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Abstract— A plethora of state estimation techniques have
appeared in the last decade using visual data, and more recently
with added inertial data. Datasets typically used for evaluation
include indoor and urban environments, where supporting
videos have shown impressive performance. However, such tech-
niques have not been fully evaluated in challenging conditions,
such as the marine domain. In this paper, we compare ten recent
open-source packages to provide insights on their performance
and guidelines on addressing current challenges. Specifically,
we selected direct and indirect methods that fuse camera and
Inertial Measurement Unit (IMU) data together. Experiments
are conducted by testing all packages on datasets collected over
the years with underwater robots in our laboratory. All the
datasets are made available online.

I. INTRODUCTION

An important component of any autonomous robotic sys-
tem is estimating the robot’s pose and the location of the
surrounding obstacles – a process termed Simultaneous Lo-
calization and Mapping (SLAM). During the last decade the
hardware has dramatically improved, both in performance,
as well as cost reduction. As a result, camera sensors and
Inertial Measurement Units (IMU) are now mounted in most
robotic systems, and in addition to all smart-devices (phones
and tablets). With the proliferation of visual inertial devices
many researchers have designed novel state estimation algo-
rithms for Visual Odometry (VO) [1], [2] or visual SLAM [3].
In this paper we will examine the performance of several
state-of-the-art Visual Inertial State Estimation open-source
packages in the underwater domain.

Vision based state estimation algorithms can be classified
into a few broad classes. Some methods – such as [5],
[6], [7], [8] – are based on feature detection and matching
to solve the Structure from Motion (SfM) problem. The
poses are estimated solving a minimization problem on
the re-projection error that derives from reconstructing the
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Fig. 1: Data collection by an Aqua2 underwater robot [4].

tracked features. Such methods are often termed indirect
methods. Direct methods – such as [9], [10] – instead, use
pixel intensities directly to minimize the photometric error,
skipping the feature detection and matching step.

To improve the state estimation performance, data from
other sensors can be fused together with the visual in-
formation. Typically, in literature there are two general
approaches. One approach is based on filtering, where IMU
measurements are used to propagate the state, while visual
features are considered in the update phase [11], [12], [13].
The second approach is based on tightly-coupled nonlinear
optimization: all sensor states are jointly optimized, mini-
mizing the IMU and the reprojection error terms [14], [15].

Recently, there has been great interest in comparing differ-
ent approaches, e.g., [16], [17], [18], [19]. However, typically
the analysis is limited to only a few packages at a time [16],
[19], and rarely to a specific domain [18]. In addition, all
these comparisons consider higher quality visual data, not
applicable to the underwater domain. In previous work [17],
some of the authors compared a good number of state-of-
the-art open-source vision-based state estimation packages
on several different datasets – including ones collected by
marine robots, as the one shown in Figure 1. The results
showed that most packages exhibited higher errors in datasets
from the marine domain.

This paper considerably expands the previous analysis [17]
by selecting ten recent open source packages, focused to-
wards the integration of visual and inertial data, and testing
them on new datasets, made publicly available1. The contri-
bution of this paper is not in providing a new state estimation
method, but in taking a snapshot of the current capabilities
of the most recent open-source packages, by evaluating them

1https://afrl.cse.sc.edu/afrl/resources/datasets/
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on datasets collected over the years with underwater robots
and sensors deployed by the Autonomous Field Robotics
Lab. Such a snapshot allows us to draw some insights on
weaknesses, strengths, and failure points of the different
methods. A general guideline can be distilled to drive the
design of new robust state estimation algorithms.

II. RELATED WORK AND METHODS EVALUATED

Visual state estimation methods can be classified according
to the following criteria:

• number of cameras, e.g., monocular, stereo, or more
rarely multiple cameras;

• the presence of an IMU, where its use could be optional
for some methods or mandatory for others;

• direct vs. indirect methods;
• loosely vs. tightly-coupled optimization when multiple

sensors are used – e.g., camera and IMU;
• the presence or lack of a loop closing mechanism.

