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ABSTRACT

This paper presents an adaptive, needle variation-based

feedback scheme for controlling affine nonlinear systems with

unknown parameters that appear linearly in the dynamics. The

proposed approach combines an online parameter identifier with

a second-order sequential action controller that has shown great

promise for nonlinear, underactuated, and high-dimensional

constrained systems. Simulation results on the dynamics of an

underwater glider and robotic fish show the advantages of intro-

ducing online parameter estimation to the controller when the

model parameters deviate from their true values or are com-

pletely unknown.

∗This work was supported by the National Science Foundation (IIS 1319602,

ECCS 1446793, IIS 1715714)
†Address all correspondence to this author.

Introduction

Model-based techniques such as single-action control poli-

cies (SAP) [1–3], Nonlinear Model Predictive Control (NMPC)

[4], differential dynamic programming (DDP) [5], and trajectory

optimization [6] can generate highly efficient motions that lever-

age, rather than fight, the dynamics of robotic mechanisms. To

effectively generate and track such trajectories, good knowledge

of the underlying system model and its parameters is often re-

quired. In most control applications, however, various unknowns

or uncertainties exist in the plant and its environment. There-

fore, control systems are required to perform autonomously and

intelligently under a variety of operating conditions. To maintain

stability and performance, a successful design must deal with the

unknown model parameters. Whether these parameters are com-

pletely unknown or change with time in an unpredictable manner,

it is natural and effective to use adaptive control strategies [7–9].

Recently, SAP controllers such as first-order and second-

order sequential action control (SAC) have emerged as a fam-
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We consider nonlinear, control-affine dynamics of the form

f
(

t,x(t),θ ∗,u(t)
)

= g
(

t,x(t),θ ∗
)

+h
(

t,x(t),θ ∗
)

u(t), (1)

where x : R 7→ R
n is the state, θ ∗

∈ R
p is a vector of the true

system parameters, and u : R 7→ R
m is the control.

Each cycle begins with the prediction phase,which forward

simulates the motion using the nominal dynamics f1 with control

u1 and defined by

f1 , f (t,x(t),θ ∗,u1(t)). (2)

Let l1 :Rn
7→R and m1 :Rn

7→R, the trajectory performance

of the system is measured by the cost function

J1 =
∫ t f

t0

l1(x(t))dt +m1(x(t f )). (3)

The prediction phase concludes with simulation of (2) and (3)

over the interval [t0, t f ], where t f = t0 +T is the end of the pre-

diction horizon.

Next, the single-action policy computes a schedule (curve),

u∗2 : (t0, t f ) 7→ R
m, an action value at every moment along the

predicted motion. Then, it chooses an application time τ to apply

a single, fixed-value, action u2(τ).
Given the application time τ ∈ [t0, t f ], a (short) duration λ ,

and the optimal action value u∗2(τ), the perturbed control signal

is piecewise continuous. The resulting control signals u are real

and bounded, such that

u(t) =

{

u1(t), t /∈ [τ − λ
2
,τ + λ

2
]

u∗2(τ), t ∈ [τ − λ
2
,τ + λ

2
]
. (4)

Hence, over each receding horizon, the controller assumes

that the system evolves according to nominal dynamics f1 except

for a brief duration, where it switches to the alternate mode

f2 , f (t,x(t),θ ∗,u∗2(t)). (5)

This problem borrows content from the mode scheduling lit-

erature [1], in the sense that the change in cost (3) due to short

application of u∗2(τ) can be reinterpreted as one of finding the

change in cost due to inserting a new dynamic mode f2 into the

nominal trajectory for a short duration around t = τ . Dropping

time and parameter dependencies for brevity, the mode insertion

gradient

dJ1

dλ+
(τ,u∗2(τ)) = ρ(τ)T

[

f
(

x(τ),u∗2(τ)
)

− f
(

x(τ),u1(τ)
)

]

, (6)

provides a first-order model of the change in cost (3) relative to

the duration of mode f2, where the adjoint variable ρ : R 7→ R
n

is also calculated from the nominal trajectory and is given by

ρ̇ =−∇lT
1 (x)− (∇ f T

1 )ρ, (7)

with ρ(t f ) = ∇mT
1 (x(t f )).

