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Abstract

We analyze linear independence of rank one tensors produced by tensor powers of
randomly perturbed vectors. This enables efficient decomposition of sums of high-
order tensors. Our analysis builds upon Bhaskara et al. [3] but allows for a wider
range of perturbation models, including discrete ones. We give an application to
recovering assemblies of neurons.

Assemblies are large sets of neurons representing specific memories or concepts.
The size of the intersection of two assemblies has been shown in experiments
to represent the extent to which these memories co-occur or these concepts are
related; the phenomenon is called association of assemblies. This suggests that
an animal’s memory is a complex web of associations, and poses the problem of
recovering this representation from cognitive data. Motivated by this problem, we
study the following more general question: Can we reconstruct the Venn diagram
of a family of sets, given the sizes of their /-wise intersections? We show that as
long as the family of sets is randomly perturbed, it is enough for the number of
measurements to be polynomially larger than the number of nonempty regions of
the Venn diagram to fully reconstruct the diagram.

1 Introduction

Tensor decomposition is one of the key algorithmic tools for learning many latent variable models
[1, 5, 14, 19]. In practice, tensor decomposition methods based on gradient descent and power
method have been observed to work well [9, 16]. Theoretically, determining the minimum number
of rank one components in the tensor decomposition is known to be NP-hard in the worst case
[11, 12], so usually tensor decomposition is analyzed in the average case. Several algorithms have
been analyzed in the average case, where the input tensor is produced according to some probabilistic
model, for example see Bhaskara et al. [3], De Lathauwer et al. [7], Goyal et al. [10] as well as sum-
of-squares-based algorithms like Barak et al. [2], Ge and Ma [8], Hopkins et al. [13], Ma et al. [18].

The average case models studied in the literature generally fall into two categories. They either
assume components of the tensor are fully random, i.e., generated from a known distribution (e.g.,
Gaussian), or they follow a smoothed analysis setting where some adversarially chosen instance is
perturbed by random noise, see for example Bhaskara et al. [3], Goyal et al. [10], Ma et al. [18]. Our
work falls into the second category.
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We build upon the framework used in Bhaskara et al. [3] which reduces decomposing sums of rank
one tensors to showing robust linear independence of related rank one tensors, by using Jennrich’s
algorithm, also known as Chang’s lemma [5, 17]. The main departing point of our work is our
smoothed analysis of linear independence, which we base on a new notion we call echelon trees, a
generalization of Gaussian elimination and echelon form to high-order tensors, which might be of
independent interest. We also get improved guarantees compared to Bhaskara et al. [3] when the
tensors are of high enough order.

The main feature of our analysis is that it can handle discrete perturbations. To illustrate, suppose
that vectors X, ..., X,, € R" are drawn from some unknown distribution and our goal is to re-

cover them by (noisily) observing » . X i®é for small values of /. Bhaskara et al. [3] showed that up
to constant factor blow-ups in ¢ an efficient algorithm can do this as long as X Z@E are linearly inde-

pendent in a robust sense. Note that the set of vector tuples (X7, ..., X,,) for which X {W, el X,j‘?/
are linearly dependent can be defined by polynomial equations, using determinants, and is therefore
an algebraic variety. As long as m < n’, this variety will have dimension smaller than the whole
space, so we expect most vector tuples to fall outside. Bhaskara et al. [3] showed that starting from
an arbitrary set of vectors X7, ..., X,,, by adding Gaussian noise, the new tuple will lie far away
from this variety. Our analysis on the other hand, handles a much wider class of perturbations. For
example, if each X is independently chosen at random from a “large enough” discrete set such as
the vertices of an arbitrary hypercube, we show that with very high probability the resulting tensors
are linearly independent, again in a robust sense.

For our main application, described in the next section, it is important to assume components of the
tensor come from a discrete set.

1.1 Assemblies of neurons and recovering sparse Venn diagrams

Experiments by neuroscientists over the past three decades [21] have identified neurons which are
selectively activated when a real-world object' is seen (or more generally sensed). It is now widely
accepted [4] that these neurons are part of large cell assemblies, stable sets of highly interconnected
neurons whose firing (more or less simultaneous and in unison) is tantamount to a cognitive event
such as the sensing or imagining of a person, or of a word or concept (hence the other common name
“concept cells”).

In a recent experiment [15], a neuron firing when one real-world entity is seen (say, the Eiffel tower)
but not another (e.g., Barak Obama) may start firing on presentation of an image of Obama after a
visual experience associating the two — for example, a picture of Obama in front of the Eiffel tower.
This experiment has taught us that assemblies seem to be “mobile” and able to intersect in complex
ways reflecting perceived varying degrees of associations between the corresponding entities. The
stronger the association between the entities, the larger the intersection will be of the corresponding
assemblies. During one’s life, presumably a complex mesh of entities and associations will be
created, of some degree of permanence, reflecting the sum total of one’s cognitive experiences.