In the following, we provide a brief description of the
algorithms evaluated in this paper; please refer to the original
papers for in depth coverage. While these algorithms do not
cover the exhaustive list of algorithms in the literature, they
cover approaches, along the dimensions mentioned above.

a) LSD-SLAM: Direct Monocular SLAM is a direct
method that operates on intensities of images from a monocu-
lar camera [9] both for tracking and mapping, allowing dense
3D reconstruction. Validated on custom datasets from TUM,
covering indoor and outdoor environments.

b) DSO: Direct Sparse Odometry [10] is a new direct
method proposed after LSD-SLAM by the same group.
It probabilistically samples pixels with high gradients to
determine the optical flow of the image. DSO minimizes the
photometric error over a sliding window. Extensive testing
with the TUM monoVO dataset [20] validated the method.

c) SVO 2.0: Semi-Direct Visual Odometry [21] relies
on both a direct method for tracking and triangulating pixels
with high image gradients and a feature-based method for
jointly optimizing structure and motion. It uses the IMU prior
for image alignment and can be generalized to multi-camera
systems. The proposed system has been tested in a lab setting
with different sensors and robots, as well as the EuRoC [22]
and ICL-NUIM [23] datasets.

d) ORB-SLAM2: ORB-SLAM2 [8] is a monocu-
lar/stereo SLAM system, that uses ORB features for tracking,
mapping, relocalizing, and loop closing. It was tested in
different datasets, including KITTI [24] and EuRoC [22].
The authors extended it to utilize the IMU [15], although,
currently, the extended system is not available open source.

e) REBiVO: Realtime Edge Based Inertial Visual
Odometry [25] is specifically designed for Micro Aerial
Vehicles (MAV). In particular, it tracks the pose of a robot
by fusing data from a monocular camera and an IMU. The
approach first processes the images to detect edges to track
and map. An EKF is used for estimating the depth.

f) Monocular MSCKF: An implementation of the orig-
inal Multi-State Constraint Kalman Filter from Mourikis and
Roumeliotis [11]2 was made available as open source from
the GRASP lab [27]. It uses a monocular camera and was
tested on the EuRoC dataset [22].

g) Stereo-MSCKF: Stereo Multi-State Constraint
Kalman Filter [28] is also based on MSCKF [11] and was
made available from another group of the GRASP lab, while
using a stereo camera, and has comparable computational
cost as monocular solutions with increased robustness.
Experiments in the EuRoC dataset and on a custom dataset
collected with a UAV show good performance.

h) ROVIO: Robust Visual Inertial Odometry [29] em-
ploys an Iterated Extended Kalman Filter to tightly fuse
IMU data with images from one or multiple cameras. The
photometric error is derived from image patches that are used
as landmark descriptors and is included as residual for the
update step. The EuRoC dataset [22] was used for assessing
the performance of the system.

i) OKVIS: Open Keyframe-based Visual-Inertial
SLAM [14] is a tightly-coupled nonlinear optimization
method that fuses IMU data and images from one or more
cameras. Keyframes are selected according to spacing rather
than considering time-successive poses. The optimization
is performed over a sliding window and states out of that
window are marginalized. Experiments with a custom-made
sensor suite validated the proposed approach.

j) VINS-Mono: VINS-Mono [30] estimates the state of
a robot equipped with an IMU and monocular camera. The
method is based on a tightly-coupled optimization framework
that operates with a sliding window. The system has also loop
detection and relocalization mechanisms. Experiments were
performed in areas close to the authors’ university and the
EuRoC dataset [22].

Table I lists the methods evaluated in this paper and their
properties.

TABLE I: Summary of characteristics for evaluated methods.
Method Camera IMU Indirect/ (L)oosely/ Loop

Direct (T)ightly Closure
LSD-SLAM [9] mono no direct N/A yes
DSO [10] mono no direct N/A no
SVO [21] multi optional semi-direct N/A no
ORB-SLAM2 [8] mono, stereo no indirect N/A yes
REBiVO [25] mono optional indirect L no
Mono-MSCKF [27] mono yes indirect T no
Stereo-MSCKF [28] stereo yes indirect T no
ROVIO [29] multi yes direct T no
OKVIS [14] multi yes indirect T no
VINS-Mono [31] mono yes indirect T yes

III. DATASETS

Most of the standard benchmark datasets represent only
a single scenario, such as a lab space (e.g., [32], [22]),
or an urban environment (e.g., Kitti [24]), and with high
visual quality. The limited nature of the public datasets is
one of the primary motivations to evaluate these packages
with datasets collected by our lab over the years in more
challenging environments, such as underwater.

