Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

A Graph-based Approach for Detecting Critical Infrastructure Disruptions
on Social Media in Disasters

Chao Fan
Texas A&M University

chfan@tamu.edu

Wenlin Yao
Texas A&M University
wenlinyao@tamu.edu

Abstract

The objective of this paper is to propose and test a
graph-based approach for detection of critical
infrastructure disruptions in social media data in
disasters. Understanding the situation and disruptive
events of critical infrastructure is essential to effective
disaster response and recovery of communities. The
potential of social media data for situation awareness
during disasters has been highlighted in recent studies.
However, the application of social sensing in detecting
disruptions of critical infrastructure is limited because
existing approaches cannot provide complete and non-
ambiguous situational information about critical
infrastructure. Therefore, to  address this
methodological gap, we developed a graph-based
approach including data filtering, burst time-frame
detection, content similarity and graph analysis. A case
study of Hurricane Harvey in 2017 in Houston was
conducted to illustrate the application of the proposed
approach. The findings highlighted the temporal
patterns of critical infrastructure events that occurred
in disasters including disruptive events and their
adverse impacts on communities. The findings also
provided insights for better understanding critical
infrastructure interdependencies in disasters. From the
practical perspective, the proposed methodology study
can improve the ability of community members, first
responders and decision makers to detect and respond
to infrastructure disruptions in disasters.

1. Introduction

Being aware of how a community’s situation
evolves in extreme events like hurricanes, wildfires, or
earthquakes is crucial to effective disaster response and
recovery [1]. A key component of community is the
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critical infrastructure, the damages and failures of which
make severe impacts on human, environment, and the
economy [2], [3]. Hence, a better understanding of the
situation and performance of critical infrastructure is
important to effective disaster response and recovery.

With the emergence of Digital Twin paradigm [4] to
achieve more resilient and smarter cities, disaster
response and recovery should be data-centric and
network-centric [5] to provide Dbetter situation
awareness regarding spatiotemporal fluctuations in
disasters. However, the situation of critical
infrastructure in disasters changes over time due to the
disruptions and cascading failures. Usually, physical
and remote sensing techniques (e.g., satellite and UAV
platforms) are primary techniques for collecting
infrastructure data in normal situations and disasters [6].
However, due to the rapidly evolving situations in the
aftermath of a disaster, specific data about the
performance of critical infrastructure might not be
collected in the required time and space [7].
Alternatively, humans as sensors on social media share
information about disaster situations, including critical
infrastructure disruptions [8]. For example, “Closed due
to flooding, in #WestSide on W Sam Houston Tollway
Frontage Rd NB between Westheimer and the 1-10 Katy
Fwy #traffic”. This tweet is related to road closure
during Hurricane Harvey. Hence, improving methods
for detecting infrastructure disruptions enables
automated evaluation of spatiotemporal changes to feed
information into the digital twin of smart cities during
disasters.

Recent studies have highlighted the importance and
applications of social sensing in detecting relevant
events and understanding the situation for disaster
response and recovery [9], [10]. For example, a study
[11] about social sensing for urban crisis management
developed an event analysis framework covering human
emotions and behaviors in response to Singapore Haze
on social media. This study focuses on human networks
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and their activities that mentioned in social media
content. Another example of social sensing for disaster
response investigated the dynamics of social networks
and the formation and evolution of online communities
in the 2011 Japanese Earthquake and Tsunami [12]. This
study processed the content of social posts and provided
insights for understanding how patterns of human
interaction are changed by external attacks. Another
branch of studies related to social sensing focus on
mapping the flood inundation and social emotions based
on the geographic information in social media posts
[13]. For example, Fohringer [14] utilized quantitative
data derived from photos in social media posts in
disasters to support the inundation mapping [14]. The
approach enables rapid flood mapping, estimation of
flood risks, and determination of response actions.
While the use of social sensing in disasters is
growing, little of the existing work focuses on detecting
critical infrastructure disruptions. One reason is that
effective methodologies for detecting complete and
non-ambiguous situational information related to
specific critical infrastructure are missing. Such
methodology should consider the timing and severity of
disruptions, effects of disruptions on people, and actions
that are taken to adjust to the disruptions. Thus, to
address such methodological gap, this paper proposed a
graph-based approach to detect the situation and
corresponding changes of critical infrastructure in social
media data. A case study related to the situation of
Barker and Addicks reservoirs in Houston area during
Hurricane Harvey was conducted to illustrate the
application and capability of the proposed approach.

