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Abstract—Redundancy in deep neural network (DNN) models
has always been one of their most intriguing and important
properties. DNNs have been shown to overparameterize, or
extract a lot of redundant features. In this work, we explore
the impact of size (both width and depth), activation function,
and weight initialization on the susceptibility of deep neural
network models to extract redundant features. To estimate the
number of redundant features in each layer, all the features
of a given layer are hierarchically clustered according to their
relative cosine distances in feature space and a set threshold. It is
shown that both network size and activation function are the two
most important components that foster the tendency of DNNs
to extract redundant features. The concept is illustrated using
deep multilayer perceptron and convolutional neural networks
on MNIST digits recognition and CIFAR-10 dataset, respectively.
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I. INTRODUCTION

NNs have become ubiquitous in a wide range of appli-

cations ranging from computer vision [1-3] to speech
recognition [4-6] and natural language processing [7], [8].
Over the past few years, the general trend has been that
DNNs have grown deeper and wider, amounting to huge
increase in their size. The number of parameters in DNNs
is usually very large and no constraints are generally placed
on the data and/or the model, hence offering possibility to
learn very flexible and high-performing models [9]. However,
this flexibility may hinder their scalability and practicality
due to very high memory/time requirements, and may lead
to extracting highly redundant parameters with risk of over-
fitting [10].

A number of studies have shown that a significant per-
centage of features extracted by DNNs are redundant [11-
18]. As demonstrated in [11], a fraction of the parameters is
sufficient to reconstruct the entire network by simply training
on low-rank decompositions of the weight matrices. To this
end, Optimal Brain Damage [19] and Optimal Brain Surgeon
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[20] exploit second-order derivative information of the loss
function to localize unimportant parameters. HashedNets use
a hash function to randomly group weights into hash buckets,
so that all weights within the same hash bucket share a single
parameter value for pruning purposes [21]. Redundant features
have also been localized and pruned using simple thresholding
mechanism [22].

Instead of localizing the redundant neurons in a fully-
connected network, [23] compresses a trained model by identi-
fying a subset of diverse neurons. Redundant feature maps are
removed from a well trained network using particle filtering
to select the best combination from a number of randomly
generated masks [24]. The importance of features has also
been ranked based on the sum of their absolute weights [25].
With the assumptions that features are co-dependent within
each layer, [26] groups features in hierarchical order. Driven
by feature map redundancy, [27] factorizes a layer into 3 x 3
and 1 x 1 combinations and prunes redundant feature maps.

These observations that DNNs are prone to extracting redun-
dant features evidently suggest and reinforce our hypothesis
that much of the information stored within DNN models may
be redundant. In addition, large number of parameters also
translates to model’s tendency to overfitting, if trained on
limited amount of data. Some of the problems associated
with over-parameterization have been previously addressed via
model compression [25], [28], removal of unnecessary weights
[19], [20], and regularization [29], [30]. These heuristics for
eliminating redundancy more often than not deteriorate the
performance of the compressed model. The open question still
remains: how to obtain best compact and efficient models that
are free of redundancy?

Knowing the level of redundancy in models could be useful
for two main reasons. First, inference-cost-efficient models can
be built via pruning with small deterioration of prediction
accuracy [22], [25]. This is important in practice because
optimal architecture are unknown. However, pruning should
enable smaller model to inherit knowledge from a larger
model. Since learning a complex function directly by small
suboptimal model might result in its poor performance, it
is therefore necessary to first learn a task with model many
parameters and to follow with pruning redundant and less
important features [24]. This is particularly important for port-
ing deep learning models to resource limited portable devices.
Secondly, information about the level of redundancy in models
can be used for feature diversification in order to optimize their
performance since the adverse effect of redundancy in DNNs
has been shown in [12], [31] [10], [12], [32].