2MSCKF was first utilized with underwater data in [26] operating off-line
with recorded data.
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Fig. 2: Sample images from the evaluated datasets. (a) UW sensor suite outside a sunken bus (NC); (b) UW sensor suite
inside a sunken bus (NC); (c) UW sensor suite inside a cave (FL); (d) UW sensor suite mounted on a Diver Propulsion
Vehicle (DPV) over a coral reef; (e) Aqua2 AUV [4] over a coral reef; (f) AUV over a fake cemetery (SC).

In particular, the datasets used can be categorized accord-
ing to the robotic platform used:

• Underwater sensor suite [33] operated by a diver around
a sunken bus (Fantasy Lake, North Carolina) – see
Figure 2(a),(b) – and inside an underwater cave (Gin-
nie Springs, Florida); see Figure 2(c). The custom-
made underwater sensor suite is equipped with an IMU
operating at 100Hz (MicroStrain 3DM-GX15) and a
stereo camera running at 15 fps, 1600× 1200 (IDS UI-
3251LE); see Figure 3 for operations at Ginnie Springs.

• Underwater sensor suite [33] mounted on an Diver
Propulsion Vehicle (DPV); see Figure 4. Data collected
over the coral reefs of Barbados; see Figure 2(d).

• Aqua2 Autonomous Underwater Vehicle (AUV) [4]
over a coral reef (Figure 2(e)) and an underwater
structure (Lake Jocassee, South Carolina) (Figure 2(f)),
with the same setup as the underwater sensor suite.

Fig. 3: Data collection using a hand-held sonar, stereo,
inertial, and depth sensor suite hand-held inside a cavern.

Fig. 4: Data collection using a hand-held sonar, stereo, iner-
tial, and depth sensor suite mounted on a DPV. Operations
over the coral reefs of Barbados.

Note that the datasets used are more challenging, in terms
of visibility, than those used in [17], however the IMU data
was collected at a higher frequency – i.e., at least 100Hz.

To facilitate portability and benchmarking, the datasets
were recorded as ROS bag files3 and have been made
publicly available1. The intrinsic and extrinsic calibration
parameters for the cameras and the IMU are also provided.

IV. RESULTS

A. Setup

Experiments were conducted for each dataset on a com-
puter with an Intel i7-7700 CPU @ 3.60GHz, 32GB RAM,
running Ubuntu 16.04 and ROS Kinetic. For each sequence

3http://wiki.ros.org/Bags
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in a dataset, we manually set each package parameters, by
initializing them to the package’s default values and then
by tuning them to improve the performance. This process
followed any available suggestion from the authors. Each
package was run multiple times and the best performance is
reported. For the datasets where ground truth is available,
the resulting trajectory is aligned with the ground truth using
the sim(3) trajectory alignment according to the method
from [34]: the similarity transformation parameters (rotation,
translation, and scaling) are computed so that the least mean
square error between estimate/ground-truth locations, which
are temporally close, is minimized. Note that this alignment
might require a temporal interpolation as a pose estimate
might not have an exact matching ground truth pose. In
particular, bilinear interpolation is used. The resulting metric
is the root mean square error (RMSE) for the translation.

Since the datasets used contain stereo images and IMU
data, we performed the evaluation of the algorithms con-
sidering the following combinations: monocular; monocular
with IMU; stereo; and stereo with IMU, based on the
modes supported by each VO/VIO algorithm. This not only
compares the performance of various VIO algorithms, but
also provides insight on how the performance changes as
data from different sensors are fused together.

B. Evaluation

For the underwater datasets, the work of Rahman et al.
[35], [36], which fuses visual, inertial, depth and sonar range
data, was used as a reference trajectory given the accurate
measurements from the sonar sensor, providing an estimate
of the ground truth. In addition, manual measurements be-
tween selected points have validated the accuracy of the
ground truth measurements used.