2. Background

Detecting situational information including human
behaviors and physical events on social media during
occurrences of disasters has been studied by a number
of researchers. In our survey of the related work, this
paper focused on the approaches that could be applied
to large-scale datasets such as millions of tweets. The
existing techniques for event detection include
clustering [15],[16] and network analysis [17].

Most of the techniques for unspecified event
detection on social media data is based on clustering.
Features including words and phrases extracted from
social messages are the primary objects in the processes.
For example, Weng and Lee developed an Event
Detection with Clustering of Wavelet-based Signal of
words (EDCoW) [18]. However, this approach treats
each word independently. The identified events are
likely to be a group of words associated with different
events. Thus, the information detected from this
approach is not reliable for situation awareness in

disasters. Besides, Pohl et al. proposed a two-phase
clustering approach to identifying individual sub-events
within a crisis automatically [19]. However, the results
are summarized into several discrete words which are
difficult to be understood by users. To aggregate and
categorize significant events, Ritter et al. discovered
event categories and classified events based on latent
variable models [20]. However, the approach is for
open-domain analysis. Thus, the outcomes of this
approach are comparatively general and cannot identify
specific infrastructure disruptions in the context of
disasters.

Some studies conducted event detection on social
posts by using graphs or networks [21]. However, some
of them only focused on social networks and cannot
demonstrate the relationships between social actors and
events [22]. For example, Zhao et al. detected events by
combining text-based clustering, temporal segmentation
and graph cuts of social networks [23]. This study
provides insights into exploring temporal and social
information together with text content. But, their
relationships cannot be validated, and the results are
token-based. Thus, this approach is limited to improving
situation awareness of specific infrastructure
disruptions. Another example is developed by Wang
and Taylor [24]. They explored geographical and
semantical dimensions of events from tweets. However,
the approach can only be applied to geotagged tweets
which are very limited in the complete Twitter dataset.
As a result, events detected by this approach could be
missing important information related to the evolving
nature and timing of infrastructure disruptions.

In summary, existing approaches and techniques for
event detection on social media data are feature-based
methods, which study the distribution of words and
detect the events by grouping words together. The users
need to infer the logic and meaning behind the words
and come up with the scenarios based on their
inferences. Such results would lack ground truth
evidence, and the findings are mostly subjective. The
situational information of critical infrastructure
disruption should involve when disruption happened,
how it affected residents, what caused this event and
what actions were taken. However, such information
cannot be obtained by using existing approaches for
social media data analysis. Improving event detection
for social media data is essential to evaluate
infrastructure disruptions in disasters. Hence, the
findings from social sensing data for detecting
infrastructure disruption events can play an important
role in developing a digital twin paradigm for a city
impacted by natural disasters [4].
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3. Graph-based approach

Tweets, which allow up to 280 characters in one
message, tend to deliver complete and non-ambiguous
information about critical infrastructure situations. That
is because the tweets can include complete sentences
and informative phrases talking about situations in
disasters [25],[26]. Also, high-impact events and
credible information tend to be repeated on tweets and
retweeted many times, so the frequency of tweets about
the same event is supposed to show a burst in a short
period [27]. Based on above observations and
assumptions, the underlying premise of this study is to
identify and analyze high-impact events and credible
tweets that inform about critical infrastructure
disruptions. The proposed graph-based approach
includes four steps: data filtering, burst detection,
content similarity, and graph analysis to identify critical
tweets and better understand the situation of critical
infrastructure disruption (see Figure 1). The details of
our approach are described in the following sections.
The outputs of our graph-based approach are critical
tweets which contain the complete information about
high-impact critical infrastructure disruption events in
each detected timeframe.

