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Abstract. The two key players in Generative Adversarial Networks (GANs),
the discriminator and generator, are usually parameterized as deep neural
networks (DNNs). On many generative tasks, GANs achieve state-of-the-art
performance but are often unstable to train and sometimes miss modes. A
typical failure mode is the collapse of the generator to a single parameter
configuration where its outputs are identical. When this collapse occurs, the
gradient of the discriminator may point in similar directions for many simi-
lar points. We hypothesize that some of these shortcomings are in part due
to primitive and redundant features extracted by discriminator and this can
easily make the training stuck. We present a novel approach for regularizing
adversarial models by enforcing diverse feature learning. In order to do this,
both generator and discriminator are regularized by penalizing both negatively
and positively correlated features according to their differentiation and based
on their relative cosine distances. In addition to the gradient information from
the adversarial loss made available by the discriminator, diversity regulariza-
tion also ensures that a more stable gradient is provided to update both the
generator and discriminator. Results indicate our regularizer enforces diverse
features, stabilizes training, and improves image synthesis.

Keywords: Deep learning, feature correlation, generative model, adversarial
learning, feature redundancy, generative adversarial networks, regularization.

1 Introduction

Convolutional neural networks (CNNs) have become the powerhouse for tackling many
image processing and computer vision tasks. By design, CNNs learn to automatically
optimize a well-defined objective function that quantifies the quality of results and
their performance on the task at hand. As shown in previous studies [1], designing
effective loss functions for many image prediction problems is daunting and often
requires manual effort and in-depth experts’ knowledge and insights. For instance,
naively minimizing the Euclidean distance between predicted and ground truth pixels
have shown to result in blurry outputs since the Euclidean distance is minimized by
averaging all conceivable outputs [1–4]. One plausible way of training models with
high-level objective specifications is by allowing CNNs to automatically learn the ap-
propriate loss functions that satisfy these desired objectives. One of such objectives
could be as simple as asking the model to make the output not distinguishable from
the groundtruth.

As established in [1, 5–7], GANs are trained to automatically learn an objective
function using a discriminator network to classify if its input is real or synthesized
while simultaneously training a generative model to minimize the loss. In GAN frame-
work, both the discriminator and generator aim to minimize their own loss and the
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solution to the game is the Nash equilibrium where neither player can independently
improve their individual loss [5, 8]. This framework can also be interpreted from the
viewpoint of a statistical divergence minimization between the learned model distri-
bution and the true data distribution [9–11].

Even though GANs have resulted in new and interesting applications and achieved
promising performance, they are still hard to train and very sensitive to hyperparam-
eter tuning. A peculiar and common training challenge is the performance control of
the discriminator. The discriminator is usually inaccurate and unstable in estimating
density ratio in high dimensional spaces, thus leading to situations where the generator
finds it difficult to model the multi-modal landscape in true data distribution. In the
event of total disjoint between the supports of model and true distributions, a discrim-
inator can trivially distinguish between model distribution and that of true data [12],
thus leading to situations where generator stops training because the derivative of
the resulting discriminator with respect to the input has vanished. This problem has
seen many recent works to come up with workable heuristics to address many training
problems such as mode collapse and missing modes.

We argue in line with the hypothesis that some of the problems associated with
the training of GANs are in part due to lack of control of the discriminator. In light
of this, we propose a simple yet powerful diversity regularizer for training GANs that
encourages the discriminator to extract near-orthogonal filters. The problem abstrac-
tion is that in addition to the gradient information from the adversarial loss made
available by the discriminator, we also want the GAN system to benefit from extract-
ing diverse features in the discriminator. Experimental results consistently show that,
when correctly applied, the proposed regularization enforces diverse features in the
discriminator and better stabilize the GAN training with mostly positive effects on
the generated samples.

The contribution of this work is two-fold: (i) we propose a new method to regularize
adversarial learning by inhibiting the learning of redundant features and availing a
stable gradient for weights updates during training and (ii) we show that the pro-
posed method stabilizes the adversarial training and enhances the performance of
many state-of-the-art methods across many benchmark datasets. The rest of the pa-
per is structured as follows: Section II highlights the state-of-the-art and Section III
discusses in detail the formulation of diversity-regularized adversarial learning. Sec-
tion IV discusses the detailed experimental designs and presents the results. Finally,
conclusions are drawn in Section V.