All said, this complex mesh of memories in somebody’s brain can be modeled as a Venn diagram
where each set or assembly consists of neurons firing for a particular concept, and each region of
the Venn diagram, a minimal set obtained from an intersection of assemblies and their complements,
represents a class of neurons behaving the same way towards all concepts.

Alternatively to the Venn diagram, one may record associations between assemblies in a hypergraph.
The entities are the sets or nodes, and the edges reflect associations between the nodes. Furthermore,
the hypergraph representing a person’s state of knowledge can be adorned with edge weights reflect-
ing the degree of affinity between a set of nodes (or equivalently, the size of the intersection of their
corresponding sets).

This gives rise to several natural questions. The first question concerns reconstruction. How many
experiments or observations are needed to identify the structure of cell assembly intersections, or in
other words the Venn diagram? Here, we make two crucial assumptions. First, we assume that we
can only measure the degree of association between a small number of entities or concepts. Second,
the total number of classes of neurons (which behave similarly in response to stimuli) is bounded.
In the language of sets, we assume the number of non-empty regions of the Venn diagram is upper

'Or person, these are commonly known as “Jennifer Aniston neurons”.



bounded by some number m and we can measure the sizes of k-wise intersections of any & of our n
sets for 1 < k < ¢ for some small £. We also allow for measurement errors.

Our main result here is as follows: As long as the cell assemblies are slightly randomly perturbed,
and as long as the number of measurements, (711) + (Z) + 4+ (’Z), is polynomially larger than the
number of nonempty regions of the Venn diagram, m, we can fully reconstruct the Venn diagram.
The perturbation of cell assemblies, a process which likely occurs naturally in the brain, is a mild
assumption that we need in order to escape idiosyncratic cases. We solve the problem of reconstruct-
ing the Venn diagram by casting it as a tensor decomposition problem where the elements of the

decomposition come from high order tensors of the vertices of the hypercube.

We also explore a simpler graph-theoretic model of assembly association, motivated by more recent
experimental findings [6, 15]: Assume that all assemblies have the same size K, and that two assem-
blies are associated if their intersection is of size at least b, and are not associated if the intersection
is less than another threshold a < b; the results of De Falco et al. [6], Ison et al. [15] suggest that a
is 4% of K, while b is 8% of K. We show that an unreasonably rich and complex family of graphs
can be realized by associations (roughly, any graph of degree O(K/a)).

1.2 Problem formulation

Suppose that we have a Venn diagram formed by some n sets S, . .., S,. We will assume that this
Venn diagram has at most m nonempty regions. For our main application, each set S; corresponds
to neurons that respond to a particular stimuli, so we are assuming that there are at most m classes
of neurons. We let I/ denote the set of neuron classes. We also have a weight functionw : i/ — R

representing the sizes of various classes. Each set S; C U is an assembly and w(S;) = 3, c5, w(u)
is its weight. Our main question is the following:

Question 1. Given the sizes of {-wise intersections of S1, . . . , Sy, for some constant ¢, i.e., w(S;, N
-NS;,) foralliy, ... iy € [n], can we recover the full Venn diagram of S1, . . ., Sy, i.e., the weight
of all intersections formed by these sets and their complements?

Our main result is that as long as the set memberships of elements are slightly perturbed to avoid
worst case scenarios, and as long as n’ is polynomially larger than m = |U|, the answer is yes
and moreover there is an efficient algorithm that performs recovery. Our algorithm is also robust to
inverse polynomial noise in the input.

We pose the question as a tensor decomposition problem in the following way: To each element
u € U assign a vector x(u) € {0,1}", where x(u); indicates whether u € S;. Then the entries of
the following tensor capture all /-wise intersections:

T:Zw(u)x(u)®-~-®x(u).

ueUu

£ times

For simplicity of exposition, we assume weights are all equal to 1, but our results easily generalize,
since each weight w(u) can be absorbed into  (u)®*.

2 Notations and preliminaries
We denote the set {1, ...,n} by [n]. For a matrix A, we denote the minimum and maximum singular
values of A by omin(A) and o1max(A). We use (-, -} to denote the standard inner product.

