and their adverse impacts on communities could be 
detected from the critical tweets. The findings also 
showed that the situational information related to the 
critical infrastructure on social media provided reliable 
insights regarding the spatial and temporal unfolding of 
infrastructure disruptions.  

From the methodological perspective, the proposed 
graph-based approach provided useful insights into 
complete and non-ambiguous event detection. All the 
identified critical tweets contained detailed information 
about the situation of critical infrastructure. Hence, the 
results are more reliable than groups of tokens based on 
word frequencies in existing studies (e.g., topic 
modeling and clustering). In addition, this approach 
distinguishes the credibility of online information. For 
example, retweets do not play an important role in 
detecting disruptive events. Rumors with sensitive 
words (e.g., “reservoirs will spill”, which will affect 
large-scale of residents) would also be retweeted many 
times. To overcome this challenge, the proposed graph-
based approach put more weight on the content 
similarity between the tweets posted by multiple users. 
Hence, this method can improve the credibility of the 
critical tweets as well as the reliability of infrastructure 
disruption findings. 

From a practical point of view, the findings of this 
study identified the occurrence of the disruption, the 
location of the critical infrastructure, how severe the 
events are, what agents are involved, and what response 
actions are taken for a response. This spatial and 

temporal information can be integrated into smart city 
digital twins to examine the disruptions in infrastructure 
services using social sensing. The actors in cities can 
achieve better information sharing and communication 
by using such situational information, and make better 
decisions such as locating shelters, distributing 
resources, and mobilizing relief crews. In addition, this 
approach enables effective evaluation of infrastructure 
performance in the aftermath of disasters to inform 
future hazard mitigation planning and infrastructure 
prioritization. As such, the cities can become smarter 
and more resilient, relying on human-sensor data-driven 
approaches (i.e., social sensing) for detecting 
infrastructure disruptions and corresponding societal 
impacts. 

This approach can be further extended in the 
following areas: (1) improving the algorithm of burst 
detection to achieve burst prediction in a near real-time 
manner; (2) enhancing the algorithm of vectorizing in 
tweets to make it more feasible in disaster and critical 
infrastructure domain; and (3) developing algorithms to 
identify the relevant entities in critical tweets and 
exploring their relationships for better disaster planning 
and response.  
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