For the first four datasets (Bus/In, Bus/Out, Cave,
Aqua2Lake) all four (acoustic, visual, inertial, and depth)
sensor data were available, together with ground truth mea-
surements. The last two datasets (DPV, Aqua2Reef) had
only Visual Inertial and Depth information, and due to the
complexity of the trajectory not manual measurements of
ground truth. All the datasets provided a major challenge
and several packages failed to track the complete trajectory.
The best over several attempts was used each time, and the
percentage reported indicates what part of the trajectory was
completed before the package failed.

ORB-SLAM2 [8] using only one camera (monocular)
was able to track the whole trajectory inside the cavern
(Cave) and of Aqua2 over the coral reef (Aqua2Reef). Apart
from that, pure monocular vision failed to track the whole
trajectory in most cases. It is worth noting that DSO, while
not able to track the complete trajectory, provided very
detailed reconstructions of the environment where it was able
to track for a period of time; see Figure 2 top. The addition
of IMU brought success to OKVIS, ROVIO, and VINS-
Mono (100%), with ROVIO having the best performance,
except over the coral reef where it failed due to the lack of
features. OKVIS was able to track the complete trajectory
in all datasets both in monocular and stereo mode. ORB-

SLAM2 with loop closure in stereo mode was also able
to track the whole duration on all datasets. SVO was also
able to keep track in stereo mode but the resulting trajectory
deviates from the ground truth. Stereo-MSCKF was able to
keep track most of the time with fairly accurate trajectory.
Figure 2 bottom presents the trajectories of several packages
together with the ground truth from [36]; all trajectories were
transformed to provide the best match.

The overall evaluation of all the experiments can be seen
at the bottom rows of Table II. Specifically, we color-coded
the qualitative evaluation:

• Green means that the package was able to track at least
90% of the path and the trajectory estimate was fairly
accurate with minor deviations.

• Yellow shows that the robot was able to localize for most
of the experiment (more than 50%). Also, the resulting
trajectory might deviate from the ground truth but
overall the shape of the trajectory is maintained. Yellow
is also used if the robot tracked the whole sequence,
but the resulted trajectory deviates significantly from
the ground truth

• Orange is used when a method tracked the robot pose
for less than 50% of the trajectory.

• Red marks the pair of package-dataset for which the
robot could not initialize or diverges before tracking, or
localized less than 10% of the time.

Figure 6 shows the absolute translation error over time in
the Cave dataset. The error does not monotonously increase
because of the loop closure happening at the starting point,
reducing thus the accumulated error.

The overall performance of the tested packages is dis-
cussed next. LSD-SLAM [9], REBiVO [25], and Monocular
SVO were unable to produce any consistent results, as such,
they were excluded from Table II.

DSO [10] requires full photometric calibration accounting
for the exposure time, lens vignetting and non-linear gamma
response function for best performance. Even without pho-
tometric calibration, it worked well on areas having high
intensity gradients and when subjected to large rotations. In
addition, it provided excellent reconstructions; however, in
the areas with low gradient images, it was able to spatially
track the motion only for a few seconds. Scale change was
observed in low gradient images which can be accounted for
the incorrect optimization of inverse depth. DSO requires
more computational power and memory usage compared to
the other packages, which is justifiable since it uses a direct
method for visual odometry.

SVO 2.0 [21] was able to track the camera pose over long
trajectories, even in parts with few features. It tracks features
using the direct method by creating a depth scene. In case of
low gradient images, it was subject to depth scale changes,
which was predominant in mono camera where tracking
failed. SVO in stereo mode without inertial measurements
was able to track most of the time but was subject to rotation
errors. SVO stereo with IMU was able to keep track most
of the time generating a good trajectory estimate.
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Fig. 5: Top row: The partial trajectory and reconstructions from the DSO package for three underwater datasets; outside a
sunken bus; inside a cave; AUV over a fake cemetery. Bottom row: sample trajectories for the datasets of the first row.
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Bus/Out (53m) 0.04 × × × 1.17 0.7 0.19 2.39 2.06 1.78 1.38 2.53 0.78 2.68 0.61
17% × × × 100% 100% 19% 100% 100% 88% 100% 100% 100% 100% 100%