We denote the tensor product of two vectors Y € R™ and x' € R™ by x ® x’ which belongs to
R"™ ® R™ ~ R™*™_ We use the notation Y& to denote

X®- - x.
——

£ times

By abuse of notation we identify tensors 7' € R™ ® --- ® R™¢ with multilinear maps from R"* x
- x R™ to R. In other words we let T'(v1, ..., ve) denote (T, 11 ® --- ® vg). We also use the
notation T'(-, ve, . . ., v¢) to denote the multilinear map from R"* to R given by:

T(-,v2,...,v0)(v1) = T(v1,...,00).



In general we can use - in place of any of the arguments of 7. So for example T'(-, -, vs, ..., vs) is
interpreted as living in R™* @ R™2. With a slight abuse of notation we let some of the inputs of 7" be

merged together by tensor operations. In other words we let T'(v1 ® ve,vs, ..., v¢) be the same as
T(v1,...,00).

We use ey, . . ., e, to denote the standard basis of R™. For a tuple of coordinates I = (i1, ...,is) we
let ey denote e;, ® - - - ® e;,. With this notation, the entry corresponding to coordinate (iy, ..., i)
of a tensor T" can be written as T'(ey) = T'(ei,, - - -, €i,)-

3 Tensor decomposition

Suppose that we have a finite universe I/ of elements with a vector x(u) € R™ assigned to each
u € U. Our goal is to recover y(u)’s by observing >~ x(u)®‘. A necessary condition is for
x(u)®s to be linearly independent, otherwise it is an easy exercise to show that there is another
decomposition Y, (¢, x(u))®* for some positive weights {c, },;, notall equal to 1. The framework
introduced by Bhaskara et al. [3] shows that linear independence is not just necessary, but up to a
constant factor blow-up in /, it is sufficient. A more detailed account is given in supplementary
materials.

We also use another trick from this framework which allows us to replace symmetric tensors  (u)®*
with asymmetric ones. If we divide the coordinates [n] into ¢ roughly-equal sized parts I, ..., Iy
and define y (1) to be the projection of y(u) onto the i-th part, then x (u)M) @ - - - @ x(u)* is a sub-
tensor of x(u)®*. So linear independence of these tensors proves linear independence of x (u)®*’s.
The advantage of this trick is that when we introduce perturbations to x(u)™®, ..., x(u)®, we do
not have to worry about consistently perturbing the same coordinates and we can potentially use
independent randomness. For simplicity of notation, from here on, we use n (as opposed to n/¢) to
denote the dimension of each x(u)(”). So now we can work with the following tensor:

T = Z (@)D @ - @ x(u)©.
ucl
Our main result is that the components of this sum are robustly linearly independent, assuming the
components x(u)(*) are randomly perturbed. We remark that this implies robust linear independence
of {x(u)®*},cy as well, so we can recover them from the sum Y-, ,, x(u)®*.

We first define our model of perturbations:

Definition 2. Assume that a vector X € R? is drawn according to some distribution D. We call
D a (4, p)-nondeterministic distribution if for every coordinate ¢ € [d] and any interval of the form
(t — 0,t + J) we have

PX; € (t—6,t+0) | X_;] <p,

where X _; represents the projection of X onto the coordinates [d] — {i}.

For a set of random vectors {X;}, we call their joint distribution (4, p)-nondeterministic iff their
concatenation is (0, p)-nondeterministic. In our setting, we will assume that for each u € U, the
vectors y(u)™), ..., x(u)® are chosen from a (4, p)-nondeterministic distribution.

Two examples of (4, p)-nondeterministic perturbations can be obtained as follows:
Example 3. Suppose that each x (u)(?) is chosen adversarially from {0, 1}", but then each bit is inde-
pendently flipped with some probability . This distribution is (%, max(q, 1 — ¢))-nondeterministic.

Example 4. Suppose that each x(u)(i) is chosen adversarially from R", but a standard Gaus-
sian noise of total variance p2 is added to each one. Then for any § > 0, this distribution is
(6, erf(y/nd/p))-nondeterministic.

Gaussian perturbations are the model used in Bhaskara et al. [3]. Our main result is the following:

Theorem 5. Assume that for each w € U, the concatenation of the n-dimensional vectors
{X(U)(i)}ie[a is drawn from a distribution D that is (3, p)-nondeterministic. Let A be the matrix
whose columns are given by flattened a(u) = x(u)V @ --- @ x(u)* for various u. Then, assuming
lU| < (cn)t, we have