Step 1:
Data filtering using specific
critical infrastructure names

Step 2:

Burst detection to identify
burst timeframes

4!‘4

Step 3:

Content similarity calculation
to map semantic graphs

f
\, ./

v

Step 4:
Graph analysis to identify
critical tweets

Figure 1. Framework of graph-based approach

3.1. Data filtering

To construct datasets specific to certain critical
infrastructure, this paper filtered out the tweets using
specific names of critical infrastructure as well as their
abbreviations such as “Interstate highway 10 (I-10)”,
“George Bush Airport (IAH)” and “Barker reservoir

(Barker)”. This strict restriction of data filtering
contributes to the recognition and tagging of specific
infrastructure and locations. Therefore, the results of the
following processes can be targeted to specific
infrastructure and the findings can be used by residents
and responders directly. To lessen the effects of
uninformative words and characters, we remove the
stopwords, punctuations, URL, and emoticons.

3.2. Burst detection of timeframes

A burst of frequencies of tweets indicates a change
of situation or an impact of disruption on humans. The
frequency means the number of relevant tweets posted
in one hour. Disruptions of critical infrastructure often
happen in a very short period and lead to human
activities on social media, such as reporting damages
and complain its adverse effects [28]. Hence, the burst
of tweets related to critical infrastructure can indicate
the changes of situation and the impacts of such changes
on society. During that period, the frequencies of
relevant tweets are much more significant than usual,
then reach a peak when the situational information is
disseminated across the social media platform, and then
decrease with the dissipation of adverse effects of this
damage. High-impact failures of critical infrastructure
and changes of related situation would lead to
differences in frequencies of associated tweets over
time. The phenomenon is illustrated in Figure 2. Thus,
an important step is to identify the burst timeframes
based on the trend of tweets’ frequencies in the context
of disasters.

>
>

—
Timeframes: tf-1  tf-2 tf-3
Figure 2. lllustration of burst timeframes

Frequencies of relevant tweets

Based on the understanding of bursts related to
critical infrastructure on social media, the following
equations were derived to identify the burst timeframes
(e.g., tf-1, tf-2 and tf-3 in Figure 2). First, the
frequencies of relevant tweets stay within a relatively
consistent range. The relevant tweets frequency can be
computed as:
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where S is a data stream between t — 1 and ¢, t is the
time slice t in hours, w is a relevant tweet, W is a set of
relevant tweets, and k is the number of past time slices.
This approach is an improved extension of an existing
technique which was developed to identify key
moments on social media streams from a set of
keywords [29]. The average frequency of relevant
tweets is the stable frequency before bursts. The bursts
can be identified as:

freq(t, S)
avg(k, t, S)

where § is the threshold of burst frequency in social
media streams. The value of § typically ranges from 2
to 15 and is determined by the requirement of precision
[29]. The larger the value, the more distinguishing the
burst time-frame. There could be cases that a certain
infrastructure component or facility may be rarely or
never noticed and discussed on social media, until it is
impacted by extreme events causing major disruptions
to services. However, the perceived impacts of damages
(service disruptions) on users is as important as the
damages to components for disaster response and
recovery. For example, the information obtained from
social sensing may not inform about damages to
electricity transformer substations. But, it will help
detecting electricity outages as a result or impacts on
residents (e.g., inability to cook). Hence, the tweets
collected and analyzed by the proposed approach enable
capturing the impacts of service disruptions, as well as
damages to infrastructure components and facilities. In
addition, this approach can identify the discrete time
when there is a burst frequency. First, the continuous
points are grouped together to form a time-frame. Then,
the tweets posted in each time frame are filtered out in
each subset.

3)

3.3. Content similarity and graph mapping

Similar content between tweets posted by different
users indicate the similarity of situational information
that these tweets deliver and the potential relation
between them, which can be computed as [30]:

COSHL']' = ﬂ (4)
oAl

where ?: and 7]) are the vectors of two different tweets.

There are multiple matured methods to convert the list
of tokens into vectors in Python for being better
processed on computers. This paper employs one of the
most common method, tf-idf (i.e., term frequency-
inverse document frequency) to obtain numeric matrices
of tweets. In this study, each tweet is considered as a
document, and a tweet is represented as the frequencies
of tokens. Once vectors of tweets are obtained, we can
calculate the content similarity between these tweets
using Eq. (4). The results vary from 0 to 1, showing the
extent of content similarity between two tweets. The
higher the value, the greater the content similarity.
Edges in graphs represent the relationships between
different nodes. Here, tweets can be considered as nodes
and their content similarity can be represented by edges
in graphs. The undirected graph G is defined as follows:

