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Abstract

The standard linear and logistic regression models assume that the response variables are
independent, but share the same linear relationship to their corresponding vectors of covariates.
The assumption that the response variables are independent is, however, too strong. In many
applications, these responses are collected on nodes of a network, or some spatial or temporal
domain, and are dependent. Examples abound in financial and meteorological applications, and
dependencies naturally arise in social networks through peer effects. Regression with depen-
dent responses has thus received a lot of attention in the Statistics and Economics literature,
but there are no strong consistency results unless multiple independent samples of the vec-
tors of dependent responses can be collected from these models. We present computationally
and statistically efficient methods for linear and logistic regression models when the response
variables are dependent on a network. Given one sample from a networked linear or logistic
regression model and under mild assumptions, we prove strong consistency results for recov-
ering the vector of coefficients and the strength of the dependencies, recovering the rates of
standard regression under independent observations. We use projected gradient descent on the
negative log-likelihood, or negative log-pseudolikelihood, and establish their strong convexity
and consistency using concentration of measure for dependent random variables.

1905.03353v2 [cs.LG] 8 Oct 2019

arxiv

*Supported by NSF awards CCF-1617730 and IIS-1741137, a Simons Investigator Award, a Google Faculty Re-
search Award, and an MIT-IBM Watson Al Lab research grant.

tSupported by SRG ISTD 2018 136. Part of this work was done while the authors were visiting Northwestern
University for a spring program in Econometrics


http://arxiv.org/abs/1905.03353v2

1 Introduction

Linear and logistic regression are perhaps the two most prominent models in Statistics. In their
most standard form, these models postulate that a collection of response variables y1, ..., y,, which
are scalar and binary respectively, are linearly related to a collection of covariates x1, .. .,%, € R?
through some coefficient vector 0, as follows:

e in vanilla linear regression it is assumed that:

—forallic {1,....,n}: y; =0"x; +¢,
where ¢; ~ N(0,1); and

— Y1,-...,Yn are independent.
e in vanilla logistic regression it is assumed that:
— forallie{l,...,n} and 0; € {£1}: Prly; = 0y] = m; and

- Y1,...,Yn are independent.

It is well-known that, given examples (x;,y;) ;, where the y;’s are sampled independently as

specified above, the coefficient vector 6 can be estimated to within fs-error Oy <\/%) in both

models, under mild assumptions about the smallest singular value of the matrix whose rows are
X1,...,Xp. In both cases, this can be achieved by solving the corresponding Maximum Likelihood
Estimation (MLE) problem, which is concave. In fact, in linear regression, the optimum of the
likelihood has a closed form, which is the familiar least-squares estimate.

The assumption that the response variables ¥, ..., ¥y, are independent is, however, too strong.
In many applications, these variables are observed on nodes of a network, or some spatial or
temporal domain, and are dependent. Examples abound in financial and meteorological applica-
tions, and dependencies naturally arise in social networks through peer effects, whose study has
recently exploded in topics as diverse as criminal activity (see e.g. [24]), welfare participation (see
e.g. [2]), school achievement (see e.g. [36]), participation in retirement plans [18], and obesity (see
e.g. (39, 11]). A prominent dataset where peer effects have been studied are data collected by the
National Longitudinal Study of Adolescent Health, a.k.a. AddHealth study [26]. This was a major
national study of students in grades 7-12, who were asked to name their friends—up to 10, so that
friendship networks can be constructed, and answer hundreds of questions about their personal and
school life, and it also recorded information such as the age, gender, race, socio-economic back-
ground, and health of the students. Estimating models that combine peer and individual effects to
predict behavior in such settings has been challenging; see e.g. [31, 5].

1.1 Modeling Dependence

In this paper, we generalize the standard linear and logistic regression models to capture dependen-
cies between the response variables, and show that if the dependencies are sufficiently weak, then
both the coefficient vector # and the strength of the dependencies among the response variables can
be estimated to within error Oy <\/%> To define our models, we drop the assumption that the

response variables y1, ..., y, are independent, but maintain the form of the conditional distribution



that each response variable y; takes, conditioning on a realization of the other response variables
y—;. In particular, for all ¢, conditioning on a realization of all other variables y_;, the conditional
distribution of y;:

e (in our linear regression model) is a Gaussian of variance 1, as in standard linear regression,
except that the mean of this Gaussian may depend on both #'x; and in some restricted way
the realizations y; and the covariates x;, for j # i;

e (in our logistic regression model) takes value +1 with probability computed by the logistic
function, as in standard logistic regression, except that the logistic function is evaluated at
a point that may depend on both 6Tx; and in some restricted way the realizations y; and
covariates x;, for j # 1.

To capture network effects we parametrize the afore-described general models through a (known)
interaction matrix A € R™*" and an (unknown) strength of interactions 5 € R, as follows.

e In linear regression with (A, 8)-dependent samples we assume that:

— e=y — X0, with e ~ N(0,(BA + D)~ 1).

— Or equivalently, for all ¢, conditioning on a realization of the response variables y_;:
yi = 0"x; + €, (1)

where €; ~ /\/’(EiEi_ilozi, % —EiEi_ilEiT), where ¥; is the i-th row of (BA+D)~!
by removing the coordinate (diagonal element) i-th, ¥;; is (8A + D)~! by removing the
i-th column and i-th row, (8A + D)_; is BA + D by removing i-th row and column
and finally column vector a; = y; — Hij (this is the Schur complement for conditional

multivariate Gaussians). Observe that EiEi_il = —D%_iﬁAil and hence the expectation
becomes _D%i > i BAi(y; — 0'x;) and moreover the variance becomes Di“ By the

transformation €; = ¢; + DL“_ > i BAG (Y5 — 07x;) we get that

1
D;;

Z BAG(y; —07%)) | + ¢, (2)
J#i

yi =0'x; —

. 1
with €, ~ N (0, D_zz>

— Interpretation: The conditional expectation of y; is additively perturbed from its expec-
tation 0 x; by the weighted average, according to weights BA;j, of how much the other
responses are perturbed from their expectations in realization y_;.

— Remark 2: The model proposed in Eq. (2) falls in the realm of auto-regressive models
studied by Manski [31] and Bramoullé et al. [5], where it is shown that the model can
be identified under conditions on the interaction matrix A. In contrast to our work,
one of the conditions imposed on A is that it can be partitioned into many identical
blocks (i.e. the weighted graph defined by A has many identical connected components).
Thus the response variables cluster into multiple groups that are independently and

1 A; denotes the i-row of A by removing coordinate i, i.e., n — 1 vector



identically sampled, given the covariates. Instead we want to identify # and 8 even when
A corresponds to one strongly connected graph, and therefore there is no independence
to be exploited.

e In logistic regression with (A, 5)-dependent samples it is assumed that:

— For all ¢ and o; € {£1}, conditioning on a realization of the response variables y_;:

1
1+ exp <_2 (eTxi + B2 Aijyj) Ui) |

Prly; = o] = (3)

— Interpretation: The probability that the conditional distribution of y; assigns to +1
is determined by the logistic function applied to 2 <0Txi + sz 4 Aijyj) instead of

20T x;, i.e. it is increased by the weighted average, according to weights BA;j;, of the
other responses in realization y_;.

— Remark 3: It is easy to see that the joint distribution of random variables (y1, ..., yn),
satisfying the requirements of Eq. (3), is an instance of the Ising model. See Eq. (6).
In this Ising model each variable i has external field 6 'x;, and 3 controls the inverse
temperature of the model. The Ising model was originally proposed to study phase tran-
sitions in spin systems [27], and has since found myriad applications in diverse research
disciplines, including probability theory, Markov chain Monte Carlo, computer vision,
theoretical computer science, social network analysis, game theory, and computational
biology [29, 7, 21, 16, 22, 19, 35].

A particularly simple instance of our model arises when all covariates x; are single dimen-
sional and identical. In this case, our model only has two free parameters, and this setting
has been well-studied. [12] consider the consistency of maximum likelihood estimation
in this setting. More recent work of Chatterjee [10], Bhattacharya and Mukherjee [4],
and Ghosal and Mukherjee [23] has identified conditions on the interaction matrix A
under which these parameters can be identified. Our work generalizes these works to
the case of multi-dimensional covariates.