Plomin(A) < (5/n)¢] < n2pi=on,



This theorem shows how the (4, p)-nondeterministic property ensures robust linear independence.
To prove it, we use a strategy similar to Bhaskara et al. [3], by proving a bound on the leave-one-out
distance. The leave-one-out distance is closely related to omin(A), and only differs from it by a

factor of at most +/[U| < n*/? [3]. It is enough to prove that for any fixed
dist (a(u),span{a(u')}u,eu_ {u}) > (5/vn)

with probability at least 1 — n‘p{(!=". Here dist measures the distance of a vector to the closet
point in a linear subspace. A union bound implies the leave-one-out distance for all w is large.
As in Bhaskara et al. [3], we simplify the analysis by treating span{a(u’)}u,eu_{u} as a generic

linear subspace V' C (R™)®*, and only using the fact that dim(V) < (cn)‘. Noting that n >
1+n+n?4--- 4+ n’1 itis enough to prove the following

Lemma 6. Assume that vectors X(l), . ,X(Z) are drawn according to a (0, p)-nondeterministic
distribution. Further assume that V C (R™)®* is a subspace of dimension at most (cn)*. Then

]P[dist (x(l) ® - ®x“>,v) < (5/\/5)"} <A +n+n’4.-nthpl-an

In the rest of this section we prove lemma 6.

LetW = V+ C (R”)W be the linear subspace of all tensors that vanish on V, or in other words
have zero dot product with every member of V. Then dim(W) > (1 — c/)n’. We will show that
with high probability there is an element 7 € W such that ||T'|| < n%/? and

<T=X(1) R ® X(€)> — T(X(l), - '7X(é)) > ot
This implies that

55

dist (X(l) R ® X(Z), V) >
I

=n""25" = (§/vn)",

and the proof would be complete.

We find it instructive to first prove this fact for £ = 1 and then for general ¢.

3.1 Thecase/ =1

Proof of lemma 6 for £ = 1. We will generate a sequence T4,...,Tgimmw) € W, such that
IT3]| ., <1 for all i. This ensures that ||T;|| < \/n. We will then show that

P[3i : |T,(x)| > 6] > 1 —plt=om. (1

We will first pick 773 to be any nonzero element of W. By rescaling, we can assume that |77 =1
and that T3 (e;) = 1 for some j. Let us call j the pivot point of 7. By rearranging the coordinates
we can assume without loss of generality that j = 1. In other words T’ (e;) = 1 and || T3 || = 1.

In order to pick T%, consider the subspace {I' € W | T'(e1) = 0}. This subspace has dimension at
least dim (W) — 1, and we can pick 75 to be any nonzero element of it. As before, we can without
loss of generality and by scaling assume that T5(e2) = 1 and || 75|, = 1.

When picking T;, we pick any nonzero element of {T' € W | T'(e;) = 0 Vj < i} and by rescaling
and rearranging the coordinates assume that Tj(e;) = 1 and ||T;|| ., = 1. Thus we make sure that
the pivot point of 7} is i. A keen observer would notice that 77, .. ., Ti3im(w) can also be obtained
by a modified Gaussian elimination procedure run on some basis of the space W.

Now that we have fixed 71, . . ., Tqim(w) it remains to prove eq. (1).

To do this, let us fix the coordinates of the random vector x = x(*) one-by-one, starting from x,, and
going backwards to x1. Once we have fixed Xqim(w)+1 - - - » Xn WE can argue about the probability
of the event | Tgim ) (X)| < d. Since Tgim(w)(e;) = 0 for i < dim(W'), we have

Taimw) (X) = Xdim(w) + Taimw) (€dim(w)+1) Xdim(w)+1 + * + Taimw) (€n) Xn-



But t := Tyimw) (€dim(w)+1) Xdim(w)+1 + - - + Taim(w) (en)Xn is a constant once we have fixed
Xdim(W)+15 - - - Xn+ S0 [Taimw) (X)| < 0 if and only if Xgimw) € (—t — J,—t + J). Because x
is distributed according to a (4, p)-nondeterministic distribution, this event happens with probability
at most p. In other words
Pl Taimw) (X)| < 9] < p.

If this event does not occur, we are already done. Otherwise we can condition on Xqim(w); - - - » Xns
and look at the event |Tdim(W)—1(X>| < 4. Once we condition on Xgim(w). this event becomes
independent of the previous event and we can again upperbound its probability by p. So we have

Pl Taimw)—100! < 6 | [Taim) ()| < 6] < p
which implies
Pl Taim(w) 1001 < 0 A [Taimew) ()] < 6] < p*.
By continuing this, in the end we get

PIAS YT (x)] < 8] < ptimW) < pi=omn

which is the complement of eq. (1). o

3.2 The general case

Here we describe a structure that we name echelon tree. This definition is motivated by the Gaussian
elimination procedure for matrices that produces an echelon form. Our definition can be seen as a
generalization of this form for tensor spaces.