To incorporate the second-order information, the mode in-

sertion Hessian, derived in [3], is given by

d2J1

dλ 2
+

(τ,u∗2(τ)) =( f2 − f1)
T Ω( f2 − f1)

+ρT (∇ f2 · f2 +∇ f1 · f1 −2∇ f1 · f2)

−∇l1 · ( f2 − f1),

(8)

where Ω : R 7→ R
n×n is the second-order adjoint state calculated

from the nominal trajectory and is given by

Ω̇ =−∇ f T
1 Ω−Ω∇ f1 −∇2l1 −

n

∑
i=1

ρi∇
2 f i

1, (9)

subject to Ω(t f ) = ∇2mT
1 (x(t f )).

Note that (6)–(9) assume the state in f1 and f2 corresponds

to the default trajectory, which is simulated in the prediction

phase with nominal control u1.

The control solution that minimizes the second-order expan-

sion of the cost sensitivity to the injected action is given by

u∗2(t) =

(

λ 2

2
Γ+R

)−1(
λ 2

2
∆+λ (−hT ρ)

)

(10)

where

∆ ,







hT (ΩT +Ω)h+2hT
·

[

n

∑
k=1

(∇hk)ρk

]T


u1

+(∇g ·h)T ρ −

[

n

∑
k=1

(∇hk)ρk

]

·g+hT ∇lT

)

Γ ,



hT (ΩT +Ω)h+hT
·

[

n

∑
k=1

(∇hk)ρk

]T

+
n

∑
k=1

(∇hk)ρk ·h
T



 .

The parameter R is a positive definite matrix denoting a metric

on control effort. After computing the schedule u∗2, the second-

order SAP chooses an application time τ and duration λ to apply

a single action. For a complete discussion on choosing these pa-

rameters, along with proofs of convergence guarantees and con-

vergence rate, the reader is referred to [3] and [21].
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Adaptive control of gliding robotic fish in sagittal plane

We consider the case of applying the adaptive scheme to

control the position of an underwater gliding robotic fish in the

sagittal plane [22] that achieves its locomotion by adjusting its

buoyancy and center of gravity. When restricting their motion

in the sagittal plane, the dynamical model for these robots is ex-

pressed as

ẋ =v1 cos(θ)+ v3 sin(θ) (18)

ż =− v1 sin(θ)+ v3 cos(θ) (19)

θ̇ =ω2 (20)

v̇1 =(m1 + m̄)−1 ((m3 + m̄)v3ω2 −m0gsin(θ)

+Lsin(α)−Dcos(α))
(21)

v̇3 =(m3 + m̄)−1 ((m1 + m̄)v1ω2 −m0gcos(θ)

−Lsin(α)−Dcos(α))
(22)

ω̇2 =J−1
2 (M2 +(m3 −m1)v1v3

−mwgrw3 sin(θ)− m̄grp1 cos(θ))
(23)

with

L =
1

2
ρV 2S (CL0 +Cα

L α) , (24)

D =
1

2
ρV 2S

(

CD0 +Cα
Dα2

)

, (25)

M2 =
1

2
ρV 2S

(

CM0 +Cα
MPα +Kq2ω2

)

. (26)

The translational velocities v1 and v3, and the angular ve-

locity ω2 are expressed in the body-fixed frame. The angle θ
represents the robot’s pitch, while α = arctan( v3

v1
) is the angle

of attack. The parameters m1 and m3 represent the stationary

and added mass elements of the system, and J2 is the inertia due

to the stationary mass distribution and the added inertia in wa-

ter. The term mw accounts for the nonuniform hull mass distri-

bution modeled as a point mass at a displacement of rw3 along

the body-fixed z-axis. The movable mass m̄ can move along the

body-fixed x-axis. The control inputs are rp1 and m0 which are,

respectively, the position of the movable mass and the net buoy-

ancy of the robot. The terms L, D, and M2 are the hydrodynamic

lift force, drag force, and pitch moment, respectively. The den-

sity of water is given by ρ , and S represents the robot’s surface

area. The term V =
√

v2
1 + v2

3 is the velocity magnitude. Finally,

the terms CL0,C
α
L ,CD0,C

α
D ,CM0,C

α
MP and Kq2 are the various hy-

drodynamic coefficients described in [22].