G = (Vv(G), E(G), w) (5)

where w is the weights of edges. The graph is composed
by nodes v € V(G) and edges e € E(G). The weights of
edges are defined based on the content similarity
between two tweets:

w(ey) = [10xcos;; + 0.5], e, = (v;,v;)

0.2 < C()Sgl'j <09 (6)
As shown in Eq. (6), an edge cannot be established
unless the content similarity is greater than 0.2 and
smaller than 0.9. Retweeted tweets, the similarity of
which is greater than 0.9, cannot be an evidence of the
credibility of the content in such tweets. Nevertheless,
those tweets can be the supplementary materials to show
the importance of the information delivered by these
tweets. Thus, in the proposed approach, the weight of
the edges between retweeted tweets is set as 2.
Meanwhile, two tweets with an edge weight which is
less than 2 are considered to be irrelevant. Thus, we
ignore the relations between these tweets and does not
establish the edges between them. As shown in Eq. (6),
the weights of the edges are integers obtained based on
integer conversion. Based on the identified nodes, edges
and computed weights, the semantic graph can be
mapped in each timeframe. Such representation
provides a simplified model of complex relationships
among tweets, where network core could contain
complete and reliable situation information about
certain critical infrastructure.

3.4. Graph analysis with weighted degrees

Critical tweets with the most similarity to other
tweets in the same timeframe can contain situation
information related to certain critical infrastructure
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disruptions. The degree in the semantic graph represents
the similarity of a tweet to other tweets. Thus, the tweets
with the highest degree can be considered as critical
tweets. In our weighted graphs, the weights of edges
vary depending on the extent of similarity of a tweet to
other tweets. Hence, the weighted degree considering
the similarity of tweets can be obtained as:

degy = ). (w(e)" 9

where v; € V(G) are the nodes, and « is a parameter
that contributes to reducing the impacts of a large
number of low weight degrees. The value of a should
be greater than 1 and be determined based on the
required precision. The larger the a, the more important
the close similarity between tweets for identifying
critical tweets. The definition of a indicates the
importance of close similarity of a tweet to other tweets.
Hence, the identified tweets with close similarity are
more representative than the tweets with a number of
low similarities. It should be mentioned that there may
be some discrete components in a semantic graph. It
would be possible that a critical tweet is identified from
a small component (rather than a giant component of the
network) when a topic is the focus of only a small group
of people. To overcome this challenge, we developed an
equation to identify the giant components in the graph
before identifying critical tweets:

ge=Max(). deg,) ®)
v,EV(H)

where g, represents the giant component in a graph, and
H c G, which is a component of graph G. As shown in
Eq. (8), the giant component is obtained from the sum
of weighted degree in a component rather than the size
of a component. The weighted degree is the
representation of content similarity which emphasizes
the criticality and credibility of a tweet. Hence, the giant
component in the tweets graph is a collection of tweets
with critical and credible information. In the giant
component, the critical tweet can be obtained as:

Ve = Max(degvi)' UL'EV(gc) ©

Based on the definition of critical tweets discussed
earlier, a critical tweet is the node with the highest
weighted degree in the giant component, which can be
identified by Eq. (9). There could be a case that more
than one tweets have the highest weighted degree
because of retweets. Our algorithm can detect all the
tweets with the highest weighted degrees and convert
them to their original tweets. The results of this
algorithm are informative and effective for

understanding the disruption and situation of critical
infrastructure in disasters.

4. Case study of Hurricane Harvey

To illustrate the capabilities of this graph-based
approach, we conducted a case study of Hurricane
Harvey in Houston. In this paper, the investigated
critical infrastructure includes Barker and Addicks
reservoirs.

4.1. Context and data filtering

Hurricane Harvey, a category four tropical storm
landed in Texas from August 25™to August 29, Harvey
caused significant infrastructure disruptions. For
example, more than 200 road sections were closed due
to flooding, all flights were suspended at Houston
Intercontinental Airport System, and the water level in
Addicks and Barker reservoirs reached their maximum
capacity, which led to water release from the reservoirs
[31].