We first describe an index tree for R™ > *™¢: Consider an abstract rooted tree 7 of height ¢ where
the nodes at level k are labeled by different partial indices from [n41] X [n2] X - - - X [ng]; the root has
the empty label and resides at level 0, and all leaves reside at level £. We require the indices to be
consistent with the tree structure, i.e., all children (and by extension descendants) of a node labeled
I = (i1, ...,%) must contain I as the prefix of their label. We further assume that 7 is ordered, i.e.,
each node of 7 has an ordering over its children. This enables us to talk about post-order traversal
of the tree, a linear ordering of the nodes of the tree, which we denote by the binary relation <. For
two nodes labeled I and J, we let I < J exactly when (i) I is a descendant of J or (ii) there are
ancestors I’, J' of I, J with a common parent who places I’ before J’ (according to the ordering
induced by the parent on its children).

Definition 7. An index tree for R™* %™ is a height £ tree T of partial indices together with a
post-traversal ordering < on its nodes as described above.

We emphasize that nodes of an index tree have different labels, so we consider the partial indices the
same as the nodes. For example, an index tree of height 1 is identical to an ordered list i(*), ... i(*)
of elements in [n;], with no repetitions allowed. Next we define an echelon tree.

Definition 8. An echelon tree is an index tree where each leaf I is additionally labeled by an element
Ty € R™1* " We require that T (er) # 0 and that for every node J that appears before 7 in the
post-order traversal, i.e., J < I, the following identity to hold:

TI(eJa'a"'a'):O'

Note that the identity in the above definition is requiring an entire sub-array of 17 to be zero. For
example a height 1 echelon tree is a list of unique indices i(V), . .., (%) of [n1] together with vectors
T ..., T6) € R™ such that TU) has zeros in the i(Y), ..., iU~ entries and has a nonzero i7)-
th entry. Notice the similarity to the echelon form obtained by Gaussian elimination in a matrix. In
particular, for a height 1 echelon tree, the vectors (1), ..., T(*) must be linearly independent.

We say that 7 is an echelon tree for the linear subspace W C R™ * %"« if for all leaves I, we
have T7 € W. Notice that we can collapse or flatten consecutive levels of an echelon tree, and the
result would remain an echelon tree. In this operation, nodes of a particular level ¢ are removed,
and each orphaned node of level 7 4 1 is assigned to its grandparent (of level 7+ — 1). We then treat
the indices as coming from [n1] X -+ X [n;n;41] X -+ X [ng], i.e., we merge the 4,7 + 1-st level
indices. This also corresponds to partially flattening tensors 77 and considering them as elements of
R7axeexnanigiX-ne Tt s easy to check that these operations preserve the properties in definition 8:



Fact 9. Collapsing an echelon tree at level © produces an echelon tree.

The main question we would like to address here is how large of an echelon tree can be constructed
for a subspace W. For example, for R™ *"*"¢ one can get a full tree, where nodes at level 7 — 1
have branching factor n;, by simply placing the standard basis for R™* "¢ at the leaves. We
measure the size of a tree by its fractional branching factor.

Definition 10. An echelon tree 7 has fractional branching (av, ..., a) € [0,1] if each node T
at level ¢ — 1 has at least a;n; children. For a single number o € [0, 1], we say T has fractional
branching « when it has fractional branching (o, v, . . . , ).

Note that fractional branching o implies that the tree has at least a‘n; ...n, leaves. On the other
hand, repeated applications of fact 9 on the echelon tree would produce a height 1 echelon tree,
and we have already observed that the vectors assigned to the leaves in such a tree must be linearly
independent. So this implies that dim(W) > an; . ..n,. There is a partial inverse to this statement:
If W C R™ %™ hags dimension (1 — cz) -nq ...ny, then there is an echelon tree with fractional
branching 1 — ¢ for W. However, this fact is not “robust”, since the elements of W assigned to the
leaves can have arbitrarily small or large entries. Instead we prove the following:

Theorem 11. IfW C R™* X"t has dimension (1—ct)-ny ... ny, then there is an echelon tree with
fractional branching 1 — c for W such that for every leaf I we have ||T;||,, =1 and |Tr(er)| = 1.

Let us see first see why theorem 11 is enough to prove lemma 6.

Proof of lemma 6 for general {. Note that ||Ty||., = 1 implies that ||T7|| < n*/2. So it suffices to
show that 77 (x ™V, ..., x®)) > & for some I with high probability.

Let us say that an echelon tree is z-large when |Ty(ey)| > z for all leaves . Theorem 11 guarantees
that the echelon tree produced by it is 1-large.