To fit (21)–(23) into a linear parametric model, the system is

overparameterized by substituting (24)–(26) into (21)–(23). For

example, substituting (24) and (25) into (21), and expanding the

terms yields

s

s+1
v1 =

[

θ ∗

11 θ ∗

12 θ ∗

13 θ ∗

14 θ ∗

15 θ ∗

16

]























−
v3ω2
s+1

−
m0 sin(θ)

s+1
V 2 sin(α)

s+1
αV 2 sin(α)

s+1

−
V 2 cos(α)

s+1

−
α2V 2 cos(α)

s+1























, (27)

with

θ ∗

11 =
m3 + m̄

m1 + m̄
, θ ∗

12 =
g

m1 + m̄
,

θ ∗

13 =
ρSCL0

2(m1 + m̄)
, θ ∗

14 =
ρSCα

L

2(m1 + m̄)
,

θ ∗

15 =
ρSCD0

2(m1 + m̄)
, θ ∗

16
∗ =

ρSCα
D

2(m1 + m̄)
.

Similarly, the process was repeated for (22) and (23), yielding

s

s+1
v3 =

[

θ ∗

21 · · · θ ∗

26

][

φ21 · · · φ26

]T
, (28)

s

s+1
ω3 =

[

θ ∗

31 · · · θ ∗

36

][

φ31 · · · φ36

]T
. (29)

The second-order SAP controller and its adaptive counter-

part were applied to the system, with a prediction horizon of

T = 3 s and a sampling period of ts = 0.1 s, where the true param-

eters of the system were obtained from [22]. The cost function

used to measure the trajectory performance is given by

J1 =
∫ t f

t0

x̃(t)T QJ x̃(t)dt + x̃(t f )PJ x̃(t f ),

where x̃(t) , x(t)− x∗(t) is the trajectory tracking error, while

QJ = diag(104,104,0,0,0,0) and PJ = diag(103,103,0,0,0,0)
represent a metric for the running and terminal tracking error, re-

spectively. The desired trajectory x∗(t) = [xd(t),zd(t),0,0,0,0]
T

was constructed to mimic multiple dives in the z-direction while

the robot continues to travel forward, i.e.,

xd(t) = 0.2t,

zd(t) = 3sin2

(

2π

200
t

)

.

The parameters were estimated by applying the discrete-

time RLS parameter identifier (15)–(17) to each of the parametric

5 Copyright © 2019 ASME



(a) Trajectory tracking in sagittal plane. (b) Trajectory tracking in in x-axis. (c) Trajectory tracking in in z-axis.

FIGURE 3: Comparison between the adaptive approach (adap) and the non-adaptive SAP controller (n-adap) for trajectory tracking

using an underwater glider in the sagittal plane. The percentage indicates the deviation of the model parameters from their true values.

For the adaptive controller, this indicates the initial deviation of the parameter estimates from their true values.

(a) Parameter estimation error for θ11 . . .θ16. (b) Parameter estimation error for θ21 . . .θ26. (c) Parameter estimation error for θ31 . . .θ36.

FIGURE 4: Error in parameter estimation for the underwater glider in the sagittal plane for the case where the parameters where

initialized with ±50% of their true values.

models in (27)–(29). Each of the parameter identifiers was ini-

tialized with P1(0) = P2(0) = P3(0) = 5×104I, while the initial

parameter estimates were set through varying the system’s true

parameters by a certain percentage, i.e., θ(0) = (1±ζ )θ ∗.

Figure 3 depicts the controller performance in tracking the

desired trajectory. We compare the performance of the adap-

tive and non-adaptive controllers when the parameters deviate

by ±25% and ±50% from their true values. The trajectories la-

beled n-adap XX% show the performance when the wrong pa-

rameters were used by the non-adaptive controller (i.e. the pa-

rameters were not updated and the initial parameters are used

throughout the simulation). On the other hand, the trajectories

adap XX% represent the system’s performance when using the

adaptive controller, and the parameters are estimated online. As

is seen from Figure 3, estimating the parameters improves the

system’s performance. More importantly, comparing the track-

ing performance with 50% wrong parameters, the adaptive struc-

ture results in good tracking performance while the non-adaptive

controller fails at tracking the desired trajectory.

