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Abstract: Neuromorphic photonics promises orders of magnitude improvements in both speed and 
energy efficiency over digital electronics. We will give an overview of neuromorphic photonic 
systems and their application to optimization and machine learning problems. 
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circuits.  

 
Artificial Intelligence (AI) has always captured our imagination. AI has the potential to drastically change almost 
every aspect of our lives through new medical treatments, new assistive robots, intelligent modes of transportation, 
and much more. Inspired by the human brain and spurred by the advances in deep learning, the past six years has seen 
a renaissance in AI. IBM [1], HP [2], Intel [3], and Google [4], have all shifted their core technological strategies from 
“mobile first” to “AI first”. Deep learning with artificial neural networks (ANNs) [5] has expanded from image 
recognition [6] to translating languages [7] and beating humans at highly complex strategy games like Go [8]. The 
general consensus amongst the scientific and private sector 
community is that three factors will drive the future advance 
of AI: better algorithms, more training data, and the amount 
of compute power available for training. While there has been 
no shortage of innovative architecture variants for these 
neural networks nor data to train them, the most pressing 
bottleneck for AI is now processing power (Fig. 1). Over the 
last six years, the amount of compute power required to train 
state-of-the- art AI has been doubling every 3.5 months [9]. 
For instance, Google’s AlphaGo AI requires 1920 CPUs and 
280 GPUs, which translates into massive power 
consumption, reaching around $3000 USD in electric bill per 
game. Training neural networks also takes a considerable 
amount of computational time. For example, image 
classification tasks with residual neural networks (ResNet-
200) requires 8 GPUs and takes more than three weeks of 
training to achieve classification error rates at around 20.7% 
[10]. Traditional CPUs, GPUs and even neuromorphic 
electronics (IBM TrueNorth [1] and Google TPU [4]) have 
improved both energy efficiency and speed enhancement for 
learning (inference) tasks. However, electronic architectures 
face fundamental limits as Moore’s law is slowing down [11]. 
Furthermore, moving data electronically on metal wires has 
fundamental bandwidth and energy efficiency limitations [12], thus remaining a critical challenge facing deep learning 
hardware accelerators [13]. 

Photonic processors can significantly outperform electronic systems that fundamentally depend on interconnects. 
Silicon photonic waveguides bus data at the speed of light. The associated energy costs are currently on the order of 
femtojoules per bit [14] and, in the near future, attojoules per bit [15]. Aggregate bandwidths continue to increase by 
combining multiple wavelengths of light (i.e., wavelength-division multiplexing (WDM)), theoretically topping out 
at 10 Tb/s per single-mode waveguides using 100 Gb/s per channel and up to 100 channels. On-chip scaling of many-
channel dense WDM (DWDM) systems may be possible with comb generators in the near future [16]. 

Recently, there has been much work on photonics processors to accelerate information processing and reduce 
power consumption using: artificial neural networks [17–22], spiking neural networks [23–30], and reservoir 
computing [31–34]. By combining the high bandwidth and efficiency of photonic devices with the adaptive, 
parallelism and complexity attained by methods similar to those seen in the brain, photonic processors have the 
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Fig. 1. High-performance computing is dominated by deep learning 
which is quickly saturating available compute growth. The orange 
dots show the total amount of compute, normalized to petaflop/s-
day, that was used to train each of selected neural network 
architectures. The blue dots show the trend of Moore’s law. (A 
petaflop/s-day is the number of operations of performing 1015 
operations per second for one day, which in total is 8.64 × 1019 
operations). 
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potential to be at least ten thousand times faster than state-of-the-art electronic processors while consuming less energy 
per computation [35,36]. 

In neuromorphic photonics [35,37], there is an isomorphism between the analog artificial neural networks and the 
underlying photonic hardware, which allows continuous functions to be fully represented in an analog way. An analog 
representation of information avoids overhead energy consumption and speed reduction caused by sampling and 
digitization into binary streams processed by clocked logic gates. But because of this analog representation, we cannot 
dissociate the information that flows through the neural network from the photonic physics that impacts distortion, 
noise and loss. Integration platforms for photonics also dictate how practical and how efficient neuromorphic photonic 
circuits can be. The most mature technology is silicon photonics [40], whose high-volume manufacturing allows for 
the most repeatable and robust platform for photonic circuits. Using silicon as a substrate also enables greater 
compatibility with digital electronic technology, allowing more compact solutions for neuromorphic hardware[41,42]. 
A great disadvantage of silicon photonics is the reliance on external lasers, typically built in III–V platforms, which 
require difficult and expensive co-packaging solutions. There are many applications driving the research community 
to find an industry-compatible solution for lasers-on-silicon, with good candidates such as III–V/Si hybrid 
fabrications, or quantum dot lasers grown directly on silicon. Industrial experts predict enabling innovations in the 
next five years that will allow neuromorphic photonic processors to be fabricated in a single die. 

This talk will provide an overview of neuromorphic photonic systems and their application to optimization and 
machine learning problems. We will discuss the physical advantages of photonic processing systems, and we will 
describe underlying device models that allow practical systems to be constructed. We also describe several real-world 
applications for control and deep learning inference. Lastly, we will discuss scalability in the context of designing a 
full-scale neuromorphic photonic processing system, considering aspects such as signal integrity, noise, and hardware 
fabrication platforms. 
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