We collected all tweets which are around 21 million,
over Houston area from August 22" to September 30™,
This dataset includes the tweets that posted by the users
whose profiles have a location of Houston, or the tweets
that are geotagged in the bounding box of Houston.
People whose profiles mentioned Houston might have
been in other places. They may or may not comment the
state of infrastructure (e.g., what they learned from news
pages or word of mouth). The collection of tweets with
localized information about infrastructure is a subset of
our total dataset. Hence, the requirement for data
collection proposed in this study would need acquiring
a complete dataset of tweets with critical situational
information and improve the accuracy of our findings.

To demonstrate the application of the proposed
graph-based approach, we investigated the disruptions
in the reservoirs (i.e., Barker and Addicks) in West
Houston, filtered out 14728 tweets related to these
reservoirs from August 22™ to September 4™ in our
entire dataset, and mapped the trend of frequencies for
the relevant tweets (see Figure 3). In this case, the
reservoirs were safe. However, because of the heavy
rainfall from Hurricane Harvey, the reservoirs were full,
a large amount of water was released, and subsequently
the nearby neighborhoods were flooded.

As shown in Figure 3, there are some distinguishing
crests and bottoms. The labels are designated as
“year_month_day time (in hour)”. For example, there
is a burst at 9 PM on August 26™ when Hurricane landed
in Texas. After that, bursts of relevant tweets at 2 AM
on August 28" at 1 PM on August 29, at 1 PM on
August 31 and at 10 PM on September 2 appeared
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because of the changes in the situation of the reservoirs
and their adverse impacts on the residents. The
following sections will examine how the situation
changed and what were the specific events related to the
reservoirs according to the graph-based approach.
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Figure 3. Frequencies of relevant tweets
during disasters

4.2. Results

Sixteen burst time-frames were detected by applying
the graph-based approach to the filtered dataset (see
Figure 4). The spans of the time-frames varied because
of the duration of the disruption and the impacts on
people. The comparison of time-frames with Figure 3
shows that the detected timeframes were consistent with
the crests of the frequencies of relevant tweets. Then,
the tweets posted in the detected timeframes were
grouped into sixteen clusters. The content similarities
between the tweets in the same clusters were
implemented for the establishment of the graph edges.
Based on their content similarities, the semantic graph
in each time frame was mapped to exhibit the
correlations between tweets. Figure 5 shows the
representation of nodes and edges for each graph. As
shown in Figure 5, the numbers of nodes and edges in
the first four graphs were much greater than the other
graphs. The corresponding time-frames for these four
graphs were from August 26™ to September 30", After
Harvey passed, the weather went better, and the
flooding receded. The water levels in the reservoirs were
dropping down. Thus, fewer people talked about the
situation of the reservoirs. The number of nodes and
edges in the other graphs were expectedly less than the
nodes and edges in the first four graphs.

The next step includes examining the weighted
degrees of tweets. Figure 6 shows the graphs in two
burst timeframes: No.5 and No.15, as examples of
semantic similarity among tweets. The weighted
degrees vary from 0 to 750, which are distinguished by
the intensity of the color and size of the nodes in both
graphs. Distinctly, in Figure 6(a), there should be one
tweet having the highest similarity to other tweets. In

Figure 6(b), multiple tweets have the highest similarity
to other tweets. Our approach can identify all such
tweets and investigate if their close-similarity was
caused by retweeting. Meanwhile, a number of tweets
with low similarity to other tweets can be seen in the
graphs. These low-similarity tweets were associated
with the situation of reservoirs, but they may not deliver
complete and informative messages related to the high-
impact disruptive events.
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Figure 4. Identified burst timeframes
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Figure 6. Semantic graphs in two burst
timeframes: (a) burst timeframe No.5; and (b)
burst timeframe No.15

The critical tweets in each burst time-frame were
identified based on their weighted degrees by using Eq.
(9). Table 1 displays all original critical tweets that users
posted. As shown in these tweets, the situation of the
reservoirs can be fully interpreted and understood by
humans because it is presented completely and
logically. According to the identified critical tweets, we
deduced the temporal unfolding of events related to
Barker and Addicks reservoirs. At the beginning of
Hurricane Harvey, there was an early warning on social
media, which indicated that an extreme weather
condition would occur affecting the reservoirs (i.e.,
No.0 in Table 1.). Then, when Harvey landed in
Houston, the reservoirs had to release water to eliminate
possible breach (dam safety) (i.e., No.l in Table 1.).
These events led to flooding in nearby neighborhoods
(in the downstream of Addicks and Barker reservoirs)
and affected other critical infrastructure such as
Interstate Highway 10 (i.e., No.6 in Table 1.), and
Buffalo Bayou (i.e., No.7 in Table 1.). Emerging
information spreaders (such as Twitter user Jeff Linder)
updated the conditions of reservoirs and eased residents’
concerns about the danger of dam spills (i.e., No.8 in
Table 1.). Meanwhile, to reduce the adverse impacts of