The problem addressed in this work is three-fold: (i) we
investigate the impact of modules of DNNs such as width
and depth of the network, activation function, and parameter
initialization on extraction of redundant features by DNNs
(both fully-connected and convolutional), (ii) we estimated
the number of redundant features by adapting hierarchical
agglomerative clustering algorithm, and (iii) we show experi-
mentation in order to obtain insight about which configurations
(network size/activation function/parameter initialization) pro-
vide better performance tradeoff. The paper is structured as
follows: Section II introduces the network configurations and
the notation used in the paper. Section III introduces the notion
of feature redundancy in DNN and its estimation. Section IV
discusses the experimental designs and present the results.
Finally, conclusions are drawn in the last section.

II. NETWORK CONFIGURATIONS

Notations and network configurations in the paper in
context of convolutional and fully-connected layer are briefly
and separately highlighted below:

1) Convolutional layer:: By letting nf h;, and w;, denote
the number of channels, height and width of input of the
I layer, respectively, input 2; € RP is transformed by
a layer into output z;4; € RY, where z;41 serves as the
input in layer [ + 1. Since the layer is convolutional, p
and ¢ are given as n; X hy X w; and ny; X hypq X wigq,
respectively. A convolutiopal layer convolves x; with
nj., 3D features x € R™****  resulting in nj,; output
feature maps. Each 3D feature consists of n; 2D kernels
¢ € k x k. Unrolling and combining all features into a
single kernel matrix W ¢ R**"+1 where z = k*n). The
ith feature in layer [ is denoted by w(l), i=1,..n; and each

i
ng) € R” corresponds to the i-th column of the kernel matrix

wO = [wgl)7 ...W(l,)] € R**™i41,
™
2) Fully-connected layer:: In the case of a fully-connected
layer, p and ¢ denote n;hjw; x 1 and nj,, x 1, respectively.
A layer operation involves only vector-matrix multiplication
with kernel matrix W € RZX";H, where z = njhjw;. Also
for fully-connected layer, the ¢th feature in layer [ is denoted

by wgl), i=1,..n; and each ng) € R* corresponds to the i-
th column of the kernel matrix W) = [ng), ...Wg,)] €

1
szn;+1 .

III. ESTIMATING THE NUMBER OF REDUNDANT FEATURES

Correlation between two features can be computed by eval-
uating the cosine similarity measure between them as given in

(1):
— < ¢1a¢2 >
1[Il ¢2 |

where < ¢1,¢2 > is the inner product of two arbitrary

normalized feature vectors ¢; and ¢o; ¢y = wi/\/||wi]|
and ¢ = 1,2. The similarity between two feature vectors

Cosine(¢r, ¢2) (1)

corresponds to the correlation between them, that is, the cosine
of the angle between them in feature space. Since the entries
of feature vectors can take both negative and positive values,
Cosine(¢1, ¢2) is bounded by [-1,1]. It is 1 when ¢1=¢2 or
when ¢; and ¢o are identical. Cosine(d1, ¢=2) is -1 when the
two vectors are in exact opposite direction. The two feature
vectors are orthogonal in weight space when Cosine is 0.

The evaluation of pairwise feature similarities QW for a
given layer [ can be vectorized to reduce the computational
overhead. By letting ® = [¢\"), gbs,)] e R**™ contain n]
normalized feature vectors ¢; as columns, each with z elements
corresponding to connections from layer [ — 1 to ‘" neuron of
layer [, then the pairwise feature similarities QW for a given
layer [ is given as

0 — <I)T(l)(I)(l) )

Q® e R" " contains the inner products of each pair of
columns 7 and j of & in each position ¢,5 of (2 in layer [. It is
remarked that Q) can be used to roughly estimate the number
of redundant features in layer l. In this work, we utilize a
suitable agglomerative similarity testing/clustering algorithms
to estimate the number of redundant features.