Figure 4 shows the parameter estimation errors θ ∗

1 − θ1(t),
θ ∗

2 −θ2(t), and θ ∗

3 −θ3(t). Only partial parameter convergence

was achieved, as some parameters did not converge to their true

6 Copyright © 2019 ASME



values. This issue is commonly encountered when the system

is overparametrized to allow for linear parameterization of the

system. However, the adaptive controller was still able to track

the desired trajectory tracking with high accuracy.

Adaptive control of tail-actuated swimming for robotic
fish

We now consider the case of applying the adaptive con-

troller to perform trajectory tracking using a robotic fish with

tail-actuated swimming. These robots achieve locomotion by

continuously flapping their tail. Rather than controlling the tail

position at every moment in time, it is typical to control the am-

plitude and bias of the tail flapping under a constant flapping

frequency [23, 24]. The simplified averaged model of the robot

is given by

ẋ =v1 cos(ψ)− v2 sin(ψ) (30)

ż =v1 sin(ψ)+ v2 cos(ψ) (31)

ψ̇ =ωz (32)

v̇1 =
m2

m1
v2ωz −

c1

m1
v1

√

v2
1 + v2

2

+
c2

m1
v2

√

v2
1 + v2

2 arctan(
v2

v1
)

+
K f mL2

12m1
ω2

α α2
a (3−

3

2
α2

0 −
3

8
α2

a )

(33)

v̇2 =−
m1

m2
v1ωz −

c1

m2
v2

√

v2
1 + v2

2

−
c2

m2
v2

√

v2
1 + v2

2 arctan(
v2

v1
)

+
K f mL2

4m2
ω2

α α2
a α0

(34)

ω̇z =(m1 −m2)v1v2 − c4ω2
z sgn(ωz)

−
KmmL2

4J3
cω2

α α2
a α0

(35)

where v1,v2, and ωz are the surge, sway, and angular velocities

of the robot, while x,y are the robot’s position in 2D and ψ is its

yaw angle. The various model parameters are represented by the

variables m1,m2,c,c1,c2,Km,K f ,m,L, and c4. Finally, the tail

flapping frequency is given by ωα , while αa and α0 represent the

flapping amplitude and bias, respectively.

Similarly to the underwater glider model, we can rewrite

(33)–(35) in a linear parametric form

s

s+1
v1 =

[

θ ∗

11 · · · θ ∗

14

][

φ11 · · · φ14

]T
, (36)

s

s+1
v2 =

[

θ ∗

21 · · · θ ∗

24

][

φ21 · · · φ24

]T
, (37)

s

s+1
ωz =

[

θ ∗

31 · · · θ ∗

33

][

φ31 · · · φ33

]T
. (38)

The second-order SAP controller and its adaptive counter-

part were applied to the system, controlling the squared flapping

amplitude α2
a and flapping bias α0 with the flapping frequency

ωz fixed at 3π/2. The prediction horizon for both controller was

set to T = 10 s with a sampling period of ts = 0.2 s, where the

true parameters of the system were obtained from [24]. The cost

function used to measure the trajectory performance is given by

J1 =
∫ t f

t0

x̃(t)T QJ x̃(t)dt + x̃(t f )PJ x̃(t f ),

where x̃(t) , x(t)− x∗(t) is the trajectory tracking error, while

QJ = diag(104,104,0,0,0,0) and PJ = diag(103,103,0,0,0,0)
represent a metric for the running and terminal tracking error, re-

spectively. The desired trajectory x∗(t) = [xd(t),yd(t),0,0,0,0]
T

was that of a circular trajectory centered around (x,y) = (0,0.5),
i.e.,

xd(t) =0.5sin

(

2π

180
t

)

,

yd(t) =0.5

(

1− cos

(

2π

180
t

))

.