Now let us state our results for the above regression models with dependent response variables.
We are given a set of observations (x;,y;)!; where the covariates x; are deterministic, and the
response variables are assumed to have been sampled according to either of the models above,
for a given interaction matrix A and an unknown scalar § and coefficient vector 6. Given our
observations, we are interested in estimating 5 and 6. It is important to stress that we only have one
sample of the variables (y1,...,yn). In particular, we cannot redraw the response variables many
times and derive statistical power from the independence of the samples. This is motivated by our
application to network collected data, where we often have no access to independent snapshots of the
responses at the nodes of the network. On a technical standpoint, estimating from a single sample
distinguishes our work from other works in the literature of auto-regressive models and graphical
models, and requires us to deal with the challenges of concentration of measure of functions of
dependent random variables.

Our main results are stated as Theorems 3.1, for logistic regression, and 4.1, for linear regression.

In both cases, the parameters 3,0 can be estimated to within error Oy (\/%), the dependence of

3



the rate on n matching that of vanilla logistic regression and vanilla linear regression respectively 2.
These results hold under the assumptions of Table 1. We note that the assumptions on 6, 5, and the
covariates are standard, even in the case of vanilla regression. Moreover, the bounds on the norm
of A have been shown to be necessary for logistic regression by [4, 23]. And the minimum singular
value condition for matrix AX is mild, and holds for various ensembles of A; see e.g. Corollary 4.1
shown using Ky Fan inequalities [20].

Proof Overview: The estimation algorithms in both Theorem 3.1 and Theorem 4.1 are instances
of Projected Gradient Descent (PGD). In the linear case (Theorem 4.1, PGD is applied to the
negative log-likelihood of the observations (yi,...,¥y,). However, the log-likelihood is not convex,
so we perform a re-parametrization of the model, indeed an overparametrization of the model that
renders it convex. Showing strong convexity of the re-parametrized negative log-likelihood requires
some mild linear algebra. It has to be established that despite the overparametrization the optimum
collapses to the right dimensionality, and can be used to recover the original parameters. A more
complete overview of the approach is presented in the beginning of Section 4.

In the logistic case (Theorem 3.1), we do not run PGD on the negative log-likelihood but the
negative
log-pseudolikelihood. Pseudolikelihood is the product of the conditional probabilities of each re-
sponse ¥;, conditioning on all other responses y_;. Pseudolikelihood is trivially convex, but we need
to establish that is optimum is close to the true parameters and also that it is strongly convex. We
show both properties via concentration results for functions of dependent random variables. To
show that the maximum of the pseudolikelihood is close to the true parameters we use exchangeable
pairs, adapting [9]. To show that it is strongly convex we show additional properties of A which
are implied by our assumptions. Combining these with a new concentration inequality, we obtain
the desired bound. A more complete overview of the approach is presented in Section 3.2.

Other Related Work: We have already reviewed the work that is most relevant to ours from the
FEconomics, Probability Theory, and Statistics literature. Further discussion of the Econometrics
and Statistics literature on the theory and applications of regression with dependent observations
is discussed in [30]. There is another strand of literature studying generalization bounds that can
be attained when learning from sequences of dependent observations; see e.g. [33, 32, 41, 38, 34, 1].
These works assume, however, that the sequence of observations is a stationary process, which
does not hold in our models, and they impose strong mixing conditions on that sequence. Finally,
we note that generalized linear regression, which accommodates dependencies among the response
variables, cannot be applied directly to our linear regression setting to estimate 6, because the
covariance matrix of our response variables depends on the parameter [, which is unknown and
thus needs to be disentangled before bounding the error in the estimation of 6.

In the case of logistic regression, there has been a lot of work showing that under certain high-
temperature conditions on the Ising model (which are similar to the assumptions we make in our
paper), one can perform many statistical tasks such as learning, testing and sampling of Ising
models efficiently [28, 14, 13, 15, 25, 17].

2The dependence on d in the rate is O(exp(2d)) for both vanilla regression and our result. Hence we achieve the
optimal rate with respect to all parameters in the setting of logistic regression. For linear regression with dependent
samples, our rate dependence on d is O(d3/2) which is off by the rate achieved for independent samples by a factor
of d.



2 Preliminaries

We use bold letter such as x,y to denote vectors and capital letters X, Y, A, D to denote matrices.
All vectors are assumed to be column vectors, i.e. dim x 1. We will refer to A;; as the (4, )™
of matrix A. We will use the following matrix norms. For a n X n matrix A,

entry

llzll,=1

[Ally = max [|Az]ly,  [[All, = %%\;TZ\AU\,
i=1

2.2 A

i=1 j=1

Al =

When A is a symmetric matrix we have that [|All, < [|All < [|Allp < VR |lAll, < VnllA| . We
use A to denote eigenvalues of a matrix and o to denote singular values. A, refers to the smallest
eigenvalue and Apax to the largest, and similar notation is used for the singular values as well.

We will say an estimator 6, is consistent with a rate \/n (or equivalently \/n-consistent) with
respect to the true parameter 6y if there exists an integer ng and a constant C' > 0 such that for
every n > ng, with probability at least 1 — o(1),

én - HOH < —
2

| 7

We utilize the following two well-known examples of graphical models to characterize depen-
dencies in our logistic and linear regression models respectively.

C

1. Ising Model: Given an unweighted undirected graph G(V, E) with adjacency matrix A and
assignment o : V. — {—1,4+1}", an Ising model is the following probability distribution on
the 2" configurations of o:

oxp (X ey hoow + Bo " Aa)
Zc(8,0)

Pr{y = o} = (4)

where
Z(G) =) exp (Z hoGy + 55%5)
o veV

is the partition function of the system (or renormalization factor). Moreover the term ) hy, 0y
is called the external field. It can be observed that, without loss of generality, we can restrict
the matrix A to have zeros on its diagonal.

2. Gaussian Graphical Model: Let G = (V, E) be an undirected graph with V' = [n]. A
random vector X € R" is said to be distributed according to (undirected) Gaussian Graphical
model with graph G if X has a multivariate Gaussian distribution N (u, ) with

(271, =0V (i,j)¢F, (5)



where the density function f, x(.) of N'(u, X) is

exp (—5(z — )2z — p))
(27)/2 det(30)1/2

fus(z) =

under the condition that ¥ is positive semi-definite (X! is also known as the precision ma-

trix).

2.1 Some Useful Lemmas from Literature

Weyl’s inequalities are useful to understand how the spectra of symmetric matrices change under
addition. We state them here for reference.

Lemma 2.1 (Weyl’s Inequalities). Let A, B and C be three n x n symmetric matrices with real
entries such that A= B+ C. Let)\‘l4 2/\‘242 2)\;‘}, )\{3 2/\23 > L. 2/\5, A?Z)\g > L. 2/\5
be their eigenvalues respectively. Then we have for all i € [n], \B +1F <A < \B + )¢,

We will use the following concentration inequality which is standard in literature.

Theorem 2.1 ([40], Remark 5.40). Assume that X is an n x d matriz whose rows X; are indepen-
dent sub-gaussian random vectors in R® with second moment matriz . Then for every t > 0, the
following inequality holds with probability at least 1 — 2 exp(—ct?),

< max(é, 6%)
2

’lXTX -¥
n

with § = C\/4 + L.

Remark 2.1. By choosing t to be ©(VInn), it follows that with probability 1 — m we get that

leixiT—Q isO(Uln—n),
n n

from which follows that Amin(= 37, x;x.) is at least Amin(Q) — O Inn ) with probability 1 —
n =1 ) n

2

m (by Weyl’s inequality).

Lemma 2.2 (Useful Inequalities on Singular Values). The following inequalities hold:
1. Let W be a n x n matriz. It holds that [Amin(W + W )| < 20min(W) (see [20]).
2. Let W, Z be matrices. It holds that owmin(WZ) < omin(W) || Z||5 (folklore).
3. Let W, Z be matrices, then |W Z||[% < |W|3||Z||% (folklore).

Lemma 2.3 (Expectation and Variance of a Quadratic form of a Gaussian Distribution). Let
z ~ N (i, Z) and we have the quadratic form f(z) :=z' Az +b'z + c. It holds that

E.[f(z)] = tr(AX) + f(u), V.[f(2)] = 2tr(ASAY) + 4" A Ap + 4b 'S Apu+b ' b,

Table 1 lists the assumptions under which our main theorems for logistic and linear regression
hold.



Table 1: List of conditions under which our main consistency results (Theorems 3.1 and 4.1) hold.