Based on a comparative review, a clustering approach from
[33], [34] has been adapted and reformulated for this purpose.
By starting with each feature vector ¢; as a potential cluster,
agglomerative clustering is performed by merging the two most
similar clusters C, and Cj as long as the average similarity
between their constituent feature vectors is above a chosen
cluster similarity threshold denoted as 7 [35], [36]. The pair
of clusters C'; and C} exhibits average mutual similarities as
follows:

sy 2o pi€Ca .50, COsIC(is O5)

SIMc(Cq, Cyp) \Ca|><\0b\ >T

a,b=1,..n5; a#b; i=1,..]C.l;
j=1,...|C|; and i#j

It must be noted that the definition of similarity in (3) uses
the graph-based-group-average technique, which defines clus-
ter proximity/similarity as the average of pairwise similarities
of all pairs of features from different clusters. This work also
considers other similarity definitions such as the single and
complete links. Single link defines cluster similarity as the
similarity between the two closest feature vectors that are in
different clusters. On the other hand, complete link assumes
that cluster proximity is the proximity between the two farthest
feature vectors of different clusters. In this work, experiments
based on average proximity were reported because of their
superior performance. It is strongly believe that graph-based-
group-average performs better because all cluster members
contributed in the decision making process.

The objective of the clustering algorithm is to discover ny
features in the set of n’ original weight vectors (or simply
features), where ny < n'. Upon detecting these distinct n ¢
clusters, a representative feature from each of these ns clusters
is randomly sampled without replacement and the remaining
features in that cluster are tagged as redundant. The number
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of redundant features in a particular layer [ is then estimated
as in (4).

nV) =n}) — ny) “)

To illustrate the impact of activation functions and weight
initializations on DNNs’ susceptibility to extracting redun-
dant features, we considered five popular activation functions
(namely: Sigmoid, Tanh, ReLU, ELU, and SeLU) and five
weight initializations. The activation functions considered are
briefly highlighted below. Given any finite dimensional vector
z for which activation function is to be computed for, the
following four activation functions are defined as follows:

1) Sigmoid:

1
= 5
oa) = ®
2) Hyperbolic Tangent:
eZ — e %
Tanh(z) = — 6
anh(z) = S ©)
3) Rectified Linear Units [37]:
ReLU(z) = max(0, z) @)
4) Exponential Linear Units [38]:
Z z>0
ELU(z) = ®
ale®—1)  |lz[|<0

where « is an hyperparameter that controls the value at
which ELU activation function saturates for inputs with
negative values.

5) Scaled Exponential Linear Units [39]:

Z z>0

SeLU(z) = /\{ ©)

ae” — a [|lz]|< 0

where A > 1 and « are derived from the input. SeLLU also
uses a custom weight initialization with zero mean and

standard deviation of +/ 1/size of input vector.

Also, the five popular weight initialization heuristics consid-
ered are briefly described as follows:

1) random_uniform: initializes weights between —0.05 and
0.05 from a uniform distribution

2) orthogonal [40]: initializes weight through the generation
of orthogonal matrix with scalar gain factor g (chosen to
be 1.0 in our experiments), where gain is a multiplicative
factor that scales the orthogonal matrix

3) xavier [41]: is also known as Xavier uniform initialization
and it initializes weights within [-x x] from uniform
distribution where « is given as:

6
n+ N

where n; is the number of input units and n;,, is the
number of output units.

4) he_normal [42]: initializes weight with samples drawn
from a truncated normal distribution centered around 0
. .. 2
with standard deviation of | [ —
n
l
5) lecun_normal [43]: initializes weight with samples drawn
from a truncated normal distribution centered around 0

. .. 1
with standard deviation of , | —.

ny

IV. EXPERIMENTS

In the first set of experiments we considered a fully-
connected network trained and evaluated on MNIST dataset
of handwritten digits. All experiments were performed on
Intel(r) Core(TM) i7-6700 CPU @ 3.40Ghz and a 64GB of
RAM running a 64-bit Ubuntu 14.04 edition. The software
implementation has been in Pytorch library ! on two Titan
X 12GB GPUs and the feature clustering was implemented
in SciPy ecosystem [44]. The standard MNIST dataset has
60000 training and 10000 testing examples. Each example is
a grayscale image of an handwritten digit scaled and centered
in a 28 x 28 pixel box. Adam optimizer [45] with batch size
of 128 was used to train the model for 200 epochs.