Our strategy is to fix x(©, =1, ... ¥V in that order, and simultaneously reduce the height of our

echelon tree by 1 each time. When we fix x(*), we can get a smaller echelon tree in the following
way: For each leaf I in the echelon tree, consider the reduced tensor Ty (-, ..., x(*)) € R > xne-1
as a candidate tensor for the parent of I. Now let J be a node of level £ — 1. Its children have
produced candidate tensors for J. Pick the candidate T' with the highest |T'(e )| to be T';. In this
way we have removed the lowest level of the tree and have assigned appropriate tensors to the new
leaves.

Our goal is to prove that if we start with an x-large echelon tree, then with high probability the next
echelon tree is dx-large. Inductively this would prove that with high probability over the choice
of W, ..., x, we have TI(X(l), e ’X(z)) > §° for some leaf I of the original echelon tree,
completing the proof.

For a fixed node .J of level £ — 1, we want to show that the quantity T (e, x(¥)) is at least 6z in
magnitude for some child I of J. But this is very similar to the / = 1 case of lemma 6, which we
have already proved. The difference is that the pivots are not necessarily equal to 1, but are at least
x in magnitude. This implies that

P[VI child of J : [Ty (es, x“)| < 6] < pt=o".

The number of nodes at level £ — 1 is at most n‘~1, so by a union bound, we get that with probability
at least 1 — n’~1p(1=9)"  the tree produced at the next level is dz-large (the union bound is over
fewer than n‘~! events, each corresponding to one .J). Induction completes the proof. O

Now we give a proof of theorem 11. We use induction to prove a stronger version. Theorem 11 will
be a corollary of the following by settinga; =--- =ap =1 —c.

Theorem 12. If W C R™ %™ g q subspace, and a1, . . . ,«p € [0, 1] are such that
I-—a)(1—a2) (1 —ay) >1—dim(W)/(ny---ng),

then there is an echelon tree for W with fractional branching (o, . . ., o) such that for each leaf T
we have ||T1|| . = 1 and |T1(er)| = 1.



Proof. We use induction on £. For the base case of £ = 1, we have a1 > dim(W)/ny and we want
an echelon tree with branching factor ayny < dim(W). We have already proved this case.

Now assume we have proved the statement for £ — 1 and want to prove it for £. Consider partially
flattening the tensor space by merging the first two dimensions, i.e., considering W as a subspace
of Rmn2xnsxXne Jetys fix § € [0, 1] such that the premise of the induction hypothesis holds
and we can get an echelon tree of height £ — 1 with fractional branching (3, as, . .., ay). Nodes at
level 1 of this tree have indices in [n1n2], and there are Sning of them. Considering these indices
as living in [n1] X [n2], by the pigeonhole principle at least Snynz2/n; = fns of them will have the
same first component; let’s call this component i1 € [n1]. We can now extract the subtrees of these
Bngy elements and join them into an echelon tree of height . The common parent of these nodes
will have index ;. So far we have constructed an echelon tree of height ¢ with fractional branching
(1/n17ﬁ7 Qas, ... 704€)~

Now consider the subspace {T' € W | T(esy,+,...,-) = 0}. We think of W as living in
R(n1—Dnaxnsx-xne ¢ince index i, has been eliminated from the first dimension. We can again
apply the induction hypothesis to this space and as long as the premise holds obtain an echelon tree
of height ¢ — 1 with fractional branching (8, as, ..., ). We can apply the pigeonhole principle
again to find S(ny1 — 1)na/(n1 — 1) = Bng level-1 nodes having the same first index i2. We extract
a height ¢ echelon tree from them and join this with the height ¢ echelon tree we already have. At
the end we will have an echelon tree with fractional branching (2/n1, 3, as, . .., ay).

Suppose we have repeated this procedure yn; — 1 many times and currently have a height ¢ echelon
tree with fractional branching (v, 3, as, . .., ay). As long as the premise of the induction hypothesis
holds we can grow this echelon tree. The current subspace is {T' € W | W (e;;,-,...,-) = 0for j €

[yn1]} which lives in R(=7)m1n2xnsx-xns The dimension of this subspace is at least dim(TV) —
yning - - - ng. So the premise of the induction hypothesis holds as long as

dim(W) —yny---ng 1 —dim(W)/ny---ng
(I =")ning -~y 1—7 '

This means that as long as (1 —v)(1 — 8)(1 —ag) -+ (1 —ay) > 1 — dim(W)/ny - - - ne, we can
grow the echelon tree.

(1= B)1—az)-(1-a) 2 1-

To finish the proof, we set 5 = asq, which means that while v < 4, we can grow the echelon tree.
So when this procedure stops we have an echelon tree with fractional branching (o1, ..., ap). O

3.3 Implications for the main question

Our result, theorem 5, together with results from [3] (see the supplementary material), imply that
under very mild assumptions we can recover Sy, . .., S, from their /-wise intersections as long as
| < n®®. These mild assumptions are necessary to prevent adversarially constructed examples
that have no hope of unique recovery.