2 Related Work

As originally introduced in [5], GANs consist of generator and the discriminator that
are parameterized by deep neural networks and are capable of synthesizing interest-
ing local structure on select datasets. The representation capacity of original GAN
was extended in conditional GANs [13] by incorporating an additional vector that
enables the generator to synthesize samples conditioned on some useful information.
This extension has motivated several conditional variants of GAN in diverse applica-
tions such as edge map [14, 15], image synthesis from text [16], super-resolution [17],
style transfer [18], just to mention a few. Learning useful representation with GANs
has shown to heavily rely on hyperparameter-tuning due to various instability issues
during training [8,12,19]. GANs are remarkably hard to train in spite of their success
on variety of task. Robustly and systematically stabilizing the training of GANs has
come in many forms such as selective architectural design [6], matching of intermedi-
ate features [7], and unrolling the optimization of discriminator [20].
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Fig. 1. Schema of Diversity Regularized Adversarial Learning (DiReAL)

Many recent advances inspired by either theoretical insights or practical consider-
ations have been attempted in form of regularization and normalization to address
some of the issues associated with training of GANs. Imposing Lipschitz constraint on
the discriminator has shown to stabilize the adversarial training and avoid an over-
optimization scenario where the discriminator still distinguishes and allots different
scores to nearly indistinguishable samples [12]. By satisfying the Lipschitz constraint,
the discriminator’s joint/compressed representation of the true and synthesized data
distributions is guaranteed to be smooth; thus ensuring a non-zero learning signal for
the generator [12,19]. Enforcing the discriminator to satisfy the Lipschitz constraints
has been approximated and implemented via ancillary means such as gradient penal-
ties [21] and weight clipping [12]. Using a Gaussian classifier over the real/fake indi-
cator variables has also been shown to have a smoothing effect on the discriminator
function [19]. Injecting label noise [7] and gradient penalty have equally been shown
to have a tremendous regularizing effect on GANs. Schemes such as weighted gradi-
ent [22] and missing modes penalty [23] have been utilized to alleviate some training
and missing modes issues in GAN learning.
Weight vectors of discriminator have been l2-normalized with Frobenius norm,

which constraints the sum of the squared singular values of the weight matrix to
be 1 [7]. However, normalizing using Frobenius norm translates to utilizing a single
feature to discriminate the model probability distribution from the target thus, re-
ducing the rank and hence the number of discriminator features [24]. In addition to
weight clipping [10, 12], weight normalization approaches yield primitive discrimina-
tor model that maps the target distribution only with select few features. The most
closely related work to ours is orthonormal regularization of weights [25] that sets
all the singular values of weight matrix in the discriminator to one, which translates
to using as many features as possible to distinguish the generator distribution from
the target distribution. Our approach, however, imposes much softer orthogonality
constraint on the weight vectors by allowing a degree of feature sharing in upper
layers of the discriminators. Other related work is spectral normalization of weights
that guarantees 1-Lipschitzness for linear layers and ReLu activation units resulting
in discriminators of higher rank [24]. The advantage of spectral normalization is that
weight matrices are constrained and Lipschitz. However, bounding the spectral norm
of the convolutional kernel to 1 does not bound the spectral norm of the convolutional
mapping to unity.



4 Babajide O. Ayinde1, Keishin Nishihama, and Jacek M. Zurada1,2

3 Method

The training of GAN can be abstracted as a non-cooperative game between two
players, namely the generator G and the discriminator D. The discriminator tries to
distinguish if the generated sample is from the real (pdata) or fake data distribution
(pz), while G tries to trick D into believing that generated sample is from pdata by
moving the generation manifold towards the data manifold. The discriminator aims
to maximize Ex∼pdata(x)[logD(x)] when the input is sampled from real distribution
and given a fake image sample G(z), z ∼ pz(z), it is trained to output probability,
D(G(z)), close to zero by maximizing Ez∼pz(z)[log(1−D(G(z)))]. The generator net-
work, however, is trained to maximize the chances of D producing a high probability
for a fake image sample G(z) thus by minimizing Ez∼pz [log(1−D(G(z)))].

The adversarial cost is obtained by combining the objectives of both D and G in a
min-max game as given in 1 below:

Jadv = min
G

max
D

Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]
(1)

Training D can be conceived as training an evaluation metric on sample space [23]
that enables G to use the local gradient ∇ logD(G(z)) information made available by
D to improve itself and move closer to the data manifold.