Cave (97m) 1.56 0.79 0.78 2.42 0.92 0.76 0.79 3.38 1.48 0.58 0.59 3.84 0.98 1.39 0.66
29% 98% 100% 18% 100% 85% 31% 100% 100% 100% 100% 100% 100% 52% 100%

Aqua2Lake (55m) 0.27 0.64 0.87 × 1.07 0.45 × 0.50 0.50 0.99 0.27 1.61 0.51 1.42 0.51
23% 52% 57% × 100% 100% × 100% 100% 69% 96% 63% 97% 90% 84%

Bus/Out
Cave
Aqua2Lake

Bus/In
DPV
Aqua2Reef

TABLE II: Performance of the different open source packages. Datasets: UW sensor suite outside a sunken bus (Bus/Out);
UW sensor suite inside a cave (Cave); Aqua2 (AUV) over a fake cemetery (Aqua2Lake) at Lake Jocassee; UW sensor suite
inside a sunken bus (Bus/In); UW sensor suite mounted on a Diver Propulsion Vehicle over a coral reef (DPV); Aqua2
AUV over a coral reef (Aqua2Reef). Quantitative: for each dataset, the first row specifies the RMSE after sim3 trajectory
alignment; the second row is the percentage of time the trajectory was tracked; The × symbol refers to failures. Qualitative:
the color chart legend is: red–failure; orange–partial failure; yellow–partial success; green-success.

ORB-SLAM2 [8] (mono) could not initialize in both
datasets collected of the sunken bus (Bus/In, Bus/Out).
During initialization, it calculates the homography matrix in
case of a planar surface and the fundamental matrix from the
8-point algorithm for non-planar 3D structure simultaneously
and chooses one of them based on inliers. Since the bus
datasets are turbid with low contrast, ORB-SLAM2 cannot
find any of the matrices with good certainty and both are
rejected. ORB-SLAM2 works fine in the other datasets, but,
without loop closure, loses track in some cases. With loop
closure, despite track loss, the method can reliably relocalize

after the robot traverses a previously seen region.
Mono-MSCKF [27] performed well when the AUV or

sensor suite are standing still so that the IMU could properly
initialize, otherwise it did not track. Moreover, it was among
the most efficient in terms of CPU and memory usage.

ROVIO [29] is one of the most efficient packages tested.
Its overall performance was robust on most datasets even
when just a few good features were tracked. On the
Aqua2Reef dataset though, not enough features were visible
and thus it could not track the trajectory.

OKVIS [14] provided good results for both monocular and
stereo. In Bus/Out, despite the haze and low-contrast, OKVIS
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Fig. 6: Translation error with respect to time after sim3
alignment for Cave dataset.

detected good features and tracked them successfully. Also
in Cave, it kept track successfully and produced an accurate
trajectory even in the presence of low illumination.

VINS-Mono [31] works well in good illumination where
there are good features to track. It was one of the few
packages that worked successfully in the underwater domain.
In the case of Aqua2Reef, it could not detect and track
enough features and diverged. With the loop-closure module
enabled, VINS-Mono reduced the drift accumulated over
time in the pose estimate and produced a globally consistent
trajectory.

Stereo-MSCKF [37] uses the Observability Constrained
EKF (OC-EKF) [38], which does not heavily depend on an
accurate initial estimation. Also, the camera poses in the state
vector can be represented with respect to the inertial frame
instead of the latest IMU frame so that the uncertainty of the
existing camera states in the state vector is not affected by
the uncertainty of the latest IMU state during the propagation
step. As a result, Stereo-MSCKF can initialize well enough
even without a perfect stand still period. It uses the first 200
IMU measurements for initialization and is recommended
to not have fast motion during this period. Stereo-MSCKF
worked acceptably well in most datasets except Aqua2Reef
and DPV. The Stereo-MSCKF could not initialize well over
the coral reef due to the fast motion from the start and the low
number of feature points. On the DPV dataset, it was able to
track only a quarter of the full trajectory before diverging.