To get a sense of the mild assumptions that we need, let us discuss the parameters that appear in
theorem 5. We assume that £ is a constant that does not grow with . We can take c to be some fixed
constant as well. For example 1/2, or even 1/v/2. If we perturb our cell assemblies according to
example 3, i.e., flip assembly memberships for each neuron class and assembly pair with probability
q, how large of a ¢ do we need for the conditions of theorem 5 and [3] to be satisfied? The distribution
we get for y(u)s is going to be (1/2,1 — ¢)-nondeterministic as long as ¢ < 1/2. So § = 1/2is
a constant. The only condition we need is now for the failure probability to be small. This roughly
translates to
nO(l)(l _ q)(lfc)n <1,

which will be satisfied for ¢ = Q(logn/n). In other words, we only have to flip each coordinate of
X (u) with probability O(log n/n). On average, each neuron’s membership will be changed in about
O(log(n)) of the assemblies, which is a very small fraction of the assemblies. For slightly larger
values of g, e.g., ¢ = n~!, the probability of failure becomes exponentially small similar to [3].

We also assumed that w(u) = 1 for all u € U. In general this is not needed. As long as the weights
w(u) are in a range whose upper bound is at most a polynomially bounded factor larger than the
lower bound, we can absorb the weights into the vector x(u) and the running time and accuracy will
only suffer by a polynomially bounded factor.



We also remark that recovering a {0,1}" vector within an additive error of 1/n is the same as
exact recovery (by rounding the coordinates). So by setting the recovery error (see supplementary
material) to 1/n we get exact recovery.

Finally, we remark that even though we are mostly interested in the case where ¢ = O(1), our depen-
dencies on ¢ seem to be better than the results of [3] even in the setting of Gaussian perturbations. In
particular, our running time (as well as our tolerance for error) grows polynomially with n’, whereas

the running time of [3] grows with n®". When adding Gaussian noise of total variance p? as in ex-
ample 4, we can treat our vectors as coming from a (O(p/+/n), 1/2)-nondeterministic distribution.
This means our probability of failure will be at most n2/2(1=¢)" To have a fair comparison, we
need to allow for the number of components to be roughly half the total dimension, so we need to let
c=1/v/2 ~1-06(1/¢). So the probability of failure will be roughly exp(O(¢logn) — Q(n/¢)).
For large enough values of ¢ this is much better than the guarantee of exp(—0(n'/ 32)) of [3].

4 Association graphs and the soft model

‘When the number of observations is smaller than what is needed for reconstruction, we can still ask
whether there exists some Venn diagram that is consistent with the observations. Which classes of
weighted graphs (or hypergraphs) can be represented by Venn diagrams?

Interestingly, a similar model was formulated almost three decades ago, motivated by quantum me-
chanics and spin glass systems, and a mathematical object called correlation polytope was defined
to frame that investigation [20]. It is not hard to show that membership in the polytope is an NP-hard
problem and natural optimization variants of it are hard to approximate.

In this section we formulate a promise version of the problem where either the intersection is above a
certain threshold (corresponding to association) or below another (corresponding to non-association)
which seems to be more tractable.

More precisely, we are given a graph that is unweighted. The nodes still stand for assemblies of
neurons, all of the same size K, out of a universe of N neurons, and the edges signify association;
the difference is that, in this model, if two assemblies are associated then they have an intersection of
size at least a; whereas if they are not, then their intersection is at most b. The intended relationship
between these numbers is that NV is much larger than K (we take it to be a power of K), and K
is in turn much larger than a, while a is quite a bit larger than b. To fix ideas, in the sequel we
take N = K2 and b < a small constant fractions of K; in the experiment in [6, 15] a and b are
found to be about 8% and 4% of K, respectively. We call a graph G = (V, E) representable with
parameters (N, K, a,b) if every node of G can be associated with a set of K neurons such that for
any two adjacent nodes the corresponding sets have intersection at least a, while for any two non-
adjacent nodes the corresponding sets have intersection at most b. The question is, which graphs
are representable?

Theorem 13. Any graph of maximum degree at most 2K /a is representable, and so is any tree of
maximum degree 2K?/a?.

The 2K /a bound follows from the fact that the edges of a regular Eulerian graph can be decomposed
into cycles, while the 2K?2/a? follows from the theory of block designs. Recalling that a is a small
fraction of K, we conclude that rather rich and complex “association graphs” can be represented
in principle. But can these sophisticated combinatorial constructions be carried out with surgical
precision in the wet chaos of the brain?