3.1 Feature diversification in GAN

Both D and G are commonly parameterized as DNNs and over the past few years, the
general trend has been that DNNs have grown deeper, amounting to huge increase in
number of parameters. The number of parameters in DNNs is usually very large offer-
ing possibility to learn very flexible high-performing models [26]. Observations from
many previous studies [27–30] suggest that layers of DNNs typically rely on many
redundant filters that can be either shifted version of each other or be very similar
with little or no variations. For instance, this redundancy is evidently pronounced
in filters of AlexNet [31] as emphasized in [28, 32, 33]. To address this redundancy
problem, we train layers of the discriminator under specific and well-defined diversity
constraints.

Since G and D rely on many redundant filters, we regularize them during training
to provide more stable gradient to update both G and D. Our regularizer enforces
constraints on the learning process by simply encouraging diverse filtering and dis-
courages D from extracting redundant filters. We remark that convolutional filtering
has found to greatly benefit from diversity or orthogonality of filters because it can
alleviate problems of gradient vanishing or exploding [25,34–36].

Typically, both D and G consist of input, output, and many intermediate pro-
cessing layers. By letting the number of channels, height, and width of input feature
map for lth layer be denoted as nl, hl, and wl, respectively. A convolutional layer in
both D transforms input xl ∈ Rp into output xl+1 ∈ Rq, where xl+1 is the input
to layer l + 1; p and q are given as nl × hl × wl and nl+1 × hl+1 × wl+1, respec-
tively. xl is convolved with nl+1 3D filters χ ∈ Rnl×k×k, resulting in nl+1 output
feature maps. Unrolling and combining all layer lth filters into a single matrix results

in kernel matrix
(l)

ΘD ∈ Rm×nl+1 where m = k2nl. Then,
(l)

θDi, i=1,...nl, denotes fil-

ters in layer l, each
(l)

θDi ∈ Rm corresponds to the i-th column of the kernel matrix



Diversity Regularized Adversarial Deep Learning 5

(l)

ΘD = [
(l)

θD1, ...
(l)

θDnl
] ∈ Rm×nl+1 ; the bias term of each layer is omitted for simplicity.

Given that
(l)

ΘD ∈ Rm×nl contain nl normalized filter vectors as columns, each with m
elements corresponding to connections from layer l − 1 to ith neuron of layer l, then,
the diversity loss JD for all layers of D is given as:

JD(θD) =
L∑
l=1

1

2

nl∑
i=1

nl∑
j=1

(
(l)

ΩDij

)2
(l)

MD
ij

 (2)

where
(l)

ΩD ∈ Rnl×nl denotes (
(l)

ΘD)T
(l)

ΘD which contains the inner products of each pair

of columns i and j of
(l)

ΘD in each position i,j of
(l)

ΩD in layer l;
(l)

MD ∈ Rnl×nl is a
binary mask for layer l defined in (5); L is the number of layers to be regularized.

(l)

MD
ij =

{
1 τ ≤ |

(l)

ΩDij | ≤ 1
0 i = j
0 otherwise

(3)

Similarly, the diversity loss JG for generator G is given as:

JG(θG) =
L∑
l=1

1

2

nl∑
i=1

nl∑
j=1

(
(l)

ΩGij

)2
(l)

MG
ij

 (4)

and

(l)

MG
ij =

{
1 τ ≤ |

(l)

ΩGij | ≤ 1
0 i = j
0 otherwise

(5)

In order to enforce feature diversity in both G and D while training GANs, the di-
versity regularization terms in (4) is added to the conventional adversarial cost Jadv
in (1) as given in (6).

Jnet = Jadv + Jdiv (6)

where Jdiv = λGJG(θG)− λDJD(θD), λG and λD is the diversity penalty factors for
generator and discriminator, respectively. The derivative of diversity loss JD with
respect to weights of D is given as

∇
Θ

(l)
i,j
JD(θD) =

n∑
k=1

(l)

ΘDi,k

(l)

ΩDk,j

(l)

MD
k,j (7)

and the derivative of diversity loss JG with respect to weights of G is

∇
Θ

(l)
i,j
JG(θG) =

n∑
k=1

(l)

ΘGi,k

(l)

ΩGk,j

(l)

MG
k,j (8)

The idea behind diversifying features is that in addition to adversarial gradient infor-
mation provided by D, we provide additional diversity loss with more stable gradient
to refine both G and D. The diversity loss encourages weights of both generator and
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Fig. 2. Diversity loss of (a) generator JG with no regularization (b) generator JG with
diReAL (c) discriminator JD with no regularization, and (d) discriminator JD with DiReAL
trained on MNIST dataset.

discriminator to be diverse by pushing them towards the nearest orthogonal mani-
fold. Our proposed regularization provides more efficient gradient flow, a more stable
optimization, richness of layer-wise features of resulting model, and improved sample
quality compared to benchmarks and baseline. The diversity regularization ensures

the column space of
(l)

ΘD and
(l)

ΘG for lth layer does not concentrate in few direction
during training thus preventing them to be sensitive in few and limited directions.
The proposed diversity regularized adversarial learning alleviates some of the main
failure mode of GAN by ensuring features are diverse.