the water release, response actions (e.g., mandatory
evacuation) were taken by stakeholders (e.g., Harris
County Flood Control) (i.e., No.9, No.12 and No.14 in
Table 1.). Finally, when Hurricane Harvey ended, and
flooding receded, water levels in the reservoirs declined
and water release stopped (i.e., No.15 in Table 1.).

The information shared via the critical tweets guided
residents to adequately respond to the adverse effects of
critical infrastructure disruptions, helped voluntary
organizations to provide relief efforts to worst-hit areas,
and supported responders to distribute relief resources
and personnel. Thus, the critical tweets provided reliable
and useful situational information for community
members and first responders to better understand the
disruptions of critical infrastructure during the
occurrence of disasters.

Table 1. Identified critical tweets in
timeframes

No. Identified critical tweets

'RT @abc13houston: A possible tornado was
0 [reported in northwest Harris County on Barker
Cypress '

'Harris County Flood Control says the release]
1 |of water from the Addicks and Barker Reservoirs
has started. khoull'

'KATY - Many shelters have reached capacity,
2 |but you can go to the Berry Center, 8877 Barker|
Cypress and they can get you to an open shelter.'

'Addicks and Barker dams have NOT]
breached! '

'UPDATE on Addicks and Barker Reservoirs.
@KPRC2'

'RT @JeffLindnerl: News conference at
5 [800am on watershed updates and Addicks/Barker
and Buffalo Bayou #houwx #hounews'

'Crews are getting creative along I-10 to dam|
6 |up rising water from the Addicks and Barker
Reservoir releases. '

'NEW: Buffalo Bayou continues to rise]
because of releases from Addicks reservoir, says
@JeffLindnerl from Harris Co. Flood Control
district'

'RT @JeffLindnerl: Addicks and Barker
8 [Dams are completely safe and are NOT in danger
of failing #houwx #hounews #txwx'

'New Mandatory Evacuation for Barker
Reservoir Area Communities - '

'There are no problems with Addicks and
10 [Barker Reservoirs, the dams are safe and
operating as designed #houwx #hounews #txwx'
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'NOW: @JeffLindner]l with @hcfcd joins us
11 |for updates on Barker &amp; Addicks reservoirs|
#Harvey #houstonflooding #hounews'

'Mayor asking residents w/ water in homes to
12 [leave if S of I-10, W of Gessner, N of Briarforest,
E of reservoirs. '

' 6FO[JéALERT: Addicks Dam will NOT
break!! '

'Ordering MANDATORY evacuation of West|
Houston dwellings already flooded by release of]
water from Addicks and Barker-Cypress
reservoirs.'

'RT @JeffLindnerl: Barker is currently af|
99.14 ft and falling #houwx #hounews '

13

14

15

4.3. Validation

To demonstrate the reliability of our graph-based
approach and the credibility of the identified situational
information, we plotted the weighted degree distribution
on log-log scales for semantic graphs and referred to
some new articles to validate the content of critical
tweets.

Figure 7 shows the weighted degree distribution of
two semantic graphs in burst timeframes No.5 and
No.15. As shown in Figure 7(a), only one node has the
highest degree, which indicates there is only one tweet
has the most complete information based on the
definition of the weighted degree in our approach. The
weighted degrees of tweets varied among the nodes in
the graph. In Figure 7(b), however, there are multiple
tweets with the highest weighted degree, which may
indicate that the critical tweets with most complete
situational information were retweeted several times in
that timeframe. Our approach can identify all those
critical tweets. Like Figure 7(a), the weighted degrees
are various from 0 to 750, which are consistent with the
semantic graphs in Figure 6.