Parameter Logistic Linear
0 (—0,0)? (-0,0)"
x; feature vectors with Support in [—M, M ]d and | No restriction in the support and
covariance matrix Amax (®)s Amin (@) positive Amax(Q); Amin (@) positive
Q=n'XTXx?3 constants constants
D Not Applicable diagonal matrix with positive
constant entries
A symmetric, zero diagonal, symmetric, zero diagonal,
IAll, <1 and |7, > cen | [|A]l, <1 and and |A|} > en
/8 (—B,B) )\min((ﬂA"i_D)_l) > Pmin,

Amax((BA 4+ D)) < pmax and
Prmins Pmax POSitive constants for

all € (—B,DB)
n lXxTAT (I - No assumption Minimum eigenvalue a positive
DX(XTD?X)"'XTD)AX constant ppax

3 Logistic Regression with Dependent Data

In this section we look at the problem of logistic regression with dependent data.

3.1 Our model

We are interested in a generalization of the Ising model on graph G = (V, E) with |V| = n, where
each vertex i € G has a feature vector x; € R%. Moreover there is an unknown parameter # € R?
and the corresponding probability distribution induces to the following;:

ex " (07x;)0; ol Ao
(22 Tt o) o

Pr{y =0} =

where A is a symmetric matrix with zeros on the diagonal. Given one sample y and the knowledge
of the matrix A, we would like to infer 3, 0.

We now study some conditions under which we can attain consistent estimates of the parameters
of the model. Combined with some standard assumptions on the data-generating process of the
feature vectors all our assumptions are listed in Table 1.

Theorem 3.1 (Logistic Regression with Dependent Samples). Consider the model of (6). The
Mazimum Pseudo-Likelihood Estimate (MPLE) (Orrpr, BavpL) is consistent with a rate of \/n as
long as (0o, Bo) and the features X satisfy the conditions of Column 2 in Table 1. Formally, for



each constant § > 0 and n sufficiently large

n

|@ripr. Brirn) = 60, 50)||, < Oa ( l)

with probability 1 — . Moreover, we can compute a vector (0, B) with H(éMpL, BMPL) — (6, B)H2 <

Oq4 (\/g) in O(Inn) iterations of projected gradient descent (Algorithm in Section 5) where each
iteration takes at most O(dn) time, with probability 1 — 9.

Remark 3.1 (Necessity of an Upper Bound on ||A| ., and boundedness of fy). If ||All,, scales
with n then no consistent estimator might exist. This is because the peer effects through By A will
dominate the outcome of the samples and will nullify the signal coming from GOT X. Similarly one
requires By to be bounded as well to preserve some signal to enable recovery of 0.

Remark 3.2 (Necessity of the Lower Bound on || Al| ). It was shown in [{] (Corollary 2.4 (b)) and
[23] (Theorem 1.13) that when the condition ||A||% > cn is violated, we have specific examples where
it is impossible to get consistent estimators for (6g, 5o). The first instance is the Curie- Weiss model
CW (n,B,h) (Aij = L for alli # j). Note that |A||% = O(1) in this case. The second instance is
dense random graphs, i.e. G(n,p) where p is a constant independent of n and A is chosen to be

the adjacency matriz scaled down by the average degree of the graph, i.e. A;j = ﬁﬂ(m’)eE-

Remark 3.3. If the parameter [y is known, the condition that HAH% > cn is not necessary for

consistency of the MPL estimate Oripr. For instance, consider the independent case where By = 0.
Then, to recover 6, we do not need || Al|% > en.

Remark 3.4. Our approach achieves a \/n/d rate of consistency if ||x|y x [|0]|, = O(1).

Example Instantiations of Theorem 3.1 Two example settings where the conditions required
for Theorem 3.1 to hold are satisfied are

e A is the adjacency matrix of graphs with bounded degree d scaled down so that ||A|, < 1.

e A is the adjacency matrix of a random d-regular graph.

3.2 Technical Overview

Estimation in Ising models is a well-studied problem which offers a lot of interesting technical chal-
lenges. A first approach one considers is maximum likelihood estimation. However the intractability
of computing the partition function poses a serious obstacle for the MLE. Even if one could ap-
proximate the partition function, proving consistency of the MLE is a hard task. To circumvent
these issues we take a maximum pseudo-likelihood approach. This was proposed by Julian Besag
[3] and analyzed for inference problems on Ising models by Chatterjee [10] and others ([4],[23]).
Given a sample of response variables y let f;(6,3,y) denote the condition likelihood of observing
y; conditioned on everyone else. The pseudo-likelihood estimator of y is

(éMPL, BMPL) = argmaxy g H fi(0,8,y). (7)

i=1



This does away with the problematic partition function and retains concavity in the parameters
0, 3. To show that the MPLE is consistent we need to show that its global optimum (9 MPL, 5 MPL)
is close in ¢y distance to (6g, 59). We achieve this by showing two things hold simultaneously.

e The log pseudo-likelihood is strongly concave everywhere. This will tell us that the gradient
of the log pseudo-likelihood quickly increases as we move away from (0ypr, Barpr) where it
is 0.

e The norm of the gradient of the log pseudo-likelihood is small at when evaluated at (6o, o)
hence implying proximity to the MPL estimates due to strong concavity.

We show that both these conditions are satisfied with high probability over the draw of our samples.
Showing that the norm of the gradient is bounded involves obtaining variance bounds on two
functions of the Ising model (Lemmas 3.2 and 3.3), and showing strong concavity amounts to
showing a linear in n lower bound on a particular quadratic function (see initial steps of proof in
Lemma 3.4). Both these properties are challenging to prove because of the dependences between
samples. To tackle the lack of independence, the proofs require a rich set of technical frameworks.
In particular, to show the variance bounds we use the technique of exchangeable pairs developed
by Chatterjee [8]. The boundedness of || A, is necessary to have these concentration results. To
show strong concavity of the log pseudolikelihood we first prove some properties of the matrix A
together with an additional variance bound again shown via exchangeable pairs. The lower bound
on [|A||p is necessary to achieve strong concavity. Finally, we show in Section 5 that computing
the MPLE can be achieved efficiently using projected gradient descent where after each step we
project back into the space restriced by the conditions of Table 1. We describe each of these steps
formally now.

3.3 Analyzing the Maximum Pseudolikelihood Estimator (MPLE)

We will treat terms not involving n as constants for the purposes of our analysis. We start by
analyzing the maximum pseudo-likelihood estimator. Given the feature vector of the i sample x;,
we denote by z;; the k' element of x;. Let m;(y) := > j=14ijy; and let B =[O, 0]¢ x [-B, B]
(the true parameters lie in the interior of B). The pseudolikelihood for a specific sample y is given
by:
PLO.5) = ﬁ exp (07 xy; + Bmi(y)yi)
1

L G 07+ Bmn(3) + exp (0 — By)) ¥

The normalized log pseudolikelihood for a specific sample y is given by:

LPL(0,B) = 1log PL(6,8) = —In24+ L 3" | [y:B8m;(y) + (0T x;) — Incosh(Bm;(y) + 0 x;)] .
9)

The first order conditions give:

6LPL(91\/égL751\/IPL) -1 Z:L 1 [ylml(y) — ml(y) tanh(BMPLmi(y) + é]—l\}PLXZ)] = 0,

OLPL(0rrpr,B)

X X (10)
90, Ly [?le’z k — T tanh(By prmi(y) + HE\I—/[PLXZ')} =0.



The Hessian H g g) is given by:

OLPLOS) _ 1 S m (y)
0B T n &~i=1 cosh?®(Bm;(y)+0Tx;)’
JLPLO.S) _  1xn ik (Y) (11)
B0y, T n £wi=1 cosh?(Bm;(y)+07 x;)’
82LPL(9,ﬁ) _ 1 Zn Ti T4 &
00,00, - n 1=1 COShQ(ﬁmi (y)+0Txi) ’

Writing the Hessian in a compact way we get

n

1 1 .
Hpg = —— XX,
(6,6) n ZZ:; cosh?(Bm;(y) + 07x;)

where X; = (x;,m;(y))". Thus —H is a positive semidefinite matrix and LPL is concave. Moreover
if (0, 8) € B it follows that

s maire)  (r oim XiX[) = —Hp = (7 i XiXT) . (12)

Remark 3.5. Observe that HXZ||§ = H:EZH; +m2(y) <dO? + 1 (assuming that ||Al| < 1 trivially
holds |m;(x)| < 1). It is easy to see that Amax(—H(gz) < dO? + 1 for all (8,8) € R™™, hence
—LPL is a d®? + 1-smooth function, i.e. —VLPL is d®% + 1-Lipschitz.

3.4 Consistency of the MPLE

Our argument for showing consistency of the MPLE uses Lemma 3.1.