4 Experiments

All experiments were performed on Intel(r) Core(TM) i7-6700 CPU @ 3.40Ghz and
a 64GB of RAM running a 64-bit Ubuntu 16.04 edition. The software implementa-
tion has been in PyTorch library 1 on two Titan X 12GB GPUs. Implementation of
DiReAL is available at https://github.com/keishinkickback/DiReAL. Diversity
regularized adversarial learning (DiReAL) was evaluated on MNIST dataset of hand-
written digits [37], CIFAR-10 [38], STL-10 [39], and Celeb-A [40] databases. In the

1 https://pytorch.org/
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first set of experiments, an ubiquitous deep convolutional GAN (DCGAN) in [6] was
trained using MNIST digits. The standard MNIST dataset has 60000 training and
10000 testing examples. Each example is a grayscale image of an handwritten digit
scaled and centered in a 28 × 28 pixel box. Both the discriminator and generator
networks contain 5 layers of convolutional block. Adam optimizer [41] with batch size
of 64 was used to train the model for 100 epochs and τ and learning rate in DiReAL
were set to 0.5 and 0.0001, respectively. In similar vein, λD and λG were to 1.0 and
0.01, respectively. Adam optimizer (β1 = 0.0, β2 = 0.9) [41] with batch size of 64 was
used to train the model for 100 epochs
Fig. 2 shows the diversity loss of both generator and discriminator for DiReAL and

unregularized counterpart. It can be observed that DiReAL was able to minimize the
pairwise feature correlations compared to the highly correlated features extracted by
the unregularized counterpart. Specifically, DiReAL was able to steadily minimize the
diversity loss as training progresses compared to the unregularized DCGAN, where
extraction of similar features grows with epoch of training, thus increasing the diver-
sity loss. The divergence between discriminator output for real handwritten digits and
generated samples over 30 batches for regularized and the unregularized networks is
shown in Fig. 3a. The divergence was measured using the Wasserstein distance mea-
sure [42] and it can be observed that the regularizing effect of DiReAL stabilizes the
adversarial training and prevents mode collapse. For unregularized network, however,
the mode started to collapse around 45th epoch. Closer look into the diversity of the
generator in Fig. 2a, it is evident that just around the epoch of collapse the generator
starts extracting more and more redundant filters. We suspect that DiReAL was able
to stabilize the training by pushing features to lie close to the orthogonal manifold,
thus preventing learned features from collapsing to an undesirable manifold. Fig. 3b
shows the handwritten digit samples synthesized with and without DiReAL and it
can be observed that diversification of features is beneficial for stabilizing adversarial
learning and ultimately improving the samples’ quality. Another observation is that
DiReAL also prevents learned weights from collapsing to an undesirable manifold thus
highlighting some of the benefits of pushing weights near the orthogonal manifold.

In the second large-scale experiments, CIFAR-10 dataset was used to train GAN

(a) (b)

Fig. 3. (a) Divergence, as measured by Wasserstein distance, between the discriminator
output for synthesized and real MNIST samples (b) Synthesized hand-written digits with
and without diversity regularization.
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(a) (b)

Fig. 4. Diversity loss of (a) discriminator JD with no regularization, and (b) discriminator
JG with diReAL trained on CIFAR-10 dataset.

Fig. 5. Generated images with and without DiReAL trained on CIFAR-10 dataset.