To validate the content of detected critical tweets,
we examined the critical tweets comparing to recorded
information from news articles. For example, “It took
Harris County officials until late Sunday, Aug. 27, to
begin issuing similar warnings for communities
upstream of both Barker and Addicks.” [32] This is
consistent with critical tweet No.1 in Table 1. Also, as
shown in Figure 8, Interstate Highway 10 Barker and
Addicks reservoirs, and water was released from the
reservoirs to Buffalo Bayou. This information can
validate the physical interdependencies between the
reservoirs, I-10 and Buffalo Bayou and provides
evidence regarding the reliability of the information in
critical tweets No.6 and No.7. Another news article
stated, “Late Sunday night, local officials issued
voluntary evacuation notices for residents around the

reservoirs” [33] This information can validate that the
mandatory evacuation identified in critical tweet No.9.
“HCFCD officials said the reservoir levels peaked on
Aug. 30 at 109 feet at Addicks and 101.5 at Barker. With
the releases, the reservoir levels are dropping.” [34]
The information that reported in this article can
demonstrate the event of declining water level identified
in the critical tweet No.15 and No.11. Another news
article informed that “Water levels in the two reservoirs
had already reached record levels Monday evening,
measuring 105 feet at Addicks and 99 feet at Barker”
[33]. The water level reported in critical tweet No.15 is
consistent with the statistics in the above news post.

Based on the comparison between the news articles
and the identified critical tweets, the situational
information in the critical tweets related to Barker and
Addicks reservoirs were verified. Also, no other
important situational information related to the water
release from reservoirs is found missing in identified
critical tweets, and the timing of the burst events are
corresponding to the information posted in news
articles. Hence, the results and findings obtained from
the graph-based approach are credible and reliable for
community members and first responders to better
understand the situation in disasters.
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Figure 7. Weighted degree distribution on log-
log scales in two timeframes: (a) burst
timeframe No.5; and (b) burst timeframe No.15
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5. Concluding remarks

This paper proposed a graph-based approach to
detect the critical infrastructure disruptions from social
media data in disasters. The application of the proposed
approach was demonstrated in a case study of Hurricane
Harvey in Houston. The results showed that the primary
disruptive events related to the flood control reservoirs
and their adverse impacts on communities could be
detected from the critical tweets. The findings also
showed that the situational information related to the
critical infrastructure on social media provided reliable
insights regarding the spatial and temporal unfolding of
infrastructure disruptions.

From the methodological perspective, the proposed
graph-based approach provided useful insights into
complete and non-ambiguous event detection. All the
identified critical tweets contained detailed information
about the situation of critical infrastructure. Hence, the
results are more reliable than groups of tokens based on
word frequencies in existing studies (e.g., topic
modeling and clustering). In addition, this approach
distinguishes the credibility of online information. For
example, retweets do not play an important role in
detecting disruptive events. Rumors with sensitive
words (e.g., “reservoirs will spill”’, which will affect
large-scale of residents) would also be retweeted many
times. To overcome this challenge, the proposed graph-
based approach put more weight on the content
similarity between the tweets posted by multiple users.
Hence, this method can improve the credibility of the
critical tweets as well as the reliability of infrastructure
disruption findings.

From a practical point of view, the findings of this
study identified the occurrence of the disruption, the
location of the critical infrastructure, how severe the
events are, what agents are involved, and what response
actions are taken for a response. This spatial and

temporal information can be integrated into smart city
digital twins to examine the disruptions in infrastructure
services using social sensing. The actors in cities can
achieve better information sharing and communication
by using such situational information, and make better
decisions such as locating shelters, distributing
resources, and mobilizing relief crews. In addition, this
approach enables effective evaluation of infrastructure
performance in the aftermath of disasters to inform
future hazard mitigation planning and infrastructure
prioritization. As such, the cities can become smarter
and more resilient, relying on human-sensor data-driven
approaches (i.e., social sensing) for detecting
infrastructure disruptions and corresponding societal
impacts.

This approach can be further extended in the
following areas: (1) improving the algorithm of burst
detection to achieve burst prediction in a near real-time
manner; (2) enhancing the algorithm of vectorizing in
tweets to make it more feasible in disaster and critical
infrastructure domain; and (3) developing algorithms to
identify the relevant entities in critical tweets and
exploring their relationships for better disaster planning
and response.
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