V. DISCUSSION

Underwater state estimation has many open challenges, in-
cluding visibility, color attenuation [39], floating particulates,
blurriness, varying illumination, and lack of features [40].
Indeed, in some underwater environments, there is a very
low visibility that prevents seeing objects that are only a
few meters away. This can be observed for example in
Bus/Out, where the back of the submerged bus is not clearly
visible. Such challenges make underwater localization very
challenging, leaving an interesting gap to be investigated in
the current state of the art. In addition, light attenuates with
depth, with different wavelengths of the ambient light being
absorbed very quickly – e.g., the red wavelength is almost

completely absorbed at 5m. This alters the appearance of
the image, which affects feature tracking, even in grayscale.

The appearance of color underwater is different than
above, including the color loss with depth. There is a concern
when most color shifts to blue, there is a loss of sharpness,
which further degrades performance. This will be a venue
for further research in the future, in order to investigate the
effect of any color restoration to the state estimation process.

From the experimental results it was clear that direct VO
approaches are not robust as there are often no discernible
features. As such DSO and SVO, quite often fail to track the
complete trajectory, however, they had the best reconstruc-
tions for the tracked parts. Similar approaches that depend
on the existence of a specific feature, such as edges, are not
appropriate in underwater environments in general. Overall,
as expected, stereo performed better than monocular, the
introduction of loop closure enabled the VO/VIO packages
to track for longer periods of time, and the introduction of
inertial data improved the scale estimations.

One of the most disconcerting findings, which resulted
in testing each package multiple times and reporting the
best results in this paper, was the inconsistent performance
under the same conditions. More specifically, most packages
optimize the estimation to achieve frame rate performance,
often by restricting the number iterations of RANSAC. While
in theory RANSAC converges to the correct solution, in prac-
tice, with limited number of iterations allowed, the results
vary widely. Most state estimation approaches, historically
are tested in recorded data and the performance is presented,
however, when relying on the state estimate to follow a
trajectory or reach a desired pose, divergence of the estimator
will have catastrophic results for the autonomous vehicle.
Consequently as the best performance over a number of trials
is reported, small variations are not significant.

In the results presented above, the resulting trajectory has
been transformed and scaled to produce the best possible
estimates. This is acceptable when ground truth is available
and the process is off-line, however, if a AUV has to follow
a transect for a number of meters or perform a grid search,
incorrect scale in the pose estimate will result in failed
missions. It is worth noting here that while VINS-Mono
produced among the best performances, the scale was always
inaccurate; a result of the monocular vision.

For increased robustness and accuracy, the OKVIS and
ROVIO gave good performance, ORB-SLAM with loop
closure and SVO, for stereo data, and VINS-Mono up to
scale also performed well. DSO had the best reconstructions
when it was able to track the trajectory.

VI. CONCLUSION

In this paper, we compared several open source visual
odometry packages, with an emphasis on those that also
utilize inertial data. The results confirm the main intuition
that incorporating IMU measurements drastically lead to
higher performance, in comparison to the pure VO packages,
thus extending the results reported in [17]. IMU improved
performance was shown across a wide range of different
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underwater environments – including man-made underwater
structure, cavern, coral reef. Furthermore, the study com-
pared popular packages using quantitative and qualitative
criteria and offered insights on the performance limits of
the different packages. The computational needs for online
applications, were qualitative assessed. In conclusion, for
the datasets tested, OKVIS, SVO, ROVIO and VINS-Mono
exhibited the best performance.

A major concern on integrating these VIO packages in an
actual robot for closed-loop control is their non-determinism.
In pursuit of higher performance, most packages produce
different output for the same input run under the same
conditions. Most times the generated trajectory is reasonable,
but on occasion tracking is lost and the estimator diverges or
outright fails. If an autonomous vehicle was relying on the
estimator to complete a mission, it would be hopelessly lost.

Future work will include testing new packages, include
new robotic platforms (e.g., BlueROV2), and collecting more
challenging datasets with more test cases for each package.
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