The number of redundant features was computed as in (4)
after the models have been fully trained. Figures 1 a,b,c, and
d show the performance of multilayer perceptron with one,
two, three, and four hidden layer(s), respectively. The average
number of redundant features across all layers of the network
is denoted as n,. It can be observed in Figure 1 that both
width (number of hidden units per layer) and depth (number
of layers in the network) increase 7,.. As the number of hidden
units per layer increases, 7, grows almost linearly. Also, the
higher the number of hidden layers in a network, the higher
the average number of redundant features extracted and the
higher the average feature pairwise correlations. For instance,
the network with one hidden layer and 100 hidden units does
not have any feature pair correlated above 0.4. However, as the
depth increases (for two or more hidden layers) more feature
pairs have correlation above 0.4. This observation is similar for
other hidden layer sizes (200, 300, 500, 700, and 1000) and
depth. In particular, as can be observed in Figure 1d that many
feature pairs in deep multilayer network (with four hidden
layers) are almost perfectly correlated with cosine similarity
of 0.9 even with just 100 hidden units per layer.

In the second set of experiments, we also used the MNIST
dataset to see the impact of activation function and number of
layers in DNNs on susceptibility to redundant feature extrac-
tion. We considered five popular activation functions namely:
Sigmoid, Tanh, ReLU, ELU, and SeLU. In order to focus on
the effect of activation function and number of layers, we fixed
the width (number of hidden units) of the network for all
layers and was set to 1000. For all networks, the weights were
initialized randomly by sampling from normal distribution with
zero mean and standard deviation of 0.01. Pairwise feature
similarity was measured at thresholds 7 = 0.5, 0.6, and 0.7.
As shown in Figure 2 for all thresholds, sigmoid, ELU, and

! http://pytorch.org/
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Fig. 1: Average number of redundant features across all layers (n,.) vs threshold 7 with (a) one (b) two (c) three, and (d) four
hidden layers of multilayer percerptron using MNIST dataset. Network width is the number of hidden units per layer and network
depth is the number of hidden layers. Networks with more than one hidden layer have equal number of hidden units in all layers.
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Fig. 2: Average number of redundant features vs number of hidden layers of multilayer percerptron for four activation functions
with (a) 7 = 0.5 (b) 7 = 0.6 (c) 7 = 0.7 using MNIST dataset. Number of hidden units (n) per layer is 1000
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SeLU have higher tendency to extract redundant features than
those of Tanh and ReLU. In fact, it was observed that the
average number of redundant feature extracted for ReLU and
Tanh did not increase as the number of layers increased. In
fact, as can be observed in Figure 2b, the redundancy slightly
decreases for both ReLU and Tanh as opposed to Sigmoid,
ELU, and SeLU where it is almost always increasing.

Also, Figure 3c reinforces the observation that ReLU acti-
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Fig. 3: Performance on test set of MNIST dataset using (a) Sigmoid (b) Tanh (c) ReLU activation function

vation is able to outperform both sigmoid and tanh activations
in Figures 3a and b for very deep networks and exhibits
inherent nature to extract more diverse features. It can be
observed in Figures 3 that ReLU benefits from both width
and depth than its counterparts. As width and depth increase,
the performance of tanh deteriorates while that of sigmoid
heavily fluctuates. Deep multilayer network was also evaluated
based on the distribution of data in high level feature space.



-15 =10 =5 0 5 10 15

©

YaAarae

(®)

Fig. 4: t-SNE projection [46] of the hidden activation of multilayer perceptron using (a) Sigmoid (b) SeL.U (c¢) Tanh (d) ReLU
activation function trained on 5000 MNIST handwritten digits test samples. All Networks have 1000 hidden units

In this regard, t-distributed stochastic neighbor embedding (t-
SNE) [46] was used to project and visualize the last hidden
activations of single-hidden-layer and four-hidden-layer net-
works using Sigmoid, SeLU, Tanh, and ReLU activations into
2D. The projections of single layer networks and that of four-
layer networks are as shown in Figures 4 and 5, respectively.
The t-SNE projections show that networks with four hidden
layers have clustered activations compared to that of a single
layer resulting in within class holes. This is observation is
pronounced for Sigmoid and SeLU activations.