Lemma 3.1. Let (6y, By) be the true parameter. We define (04, 5;) = (1—1t)(0o, ,80)+t(éMPL, BMPL)
and let D € [0,1] be the largest value such that (0p,5p) € B (if it does not intersect the boundary
of B, then D =1). Then,

IVLPL(6y, Bo)ll5 > D(irﬁli)gﬁ Amin (—H(p,5)) H(90 —Onpr, o — BMPL)H2

= (617%1)23 Amin (—Hg,5)) |00 — 0D, 5o — Bp) |l
Proof. We drop the subscript M PL from the estimates for brevity. We set
g(t) := (00 — 0, B0 — B) ' VLPL(6, 3y),
g (t)=—(00— 0,80 — B) H,,)(00— 0,50 — B).
Observe that D = H(Hegizzzgf;g)”)lb. Since H is negative semidefinite we have that ¢'(¢) > 0 (*). It
holds that

|80 = 0.80 = B)||, - IVLPL(0. o)l = (8 — 0. 5o — B) VLPL(6o, o)

/0 1 g’(t)dt‘

ApyamﬁbyG>

= lg(1) —9(0)| =

>
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> D(@%gﬁ Amin (—H(g,5)) H(90 0,50 5)”2

= (Grrﬁli)gﬁ Amin (—H(G,ﬁ)) ||(9D — 0o, Bp — 50)”2 X

X H(90 — 0,80 — B)H2

We apply Lemma 3.1 by showing
1. a concentration result for ||V LPL(6y, 50)||§ around 1/n (Section 3.5)and
2. a (positive constant) lower bound for ming g)ep Amin (—H(g,5)) (Section 3.6).

We combine the above with the observation that D — 1 as n — oo (i.e., D > % for n sufficiently
large). This is true because ||(6p — 6o, Bp — fo)||; — 0 as n — oo (is of order ﬁ by showing the

promised concentration result and the lower bound). Also note that any point on the boundary
of B has a fixed distance to (g, fp) since it lies in the interior. Hence ||(6p — 6o, Bp — Bo)ll; — O
implies that D — 1. This gives the desired rate of consistency which we show in Section 3.7.

3.5 Variance Bounds using Exchangeable Pairs

In this Section we state the lemmata which are required to show that the norm of the gradient of
the log pseudo-likelihood is bounded at the true parameters.

Lemma 3.2 (Variance Bound 1). It holds that

2
Ego,50 (Z yimi(y (y) tanh(Bom;(y) + 6] xi)> < (12 + 4B)n.

Proof. We use the powerful technique of exchangeable pairs as introduced by Chatterjee ([8]) and
employed by Chatterjee and Dembo (see [9]). First it holds that 6m1(y> = A;j. Also note that since
| Al < 1it trivially follows that |m;(y)| <1 for all i and y € {— 1 —|—1}" Set

Q(y) ==Y (yi — tanh(Bomi(y) + 69 x))ms(y), (13)

7
hence we get

IRQy) o BoAij > ‘ o , T 1) 9mi(y)
o, =3 (1 T o 8 ) ) (v b (o) + 650 ) =5

(14)

)

We will bound the absolute value of each summand. First from above we can bound the second
term as follows
om;(y)

‘(yi — tanh(Bym;(y) + HOTXZ-))T%

‘ < 2|A;]. (15)

11



Using the fact that ?shl% < 1 it also follows that

< |m;(y)l +Zﬁo\Az’jmz’(Y)\ (16)

o PoAij |
Z <1Z:J cosh?(Bomi(y) + 98—}(2’)> mi(y) vy

(2

Using (15) and (16) it follows that ‘ag—;}y)‘ < D izi 1Al (2 4 Bolmi(y)]) + [my(y)]- Finally let
yJ = (y_j,—1) and note that

Qy)-Q(y)| <2 (Z Al (2 + Bolmi(y—j, w)l) + mj(Yj,W)) <2() |4y[ (2+B)+1) < 6428,
i#] i#]

(17)
where w is the argmax of |m;(y_;,w)| along the line with endpoints y,y3 (Taylor). In the last
inequality we used that ||Al|,, < 1. We have all the ingredients to complete the proof. We first
observe that

D oo ol(y: — tanh(Bomiy) + 60 xi))Q(y )mi(y)] =0, (18)

SHee EGo,ﬁo [(y, — tanh(ﬁomi(y) + HJXZ))Q(yl)mZ(Y)] =

= Eo,5 [E[(yi — tanh(Bomi(y) + 0 x:))Q(y*)mi(y)|y—i]] = 0.

Therefore it follows

(19)

Eg,,50 [Q2 )] = Eo,,80

Qy) - <Z(yz — tanh(Bom;(y) + 95&'))”%(3’))]

i

= Eg, ,Bo

> (Q(Y)(yi — tanh(Bomi(y) + 0y Xi))mi(Y)>]

i

= 3" Eao [(Q) — QW) - (s — tanh(Bomi(y) + 03 x0))mi(y)]

<) 2-(6+2B) = (12+4B)n.

)

Lemma 3.3 (Variance Bound 2).

k=1 \i=1

d n 2
Eoy. 5 {Z (Z T kYi — Ti ) tanh(Bom;(y) + Hin)) ] < (4+4B)M? - dn.

Proof. We use the powerful technique of exchangeable pairs as employed by Chatterjee and Dembo
(see [9]). Note that since [|A||,, < 1 it trivially follows that |m;(y)| < 1foralliand y € {—1,+1}".
We fix a coordinate k and set

Q(y) =Y _ (i — tanh(Bomi(y) + 0 xi))i &, (20)

i

12



0 Ais .
hence we get %ﬁ') => (17;:]' o Boiii (}f) +90TX1_)> x; ;. We will bound the term as follows

< wjkl + Zﬁo | Aijs g - (21)

‘ 9Q(y) ‘
i

ayj

Finally let yd = (y—j,—1) and note that

Q(y) - Q(y) <2 (%k +> BolAywigl |- (22)
i]

We have all the ingredients to complete the proof. We first observe that

Z Ego,6,((yi — tanh(Bom;(y) + 0 x:))Q(y")zix] = 0, (23)

since .
Eao,6,[(yi — tanh(Bomi(y) + 0] x:))Q(y")wi k] =

= Egy,6,[E[(yi — tanh(Bomi(y) + 0§ x:))Q(y")zsxly—]] = 0.

Therefore it follows

IE590750 [Q2(y)] = IE590750 [Q(y) ’ <Z(y2 - tanh(ﬁomi(y) + Hg)rxi))xi,k>]

= Ego [Z (QW) (i — tanh(Bomi(y) + 65 xmxi,k)]

= > Eao [(Q) — QW) - (s — tanh(Bomi(y) + 09 %))

<D 4 (@l +lzirl Y BolAijznl)
i i
< 42 |23,k |* + Blail max |5kl

(3

and the claim follows by summing over all the coordinates. O

3.6 Strong Concavity of Maximum Pseudolikelihood
In this Section, we set =1 — X (X" X)71xT 4

Lemma 3.4 (Lower Bound on Smallest Eigenvalue of Hessian). With probability 1—o(1), Amin(—H g 5)) >
¢ for some constant ¢ > 0 for all (0,5) € B.

Proof. We have

1yvT 1vT

“X'X =X'm
—-H:=G:= < n n > .

sm' Xl

4] — F is called hat-matrix or projection matrix.

13



Recall our notation that @ = %X TX. By using the properties of Schur complement, we get that

det (G — M) = det (Q — \I) det <%mT (1 Ly Q- It XT> m — /\> . (25)

n

Therefore the minimum eigenvalue of G is at least a positive constant as long as the minimum
eigenvalues of

Q@ and lmT (I — lXQ_IXT> m
n n

are positive constants independent of n. Recall from our assumptions in Table 1, we have that
Amin (@) > c¢1 always where ¢; is a positive constant independent of n. Hence, it remains to show

that ) )
Amin <—mT <1 — —XQ—1XT> m> > ¢y
n n

for a positive constant co with high probability. Recalling that F =T — X (X" X)"'X T our goal is
to show that
|Fml3 > con with probability 1 — o(1).

Note that F' has the property that F2 = F (i.e. is idempotent) and hence all the eigenvalues of F
are 0,1 (since is of rank n — d, it has d eigenvalues zero and n — d eigenvalues one). Moreover, from
the sub-multiplicativity of the spectral norm, it holds that

[EAlly < [[F[ly x [[Ally < 1. (26)

We also have that HFA||% is Q(n). This is because 0;(FA) > 044i(A)op_qg—it1(F) = 044i(A) for
1 <i<n—d (0;(G) denotes the i-th largest eigenvalue of G). Since omax(A4) < 1 it follows that
IPAIE > Al - d.