Here is a more realistic framework which we call the soft model: Suppose that we are given an
association graph G = (V, E). We wish to determine whether a model of G exists, i.e., |V sets
corresponding to nodes of G whose pairwise intersections realize GG according to the rules above
involving a and b. We wish to create sets of expected size K representing the nodes, starting from the
universe of neurons [/V] and executing instructions of the following form (in the following C, Cy, Cs
are previously constructed sets, and A is the set being constructed):

A+ C1UCQCs, A+ CiNCsy, A+ C1 — Oy, A(—S(C,p),

where by S(C, p) we denote the result of sampling each node in set C' with probability p — a simple
and realistic enough primitive. The question is, which graphs can be realized in such a way that



the intended relations between the nodes and their intersections are not corrupted, with high enough
probability, by the randomness of the process? We can show the following:

Theorem 14. Any graph with maximum degree % . % can be realized in the soft model with high

probability.
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A Reduction to linear independence

‘We now mention the main result of [3]:

Theorem 15 ([3]). Let [U| < nl =) /2 for some constant €. Assume that for eachu € U and i € [{],
()

we choose a vector X(u)(i) € R™ by starting from an adversarially chosen vector x(u)x’ of norm

at most 1 and adding a standard Gaussian noise with variance o /n to each coordinate of x(u)il).

Now define the order-{ tensor

7= 3 xw@® o o xw)®,
ueU
and assume that we get as input T + E where E is an order-{ (measurement error) tensor, whose
entries are bounded by e(cr/n)gz for some € < 1. Then there is an algorithm that recovers all the
tensors {xV(u) @ --- @ x(u) " }uew up to an additive e error. This algorithm runs in time noG9
and succeeds with probability 1 — exp(—O(nl/?’e ).

The algorithm behind theorem 15 is based on a robust version of order-3 tensor decomposition,
widely known as the “simultaneous diagonalization” or Chang’s lemma [3, 5, 17]. Roughly speaking,

the tensor
T = Z Y@V @@ x(u)®
ueld

can be viewed as an order-3 tensor by grouping some of factors together:

7=3 (Ve xR e (WP e. e xw ) exw®. @
ueU

factor factor factor

Then the algorithm from [3] depends on using a robust version of Chang’s lemma to decompose 7'.
It only needs the collection of first factors to be “robustly” linearly independent, the collection of
the second factors to be “robustly” linearly independent, and the collection of the third factors to
“robustly” not contain vectors parallel to each other (a weaker notion than linear independence). We
give the precise required conditions below:

Theorem 16 ([3]). Consider the tensor
T = Z a(u) ® b(u) ® e(u)
uel
and assume that the following conditions are satisfied:

1. The condition numbers of the matrices A, B are bounded by k, where A is formed by taking
a(u)s as columns and B by taking b(u)s as columns,

2. For any uy # wug, the vectors c(uy) and c(ug) are far from being parallel: H% -

clua) || > 7

leCuz)I 1t = 72

3. All of the vectors a(u),b(u), c(u) have norms bounded by C, a polynomially bounded
quantity.

Then there is an efficient algorithm, running in time poly (r, 1/7,n%), that recovers a(u)®@b(u)®c(u)
for all w within additive error €, by only observing T' + E where E is a noise tensor whose entries
are bounded by ¢ - poly(1/r,1/n’, 7).

Condition 1 is arguably the most difficult one to satisfy. Condition 2 is satisfied with high probability
for many distributions of interest D, but it can also be automatically reduced to condition 1 if one is
willing to change the grouping in eq. (2). If instead of having three groups, the first two composed of
(¢ — 1)/2 factors and the last one composed of one factor, we create three equal-sized groups (each
consisting of ¢/3 factors), then the last group would also have a bounded condition number (by an
extension of condition 1) and will automatically satisfy condition 2. This makes the dependency

on ¢ worse but would still give us something similar to theorem 15 with || < nl=") /2 replaced
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by [U| < nls /2. Finally, note that condition 3 is also automatically satisfied with very high
probability for Gaussian perturbations and also our model, in which we sample vectors from the

hypercube {0,1}". We assume that D is not only (4, p)-nondeterministic but also that it satisfies
condition 3 with high probability.

In section 3 we focus only on proving condition 1 in theorem 16. To make the notation simpler we
replace £ by (¢ — 1)/2, and assume a(u)s are tensors of ¢ factors. In order to bound the condition
number of A in theorem 16, we need to lowerbound the minimum singular value and upperbound
the maximum singular value of A. An upperbound on oy,,x(A) is readily given by condition 3 of
theorem 16. The matrix A has columns with norms bounded by C' and therefore

Omax(A) < nt’2C.
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