In the third set of experiments on MNIST, five weight ini-
tialization heuristics were tested and the width of the network
per layer was also fixed and set to 1000. Sigmoid was used in
this set of experiments and only the initialization method and
number of layers were varied. As shown in Figure 6, all weight
initializations for shallow networks have similar tendency to
extract redundant features. As the number of layers increases,
however, he_normal [42] extracts less redundant features than
all its counterparts. This observation is relatively consistent for
thresholds 7 = 0.5, 0.6, and 0.7 as shown in Figures 6a, b, and
¢, respectively. This might explain why it usually outperforms
other initialization methods in most vision task.

In the last set of experiments, we trained deep convolutional
neural networks (VGG-11,13,16,19) on CIFAR-10 dataset to

see how depth is impacting redundant feature extraction. VGG
architecture [1] is a high capacity network designed originally
for ImageNet dataset. We used a modified version of the
VGG network architecture, which has ¢ convolutional layers
and 2 fully connected layer. Constant ¢ in VGG-11, VGG-
13, VGG-16, and VGG-19 are 8, 10, 13, and 16, respectively.
In the modified version of VGG architectures, each layer of
convolution is followed by a Batch Normalization layer [47].
CIFAR-10 dataset contains a labeled set of 60,000 32x32
color images belonging to 10 classes: airplanes, automobiles,
birds, cats, deer, dogs, frogs, horses, ships, and trucks. The
dataset is split into 50000 and 10000 training and testing sets,
respectively. Our baseline model was trained for 300 epochs,
with a batch-size of 128 and a learning rate 0.1. The learning
rate was reduced by a factor of 10 at 150 and 250 epochs.
As shown in Table I, the average number of redundant
fetaures across all layers (n,) also increases as number of
convolutional layers increases. It can be observed that with
13 layers of convolution, the performance of the model starts
deteriorating and the percentage of redundant feature increases
by more than 21% for all 7 values considered. Another
crucial observation is that networks (VGG-11 and VGG-13)
with 8 and 10 convolutional layers have relatively similar
level of redundancy, especially for 7 = 0.7. This means, in
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generalization. It must be noted that the test error of VGG-11
is higher than its counterparts; we believe that perhaps VGG-
11 with 8 layers of convolution is somehow underfitting the
CIFAR-10 dataset.

relative terms, that both VGG-11 and VGG-13 have smaller
degree of overfitting compared to VGG-16 and VGG-19 as
reflected in their test accuracies. This may suggest a strong
correlation between the level of redundancy in a model and its



TABLE I: Performance of VGG models on Cifar-10 dataset. 7 is the threshold of similarity.

VGG oy (%)

Model # Conv Layers T=0.4 T=0.5 T=0.6 T = 0.7 | test accuracy (%)
VGG-11 8 34.0 24.1 17.7 12.8 92.09
VGG-13 10 37.8 26.9 19.1 12.9 93.65
VGG-16 13 58.8 52.6 455 37.2 93.51
VGG-19 16 724 68.3 64.5 60.3 93.24

V. CONCLUSION

This paper shows how size, choice of activation function,
and weight initialization impact redundant feature extraction
of deep neural network models. The number of redundant
features is estimated by agglomerating features in weight space
according to a well-defined similarity measure. Experiments
were carried out using benchmark datasets and select models.
The results show that both width and depth strongly correlate
with redundant feature extraction. It is also established that the
wider and deeper a network becomes, the higher is its tendency
to extract redundant features. It has also been empirically
shown on select examples that ReLU activation function en-
forces extraction of less redundant features in comparison with
other activations function considered. Also, the he_normal
initialization heuristic presented in [42] offers the advantange
of extracting more distinct features for deep networks than
other popular initialization heuristics considered. We illustrated
the concept using fully-connected and convolutional neural
networks on MNIST handwritten digits and CIFAR-10.
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