Fig. 6. Qualitative comparison of generated images with four regularization techniques for
models trained on STL-10 dataset.

using DiReAL and the results compared to the unregularized training. The dataset
is split into 50000 and 10000 training and testing sets, respectively. Similar to exper-
iments with MNIST, Fig. 4b shows the diversity loss of the discriminator with and
without DiReAL trained on CIFAR-10 database. It can be observed that DiReAL was
able to minimize the diversity loss and encourages diverse features that benefit the
adversarial training. On the other hand, Fig. 4b shows that the diversity loss of the
unregularized is higher and unconstrained compared to that of DiReAL. The images
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Method Inception Score

Real data 9.04

-Standard CNN-
Unregularized [6] 4.00 ± 0.15
DiReAL (ours) 4.17 ± 0.03
Batch Normalization [43] 5.48 ± 0.19
Layer Normalization [44] 5.05 ± 0.12
Weight Normalization [45] 4.66 ± 0.14
Spectral Normalization [24] 6.50 ± 0.30

Weight Normalization + DiReAL 4.68 ± 0.06
Batch Normalization + DiReAL 5.48 ± 0.15
Layer Normalization + DiReAL 5.64 ± 0.15
Spectral Normalization + DiReAL 6.87 ± 0.12

Table 1. Inception Scores with unsupervised image generation on CIFAR-10

Fig. 7. Generated images with and without diversity Regularization trained on CELEB-A
dataset.

synthesized with DiReAL was compared and contrasted with state-of-the-art methods
such as batch normalization [43], layer normalization [44], weight normalization [45],
and spectral normalization [24]. It is remarked that DiReAL can be used in tandem
with the other regularization techniques and could also be deployed as stand-alone
regularization tool for stabilizing adversarial learning. In this light, DiReAL was also
combined with these techniques. It must be noted that spectral normalization uses
a variant of DCGAN architecture with an eight-layer discriminator network. See [24]
for more implementation details.
It can be observed in Fig. 5 that diversity regularization was able to synthesize more

diverse and complex images compared to unregularized counterpart. Other benchmark
regularizers were able to generate better image samples compared to using only Di-
ReAL. However, when DiReAL was combined with other regularizers the quality of
the generated samples was significantly improved. For quantitative evaluation of gen-
erated examples, inception score metric [45] was used. Inception score has been found
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to highly correlate with with subjective human judgment of image quality [24, 45].
Similar to [24, 45], inception score was computed for 5000 synthesized images using
generators trained with each regularization technique. Every run of the experiment is
repeated five times and averaged to combat the effect of random initialization. The
average and the standard deviation of the inception scores are reported.

The proposed regularization is also compared and contrasted in terms inception
score with many benchmark methods as summarized in Table 1. It can be again ob-
served that DiReAL was able to improve the image generation quality compared to
unregularized counterpart and when combined with spectral normalization, we ob-
served a 6% improvement in the inception score. By combining DiReAL with layer
normalization, an improvement of 11.68% on inception was observed. However, no
significant improvement was observed when DiReAL was combined with batch nor-
malization and weight normalization. It must be remarked that the calculation of
Inception Scores is library dependent and that is why the scores reported in Table 1
is different for those reported by Miyato et al. [24]. While our implementation was in
PyTorch, [24] was in Chainer 2.

In the next set of large-scale experiments, STL-10 dataset was used to train gen-
erator under diversity regularization and compared with other state-of-the-art regu-
larization techniques. As can be observed in Fig. 6, images synthesized by generator
trained with DiReAL was able to generate images with competitive quality in compar-
ison with other regularization methods considered. Performance of DiReAL was also
observed to be competitive to regularization methods such as WGAN-GP and spectral
normalization. In Fig. 7 we show the images produced by the generators trained with
DiReAL using Celeb-A dataset. It can be again be observed that DiReAL was able
to stabilize the training and avoid mode collapse in comparison to the unregularized
counterpart.

5 Conclusion

This paper proposes an interesting and effective method of stabilizing the training of
GANs using diversity regularization to penalize both negatively and positively cor-
related features according to features differentiation and based on features relative
cosine distances. It has been shown that diversity regularization can help alleviate a
common failure mode where the generator collapses to a single parameter configu-
ration and outputs identical points. This has been achieved by providing additional
stable diversity gradient information in addition to adversarial gradient information to
update both the generator and discriminator’s features. The performance of the pro-
posed regularization in terms of extracting diverse features and improving adversarial
learning was compared on the basis of image synthesis with recent regularization tech-
niques namely batch normalization, layer normalization, weight normalization, weight
clipping, WGAN-GP, and spectral normalization. It has also been shown on select ex-
amples that extraction of diverse features improves the quality of image generation,
especially when used in combination with spectral normalization. This concept is il-
lustrated using MNIST handwritten digits, CIFAR-10, STL-10, and Celeb-A Dataset.
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