Below, we provide an important lemma that will be used to show that HFmH% is Q(n) with
high probability.
Lemma 3.5. Let W be an n X n matriz. Fiz a pair of indices i,j. It holds that

o—(B+d-M-6)

Eg 50 [(Wi) [y 3] 2 ——5—— W3,

where W; is the i-th row of W.

2 2
Proof. For any realization of y, consider the two summands (Z# j Wiy + Wij> and (Z# j Wiy — Wij> .

It is clear that if both ), oy Witye, Wi; have same sign then the first term is at least Wé and if they
have opposite sign then the second term is at least WZQJ Additionally, at all times both terms are
non-negative.

Moreover from above we have

Egy,60 [(W)ily—j] = W -min (Pr[y; = +1ly—], Pry; = ~1ly—;])
W2
> % exp | — 290ij + 5o Z Ay
oy

14



W2
> — 5 ! exp(—OMd — B)

where the inequality before the last holds because of (3) and last inequality by assumption. O

To proceed, we define an index selection procedure below which will be useful in the later part
of the proof.

An Index Selection Procedure: Given a matrix W, we define h : [n] — [n] as follows. Consider
the following iterative process. At time t = 0, we start with the n x n matrix, W' = W. At time
step t we choose from W* the row with max1mum ¢y norm (let i; the index of that row, ties broken
arbitrarily) and also let j; = argmax;|W; j (again ties broken arbitrarily). We set h(i;) = j; and
WL is Wt by setting zeros the entries of it" row and column j*. We run the process above for n

steps to define the bijection h. Below we prove the following lemma.

Lemma 3.6. Assume that |[FA| . < c for some positive constant c... We run the process
described above on F'A and get the function h. It holds that

4
2 c'n
Zi: ‘(FA)ih(i)’ > E

Proof. Let A’ be the i-th column of A. It is clear that F - A corresponds to the i-th column of
FA. Since F has eigenvalues 0,1, we get that HFAZH2 HAZH2 HAZH HAZH1 <1 (a) since A is
symmetric and hence ||A||; = ||A]|,, < 1. Above we used the fact that for any n-dimensional vector
u, from Holder’s inequality,

a3 < flull full; -

Also let (FA); be the i-th row of FA. Since ||F A, <1 it holds that ||[(FA)|3 < |FA|, <1
(b).

We run the process described in the previous paragraph on F'A and let W! be the matrix at
time ¢ (with W' = FA). Let iy, ...,i, be the ordering of the indices of the rows the process chose.
It is clear that at every step we remove a column and a row from the matrix, the frobenius norm
is decreased by at most two (using facts (a) and (b)).

Hence by the definition of the process we have that

All% —2(t —1 —2t+2 2t -1
H”ZH; > Al 7 ( ) S c ( )
We set T'= |cn/2] and we get

n—t—1 n n
ZH HRZH ‘s (27)

2(T —1)T T 2
= >l - — 2
2n =¢ n 4 (8)

>l —

Therefore we have that (observe that 1 > |[(FA);|; > HW;Hl for all ¢,j € [n], i.e., the ¢; norm

of each row does not increase during the process and same is true for /)
n
In
=SS S LA MIEINED ol LT (29
i=1

15



2 n
:—<(ZH Hz) <o 3wl &
= Sl > S o)

Finally, it holds that 37| [[(FA)[% > S0, Wi HZO and the claim follows. O
Corollary 3.1.

> Eoy 5 [(Fm)i[y_p)] > Cn,
=1

for some positive constant C.
Proof. Tt holds by Lemmas 3.5 and 3.6 by choosing for each i, index h(3). O

Lemma 3.7 (Bounding the variance). It holds that

Eg, B0

n 2
<Z(Fm ZEeO 8y [(Fm)?ly_ h(z]) } < 48n + 16Bn.

=1 i=1

Proof. For each i, we expand the term Eg, g, [(Fm)ﬂy_h(i)] and we get Eg, g, [(Fm)?|y_h(i)] =

(i FA)iy;)? + (FA, o) + 20 jenge) (FA)ijy;) tanh (Bomne) (v) + 09 Xn)- We set zi(y) =
2(3_,4(FA)ijyj) and we get that the expectation we need to bound is equal to

2
Egy,80 [(Z Zin() (Y)Yn(s) — Zin@) (y) tanh (Bomh(i) (y) + 9()Txh(i))) ] _

First it holds that 8@% =2(FA);; and % = 0. Also if [|[F A, <1 it trivially holds that |z;| < 2.
We set
Q) =Y _(Wng) — tanh(Bomy,i) (y) + 00 Xa)))2inei) (),

hence we get that

9Q(y) BoAn(i);
= 1= — Zih(i (Y) (32)
Dy Z MO=T cos® (Bomgey (v) + 0 xnge) )
0z; Z(Y)
+ <yh(i) — tanh(Bomy ) (y) + 0 Xh(i))) % (33)
J

We will bound the absolute value of each summand. First from above we can bound the second
term as follows

82ih(i) (¥)

RO < al(Fa . (3)

\<yh<i> — tanh (Boming () + 03 X))

16



Using the fact that ?shl% < 1 it also follows that

BoAn(i;
1 =i — Zih(i
Z ( MO cosh® (Bomg (v) + 03 xny) ) )

)

< Z Ln(iy=jl2in) (¥ H‘Z |BoAngiy;zina ()| »
( i#]
(35)
which is at most 2} ; 1p,(5—; + 2B.
Using (34) and (35) it follows that ‘%Zgjy)‘ <A [(FA)iG + 232 1p)=; + 2B. We have

all the ingredients to complete the proof. Let yd = (y—j,—1). We first observe that
Z Eeoﬂo[(yh(i) - tanh(ﬁomh(i) (y) + ngh(i)))Q(yh(i))Zih(i) (y)l =0, (36)

since

Egy, 60 [(Yn i) — tanh(Bompy(y )+9 Xp( )))Q( D)z (¥)] =
= Egy,60 [E[(yn) — tanh(Bomyy(y) + 09 Xnei) ))Q( D) zinoy W)Y —n@i)]] = 0.
Therefore it follows

(37)

IEi‘)o B0 [Q2 (Y)] = ]E90 B0

Qy) - (Z(yh@ — tanh(Bom; (y) + g Xi)) Zin(i) (y))]

i

= EGo,ﬁo

Z (Q(Y)(yh(i) — tanh(Bom(y) + 09 X)) Zin() (}’))]

)

= 3" Eao [(Q) — Q™)) - (ynge) — tanh(Bomn ) (¥) + 03 x000))in(o (3]

= > Ea s [(QW) — QW) - (51 — tanh(Bomi(y) + 67 %))y

h(t)#i
< 48n + 16Bn,

where we also used the fact that > ", Ej(FA)ij <Y FA] L < n. O

<BZ{Z 4)( FAu!+221h(t .+ 2B

Remark 3.6. The proof of Lemma 3.6 depends on the assumption that ||FAl|, < ¢, for some
positive constant ¢l . This assumption is not necessary for the proof to go through and below we
will argue about removing this assumption.

Lemma 3.8. It holds that ), . |Fij| < n(d +1).

Proof. Since F' has rank n — d and has eigenvalues 0,1 it holds that F' = [ — Zf 1V’v’ T with
HviH2 = 1. We choose vector x so that x; = 1 if fuj- > 0 and z; = —1 otherwise. It holds that

(> ]v;])2 = x ' vivi Tx < [|x||3 = n. Thus we get that PP ]v;] - |v¢| < n. Thefore we get that

d
S IF I <n+> n=n(d+1).
i, i=1
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Corollary 3.2. We can drop the assumption |[FA| is O(1).

Proof. From Lemma 3.8 we get that for every e > 0, there exists at most nd/e rows of F'A that
have ¢; norm larger than e (by Markov’s inequality), hence there exist n(1 — d/e€) rows that have ¢;
norm at most €. Moreover, since ||FA||, <1 (26) it holds that each row j of F'A (denote by (F'A);)
has ||(F'A) ng < 1. The trick is to remove from matrix F'A all the rows that have ¢; norm larger
than e and we reduce the Frobenius norm squared of F'A by nd/e. By choosing € to be ”;Zﬁ%, the
resulting matrix (after removing the “overloaded” rows) has still Frobenius norm squared 2(n) and
moreover all the rows have ¢; norm at most e (which is ©(d)). The claim follows since the rows

we are removing cannot increase the expression Y ,(FAy)? (sum of squares). This gives d2\/%

consistency (without the assumption ||F'A||, is O(1)) and when the dot product between 6 and
feature vectors is O(1). O

Finally we are ready to complete the proof by showing that || F mHg > con with probability
> 1 — 0 for some § < 1/3 and a small enough constant cp. From Lemma 3.7 and Markov’s
inequality, we have

[ n n 2
48 +16B
pe | (S0t - Sm [y ) 2ot < S5 g
i=1 i=1
& 48 +16B
2 0.6
— Pr Z;(Fm)z <Cn-—n ] < o3 (39)
= Pr|) (Fm); > Cn/2] >1-o0(1), (40)
Li=1
where in (39) we used that Y ;" | Eg, 3, [(Fm)?|y_h(i)] > Cn (Corollary 3.1).
O
3.7 Completing the Proof
With the above results in hand, we can prove the main result of this Section, Theorem 3.1.
Proof of Theorem 3.1: First it holds that:
Ey, 0l VLPL(80, fo)3] (41)

n

J 2
1
= § Ea,.50 [E § (xzkyz — x; , tanh(Bom; (y) +90TXi)>] (42)

=1 i1

n

2
+ Eay,8, [% Z (yimi(Y) —m;(y) tanh(Bom;(y) + 9()TXi)>] : (43)

i=1
From Lemmas 3.2 and 3.3 we have that

Eao 60|V LPL (60, Bo)||3] <

S0
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for some constant ¢. By Markov’s inequality, we get that

2 - ¢ _
Pr [HVLPL(GO,BO)H2 < né} >1- 6. (45)

for any constant 0. Next, we have from Lemma 3.4 that, min g)cp Amin (—H(gﬁ)) > C for some
constant C' independent of n. Plugging into Lemma 3.1, we get that

IVLPL(0o, o),
2 ™ ming e Amin (—Ho,0))

(6D — 00, 8D — Bo)ll, =D H(éMPL — 00, Brrpr — ﬁo)” (46)

vn
that any point on the boundary of B has a fixed distance to (g, 5y) since it lies in the interior.
Hence ||(6p — 6o, 5p — So)|l, — O implies that D — 1 which in turn implies that D > 1/2 for
sufficiently large n. Hence

Now we have from the above that ||(8p — 6o, Bp — Bo)l|; — 0 as n — oo (is of order \lf) Also note

2| VLPL(8o, Bo)lls
2 min(g’ﬁ)eﬂg )\min (_H(Gﬁ))

< Ou <%> (48)

with probability > 1 — 4. O

(46) = H(éMPL — 0o, BurpL — 50)”

4 Linear Regression with Dependent Observations

In this section we focus on linear regression under weakly dependent errors. As opposed to Logistic
regression, in linear regression the log-likelihood is computationally tractable.

4.1 Owur Model

We recall the model for dependent observations we consider. In our setting, we have that the errors
€; = 1; — Ox; are distributed according to a Gaussian graphical model. Since each ¢; is zero mean,
we have that © = 0 in our case. Also, similar to the logistic regression setting, we will assume that
we have complete knowledge of the graph structure up to a scaling factor. That is, (X)~! = A+ D
where the matrix A is a known symmetric matrix with A;; = 0 and D = [d; ... dn]T is a known
diagonal matrix with positive entries. Hence the probability distribution of the observations is:

exp(—2(@a—0"x)"S"(a—0"x))
Pl“[y = a] = 2 (271‘)”/2 det(2)1/2

(49)

This section is devoted to showing that the Maximum Likelihood Estimator (MLE) under
appropriate (over)re-parametrization - (the new parameter vector will be (0, 3, k) where 6, 3 remain
same after reparametrization and k = 3.0) - is v/n consistent in our linear regression model. We set
B = [-0,0]? x [-B, B] x [-OB,0B]" (the set of which the parameters should be in the interior
and B is defined in Table 1). Formally we prove the following theorem.

Theorem 4.1 (Main Linear). Assume that
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1. Feature matriz X° with covariance matriz Q = %X "X having Amin(Q), Amax(Q) as positive
constants.

2. ||Ally is ©(1), |Al[7 is Q(n) and Amin (AXTAT(I = DX(XTD?X)"' X TD)AX) is O(1).
We show that the Mazimum Log-likelihood Estimate (MLE) (,3,&) is Og <\/g) consistent as

long as the true parameter vector (0o, fo, ko) € B (in the interior of B), i.e., for each 6 > 0 and
(9,3, k) — (0o, Bo, /-io)H2 s Oy <\/g) with probability 1 — . Moreover, we can

n sufficiently large,

compute a vector (0,/3) with H(é,ﬁ) - (é,ﬁ)Hz to be Oy <\/g) in O(Inn) iterations of projected
gradient descent® with probability 1 — o(1).

Corollary 4.1 (Application to Sherrington-Kirkpatrick (SK) model). In the Sherrington-Kirkpatrick
model [37], we have that A;; = f/% for i < j, where g;j ~ N(0,1) and Aj; = A;j, Ayi = 0. From
Lemma 4.6, it follows that A satisfies the assumptions of our main theorem, so we can infer 3,0

(with a \/n rate of consistency).

Technically, we will reparametrize the log-likelihood function in such a way that the new pa-
rameter vector is not high-dimensional and the resulting log-likelihood becomes strongly convex.
The reparametrization and the equations of log-likelihood, its gradient and Hessian can be found in
Section 4.2. We will follow the same high level ideas as in the logistic regression. Under assumptions
on A, B,0,(BA+ D)~!, AX that are summarized in Table 1 we proceed as follows:

e We prove concentration results for the gradient of the reparametrized log-likelihood, see Lem-
mas 4.3,4.1 and 4.2 in Section 4.3.1.

e We prove that the minimum eigenvalue of the negative Hessian of reparametrized log-likelihood
is large enough, see Lemma 4.4 in Section 4.3.2.

Below we provide some important definitions.

4.2 Our Reparametrization and Log-likelihood

It is not hard to see that the negative log-likelihood is not convex with respect to the parameter
vector (6,03) € R¥1 for the linear regression model with dependent errors. Nevertheless, we
can reparametrize the log-likelihood in such a way to make it convex. The classic way to do it
sets T := Y1 v = ¥~y (for a gaussian N(u,Y)). However, this creates a parameter vector
of dimension (n). It is crucial that after the reparametrization the dimensionality of the new
parameter vector is O(d) and not Q(n) (for concentration purposes, see remark 4.1). Hence, we
take a different route here.

We set & := -6 € R? and define our parametric vector to be (6,3, x) € R?¥*1 (parameters
0, 5 remain the same and we introduce vector k). The vector (6,3, ) is (2d 4 1)-dimensional. Our
reparameterization is an overparameterization which helps us achieve convexity of the negative
log-likelihood function.

5x; can be subgaussian.
SEach iteration is polynomial time computable
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The negative log-likelihood is given by the following:

L= %(y — X0)T(8A + D)(y — X6) + log/ exp(—%(z — X0)T(BA+ D)(z— X0))d= (50

n

1
—y' (BA+ D)y —y AXKk —y'DX0 + log/ exp(—izT(ﬁA +D)z+2z ' AXk+2z'DX0)dz

n

(51)
The negative gradient of the log-likelihood is given below:
.z DX A+ D TAX TDX6)d
VLL(8. for) = —y DX + S eXp( 32 (fA+ D)z 2" AXr +2 Jz2 59
Jgnexp(—52T (BA+ D)z + 2T AXk + 2T DX0)dz
= -y DX + EZNN((BA—I—D)*(AX/-:+DX€),(BA+D)*1) [ZT] DX (53)
1 . —3z A —32' (BA+ D)z +2z' AXk+2z' DX0)d
VALL(O,Bor) = Sy Ay 4 re 22 A2ePCge (BAL D)ets AXnte DXOE ),
2 Jenexp(—3z' (BA+ D)z +2z" AXk +2z' DX0)dz
1 1
= inAy — By N((BA+D)~1 (AX k+DX06),(BA+D)~1) [izTAZ] (55)
.2 AX exp(—3z' (BA+ D)z+ 2" AXk+2' DX0)d
GLLL(0, B ) = —yT Ax 4 Jzm? AX o5z (BA+ Diztz AXn+z DXO)dz
Janexp(—32T (BA+ D)z + 2T AXk + 27 DX0)dz
= —y " AX + Ep n(84+D)~ 1 (AXk+DX0),(3A4D) 1) {Z ] AX. (57)
The negative hessian of the log-likelihood is given below (it is of size (2d + 1) x (2d + 1)):
—%ZTAZ —% T Az
— H = —V2LL = OOUZNN((BA—l—D)*l(AX/@+DX9),(6A+D)*1) XTDZ 5 XTDZ .
XT Az XT Az
(58)

4.3 Consistency of Likelihood

Let (6o, Bo, ko) be the true parameter (observe that ko = o - 0p). We define (Ht,ﬂt,ﬁtz - (1—
t)(0o, Bo, ko)+1t(0, 5, k) where (6, 5, &) satisfies the first order conditions for LL (i.e., VLL(0, 3, k) =
0) 7 and set

g(t) == (00—0, Bo—B, ko—&) 'V LL(6y, By, kt), ¢'(t) = —(00—0, Bo—B, ko—#) T H(g, p, ) (00—0, Bo—B, ko—F).

Let D € [0,1] be such that (0p, fp, kp) intersects the boundary of set B (if it does not intersect
the boundary of B then D = 1). Since H is negative semidefinite (from analysis in equation 58) we
have that ¢'(¢t) > 0 (**). It holds that

H(90 — 0,80 — B, ko — /%)H2 - IVLL(8o, Bo, ko) |y > |(80 — 8, Bo — B, ko — &) T VLL(8o, Bo, ko)
= 1g(1) — g(0)|

"Observe that is not necessarily true that & = Bé
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/Olg'(t)dt‘
/OD g’(t)dt‘ by (**)

>D it b (o) (0000 B = ).

>

The aforementioned inequalities indicate that we need a concentration result for H %VLL(HO, Bo, Ko) H2
and a lower bound on the minimum eigenvalue of —%H for consistency of the MLE. As in the lo-
gistic regression case, combining with the observation that D — 18 as n — oo (i.e., D > % for n
sufficiently large) we get the desired rate of consistency.

4.3.1 Concentration results

We have
Eao g0 | IVLL(80, o, fo - 00)I13] = Eao,g |IV0LL (B0, Bo. o - 60)3] +

Eé6o,8, ||V sLL(00, o, Bo - 00)|*] + Egy,5 |:HVHLL(607BO7IBO : 90)”3]
We prove below concentration results for each term separately.

Lemma 4.1 (Bounding the 1st term).
B0t [IVLL (B0, G, mo)|3] = || (oA + D) 2D < (oA + D)2 1 x3.

Proof. Assume that y ~ N(X6p, (BoA + D)™1), it follows that —VyLL(6g, o, ko) = —y ' DX —
Eg,.5, [—yTDX]. It is clear that the vector w = (BpA + D)1/2(y — X6y) ~N(0,1).
It follows that

~y DX —Eg, g, [~y ' DX] = —((BoA + D) *w + X09) " DX + Eg, 5,[((BoA + D)"/*w + X6) " DX]

(60)
= —w' (A + D)"V/?DX. (61)
It holds that
2 T —-1/2 2
Eoy,60 (Vo LL(0o, Bo, ko)l5] = Egy,5, HW (BoA+ D) DXH2
=tr((BoA + D)"Y2DX X T D(ByA + D)~1/?)
2
= H(BOA n D)—1/2DXHF
O

Lemma 4.2 (Bounding the 3rd term). Similarly to Lemma 4.1 we get

Eoo o [IV<LL(60, o, w0) 3] = |80 + D) 2% < [[(80a+ D) 724 X2

8This is true because ||(6p — 6o, Bp — Bo, kD — ko), — 0 as n — oo by showing the promised concentration result
and the lower bound).
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Lemma 4.3 (Bounding the 2nd term). It holds that

EGoﬁo,RoHVBLL(eO? Bo, HO)P] = Vz~/\/(X00,(BgA—i-D)*l) [ZTAZ]

62
< 2([(BoA + D) Y2A(BoA + D)V2|%. + 4402 || (ByA + D)2AX]] (62)

Proof. We follow the calculations of Lemma 2.3. It holds that

i ool | VSLL(D. o, o)) < 20r((A(B0A + D)71)?) + 4402 (oA + D)2 x|
< 2tr((BoA + D) "V2A(BoA + D)2 (BoA + D) V2A(ByA + D)V/?)
+4a0? | (BoA + D)—1/2AXH2

= 2504 + D)2 A(f0A + D)—WH; +4d6? [ (B4 + D)—1/2Axuz

O

Remark 4.1. We note the dependence on the dimension d for the bound in Lemma 4.3. This
indicates how crucial it is that the dimensionality of the parameter vector does not scale with n.

4.3.2 Lower bound on the minimum eigenvalue

In this section we provide a lower bound on the minimum eigenvalue of the negative Hessian of the
log-likelihood. We need this bound for strong concavity of the log-likelihood.

Lemma 4.4 (Bounding the minimum eigenvalue). Let z ~ N'((BA + D)"Y (AXk + DX0),(BA +
D)~Y). There exists a constant C' such that

—%ZTAZ —%ZTAZ
Amin | Cov X" Dz , XDz > % (63)
XT Az XT Az

Proof. We set = (BA + D)™ (AXk + DX0), ¥ = (BA+ D)"! and w = ¥7Y2(z — p) (i.e.,
w ~ N(0,I)) and we consider the vector

—%WTElﬂAEl/zw +w S12Au — E[—%szl/zAElﬂw]
h:= XTDxY2w
XTAYY 2w

Let v := (v1,V2,Vv3) be a column vector where v; € R, vo,v3 € R? so that ||v||, = 1. It follows

that —v' Hv = E[(v'h)?] where —H is the negative hessian computed in (58).
From Lemma 2.3 we get that

E|(v'h)?| =} <%tr ((21/2A21/2)2)> + |ornTASY2 4 v XT DR ngXTAZ‘,l/2Hz .

If a positive constant mass at least \/g is put on v; then the above term is at least 7 HEI/ 2 Ay 12 Hi
which is ©(%). If not then the above term is at least HV;XTDZI/2 + v;XTAZ‘,lpH; —O(n+/e€) with
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[va||34[|vs]|3 > 1—e. We will prove a ©(n) lower bound on the term HV;XTDZI/2 + V;XTA21/2H§ >
v XTD +v] XAl 00in(E).
It suffices to bound the minimum eigenvalue of the following matrix:
Mo 1XTD?Xx 1XTDAX
“\ IxTapx ixTazx
By the Schur complement, we get that det(M — A) = det(2XTD2X — AI)det(2XTA2X —

LXTADX (LXTD2X — AI) "' LXTDAX — AI). Therefore the minimum eigenvalue of M a posi-
tive constant if both matrices below are positive definite

1 1 1 1 -1
“X'D?X and ~XTA%2X - “XTADX (—XTD2X> “X'"DAX.
n n n n n

The first matrix has clearly minimum eigenvalue a positive constant. The second matrix is equal to
%X TA(I - DX(XTD?2X) ' XD)AX which has minimum eigenvalue positive by assumption. [

Remark 4.2 (Smoothness of Hessian). If we want to find an upper bound on the eigenvalues of
the negative Hessian by an easy argument using Lemma 2.3 follows that

/\max(_HG,B,n) (64)
<C {H(/BA + D)_1/2A(/8A + D)_l/QH; + dailax((BA + D)_1/2DX) + dO_IQHaX((BA n D)_l/zAX)}
(65)

for all (0,5,k) € B. From Lemma 4.5 we conclude that there exists a positive constant Cy such
that Amax(—LHg g,) < Chr.

The following lemma indicates that the concentration results and the lower bound on the eigen-
values of the negative Hessian (for this section) are of the desirable order.

Lemma 4.5 (Bounding the norms). The following claims hold:
1. | X||% is ©(n).
2. 1 HXH%, I \min (X T X) are positive constants.
3. ||SV2ASY2|[2, 02, (SY2DX) and 02, (SY2AX) are O(n).

Proof. For claim 1,2, it follows from Lemma 2.1 that %X TX has minimum eigenvalue at least
Amin (@) — 0(1) and maximum eigenvalue at most Amax(Q) with probability 1 — o(1). For claim 3
we have that
2
Hz:WAzl/?HF = |2A|% > 02,,(2) | A% which is ©(n) by assumption on A, 3.
Moreover, o2, (22D X) > omin(2) 02, (D) Amin(X " X) which is ©(n) with high probability (note

min
that omin(X), 02, (D) are positive constants). Similarly the proof goes for o2, (L/2AX). O

min

We are now ready to prove the main theorem:
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Proof of Theorem 4.1. For any § > 0 and using Markov’s inequality it follows from Lemmas 4.1,
4.3, 4.2 and Lemma 4.5 that

P {[VLL(00. fo.Bo - 00)l, > Csv/dn| < 5

for some constant C5 and /\min(V2LL) > % for some constant C. We conclude from the analysis

in Section 4.3 that H(Go, Bo) — 0, BH is O <d\/g> with probability at least 1 — 4. O

We conclude by showing that the S-K model satisfies the assumptions we have made and hence
Theorem 4.1 can be applied to it.

Lemma 4.6 ((SK) model satisfies the assumptions). Let A be a n X n matriz such that A;; = %

for i < j, where gij ~ N(0,1) and Aj; = Aij, Ais = 0. Matriz A satisfies the assumptions of our
main Theorem 4.1.

Proof. We assume for simplicity of the calculations that D = ¢l for some positive constant c.

Set F'=1— X(X"X)71XT (F is called a hat/projection matrix, it has the property that d
eigenvalues are zero and the rest are one since F? = F). Let B be a matrix with i.i.d entries
N(0,1). It is clear that the matrix W = ﬁB satisfies the following:

is lower bounded by the sum of % iid x? variables with mean %

W4+Ww T 2
V2

hence

° and

W4+wT
V2

2

H W%‘;VT - < 2||W||% and is clear that |||/ is concentrated around n (n? i.i.d variables with
2

2
HF is lower bounded from ©(n) with high probability 1 — o(1). Moreover,

2
mean 1/n). Thus ‘ W‘\%VT HF is concentrated around ©(n). Same is true for HF(W%;VT)

F

Wi ||W1l, are with high probability ©(1) (it follows from semicircle law, see [40]).

V2 |y’
. FW+wT
Moreover, the same is true for H %‘

9 ) ||FW||2

Note that the reason behind the fact that multiplying by F' does not change the claims above is
because 0j(FW) > 0y—q—j41(F)oq4;(W) = 044;(W) where o; denotes the j-th largest eigenvalue
of the corresponding matrix and n > d.

We first show that FFIW X has singular values the eigenvalues @ plus o(1) with high probability.
First let F = RTI;R where R is a rotation matrix and I; is the identity matrix by setting the
last d rows to all zeros. It is clear that RW is also a matrix with i.i.d gaussians of mean zero and
variance 1/n each. Condition on X (in case X ' X = @ then the analysis is simplified), it follows
that the rows of I;W X are independent (except of the last d rows that are all zeros) and each row
follows a gaussian N (O, %X TX). Hence using Theorem 2.1 it follows that

. In(n —d)
is O —
9 < n—d )

1dXTWTF2WX— 1 dXTX

n— n —
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with probability 1 — o(1). Finally since again by Theorem 2.1 we get that H%X X — QH2 is
(@) <\ / lnT”> with probability 1—o(1), using triangle inequality we conclude that H %X "TWIFPWX — QH2

is O (\/ > The claim follows by Weyl’s inequality (Lemma 2.1).

Moreover, we prove that & |F(W + VVT)XH2 is (1) with probability 1 — o(1). Let us assume
without loss of generality that ﬁ | X1, <
It holds that

—L__ (by appropriately rescaling X with a constant).
2| FWl;

A <1XT(WT +W)E(W + WT)X>

mm (
mm <
mlH <

TWTEW + WEFW X ) + Auin < XT(WFW + WTFWT)X>

1
n

S| 3

Lemma 2.2

SRS

XTWTFW + WFWT)X> — ‘Amm (%XT(WFW + WTFWT)X> '

XTWTEFW +WEW )X | — 20min ( XTWFWX>

It is clear from the analysis above that the first term is with probability 1 — o(1) within error

O <\ / lnT”> from 2\ pin (@) (a). We analyze the other term and we get using Lemma 2.2

1 1 1
20 min <—XTWFWX> < 2,/Amin(_XTX) H_X
n

S 2()\min(

w754,
< Amin(Q) +o(1)  (b).

Finally by combining (a), (b) it holds that
Amin ( XTWT +W)F(W + WT)X> > Amin(Q) — o(1),

A - 1 ||FOW4+wT) 2, .
which is a positive constant. Hence we conclude that TX , e positive constant.

We define the matrix A to be A; = 0 (zeros in the diagonal) and A;; = % fori#j (A
is symmetric). It is clear that A captures the SK model. Moreover, it is easy to show that all the

diagonal entries of W+2VT are smaller than O(—VIO\/%") with probability 1 — o(1), hence it follows

that HA 2l H2 is o(1) with high probability.
Therefore owmin(2 X TATFAX), || Al|, are positive constants and |A||% is ©(n), all the statements

with probability 1 —o(1) and the assumptions on matrix A are satisfied for linear regression model.
O
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5 Projected Gradient Descent Analysis

In this Section, we will present the projected gradient descent algorithms we use for our logistic
and linear regression settings. We will use the following well known property of Projected Gradient
Descent (Theorem 3.10 from [6]).

Theorem 5.1. Let f be a-strongly convex and \-smooth on compact set X. Then projected gradient
descent with stepsize n = % satisfies fort > 0

_at
Ixess = x5 < e [l — x5 (66)
R
Therefore, setting R = ||x; — x*||y and by choosing t = 2/\1% it is guaranteed that ||x¢41 — x*||y <
€.
5.0.1 Projected Gradient Descent for Logistic Regression

We consider the function LPL(6, 3) (log-pseudolikelihood as defined in Section 3) and we would like

. . . 1 . . . . _ 1
to approximate (0, ) within 5 in {5 distance. The stepsize in Theorem 5.1 should be n = T
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=

N

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

by Remark 3.5.

ALGORITHM 1: Projected Gradient Descent (Logistic)

Data: Vector sample y, Magnetizations m;(y) = > j A;jy;, Feature vectors x;
Result: Maximum Pseudolikelihood Estimate

0 =0,0" = 0,normgrad = +oo, n =
t=0;

while normgrad > == do

v
grady = 0;
gradg =

for k=1;k<d;k++ do

grady = grad, + gradgk;
end

normgrad = grad?g + grady;
pitt = Bt —ngradg % update 3*;
for k= 1;k < d;k ++ do

end
t=t+1;
% £5 projection
if Bt < —B then
| gl =-B;
end
if gt > B then
| Bt =B;
end
for k=1;k<d;k++ do
if 07! < —© then
| elt;rl = _0O:
end
if 6;"! > © then
| B e
end

end

end
return (9%, 8%)

| 6,7 =06) — ngrady_% update 6};

1 .
VdOez2+1’

=L [yimi(y) — mi(y) tanh(8'm;(y) + 6" Tx;)];

grady, = —% Sy [yiiﬂi,k — xi 1, tanh(B8'm;(y) + 0" TXi)];

5.0.2 Projected Gradient Descent for Linear Regression

We consider the functiAonALL(H, B, k) (log-pseudolikelihood as defined in Section 4.2) and we would

like to approximate (6,3, k) within

1

Jn

in ¢9 distance.
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17 =1/Cy where Cp is the constant from Remark 4.2.

ALGORITHM 2: Projected Gradient Descent (Linear)
Data: Vector sample y, Matrices A,D, Feature matrix X
Result: Maximum Likelihood Estimate

0 =0,60°=0,x° = 0,normgrad = +o0;

=

2 t=0;
s while normgrad > % do
4 grady = 0;
5 grad,, = 0;
6 grady = 3y T Ay—3tr(A(B' A+ D)) —3(AXK'+DX0") T (' A+ D) 1) A((B'A+D) 1) (AXK'+DX0");
7 for k=1;k<d;k++ do
8 gradgk = — Z?:l yiDiixip + Z?Zl((ﬁtA + D)_I(AXKt + DX@t))iDiixik;
9 grady = grad, + gradgk;
10 grad,, = — >0, >0 Avjyirge + 200 0oy Aya(B°A+ D)~ AX K + DX6Y));;
11 grad,, = grad,, + gradik;
12 end
13 normgrad = \/ grad% + grad, + grad,;
14 pitt = gt —ngradg % update 3*;
15 for k=1;k<d;k++ do
16 0, = 0}, — ngrady, % update 0};
17 kit = Kl —ngrad, % update ki;
18 end
19 t=t+1;
20 % €5 projection
21 if B'*! < —B then
22 | Bt = —B;
23 end
24 if 71 > B then
25 | Bt = B;
26 end
27 for k=1;k<d;k++ do
28 if 0! < —© then
29 | 9?1 = —06;
30 end
31 if 6;"' > © then
32 | 9?—1 =0;
33 end
34 if KZJFI < —B.O then
35 | Ii?_l = —B.0O;
36 end
37 if fiffl > B.O© then
38 | Ii;:rl = B.O;
39 end
40 end

41 end
a2 return (6%, B%)
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