The parameters were estimated by applying the discrete-

time RLS parameter identifier (15)–(17) to each of the paramet-

ric models in (36)–(38). Each of the parameter identifiers was

initialized with P1(0) = P2(0) = P3(0) = 108I, while the initial

parameter estimates were set through varying the system’s true

parameters by a certain percentage, i.e., θ(0) = (1±ζ )θ ∗.

Figure 5 depicts the controller performance in tracking the

desired trajectory using the tail-actuated robotic fish. We com-

pare the performance of the adaptive and non-adaptive con-

trollers when the parameters deviate by ±50% and ±90% from

their true values. The trajectories labeled n-adap XX% show the

performance when the wrong parameters were used by the non-

adaptive controller (i.e. the parameters were not updated and

the initial parameters are used throughout the simulation). On

the other hand, the trajectories adap XX% represent the system’s

performance when using the adaptive controller, and the param-

eters are estimated online. As is seen from Figure 5, estimating

7 Copyright © 2019 ASME



(a) Tracking a circular trajectory in the XY plane. (b) Trajectory tracking in in x-axis. (c) Trajectory tracking in in y-axis.

FIGURE 5: Comparison between the adaptive approach (adap) and the non-adaptive SAP controller (n-adap) for trajectory tracking

using a tail-actuated robotic fish. The percentage indicates the deviation of the model parameters from their true values. For the adaptive

controller, this indicates the initial deviation of the parameter estimates from their true values.

(a) Parameter estimation error for θ11 . . .θ14. (b) Parameter estimation error for θ21 . . .θ24. (c) Parameter estimation error for θ31 . . .θ33.

FIGURE 6: Error in parameter estimation for the tail-actuated robotic fish for the case where the parameters where initialized with ±90%

of their true values.

the parameters improves the system’s performance. More impor-

tantly, comparing the tracking performance with 90% wrong pa-

rameters, the adaptive structure results in much improved track-

ing performance over using the non-adaptive controller.

Figure 6 shows the parameter estimation errors θ ∗

1 − θ1(t),
θ ∗

2 − θ2(t), and θ ∗

3 − θ3(t). Similarly to the underwater glider

system, only partial parameter convergence was achieved, as

some parameters did not converge to their true values. This issue

is commonly encountered when the system is overparametrized

to allow for linear parameterization of the system. However, the

adaptive controller was still able to track the desired trajectory

tracking with high accuracy.

Conclusion and Future Work

To ensure successful operation, model-based algorithms re-

quire adequate description of the system’s model and its underly-

ing parameters. In some applications this poses a real limitation,

as it might be difficult to measure some parameters directly, or

because of the variability of these parameters depending on the

environment the system is operating in. To overcome these chal-

lenges, it is desirable to estimate these parameters online while

ensuring successful operation. In this paper we present a new

adaptive scheme for nonlinear systems that combines a second-

order single action policy controller with an online parameter es-

timator to update the system parameters used for prediction and

control synthesis. This scheme offers a simple, yet effective, ap-

proach to controlling nonlinear systems with unknown parame-

ters, and further improves the robustness of the SAP controller.

8 Copyright © 2019 ASME



Simulation results are shown for applying the proposed adaptive

structure to trajectory tracking for an underwater glider in the

sagittal plane and tail-actuated robotic fish, and demonstrate the

advantages of utilizing this structure when the model parameters

are deviate from their true values, or are completely unknown.

Future work will focus on the stability of the closed loop system

under the proposed approach, with experimental work to further

validate the applicability of this approach.

REFERENCES
[1] Ansari, A. R., and Murphey, T. D., 2016. “Sequential

action control: Closed-form optimal control for nonlinear

and nonsmooth systems.”. IEEE Trans. Robotics, 32(5),

pp. 1196–1214.

[2] Mamakoukas, G., MacIver, M. A., and Murphey, T. D.,

2016. “Sequential action control for models of underac-

tuated underwater vehicles in a planar ideal fluid”. In 2016

American Control Conference (ACC), pp. 4500–4506.

[3] Mamakoukas, G., MacIver, M. A., and Murphey, T. D.,

2018. “Feedback synthesis for underactuated systems using

sequential second-order needle variations”. The Interna-

tional Journal of Robotics Research, 37(13-14), pp. 1826–

1853.

[4] Allgöwer, F., and Zheng, A., 2012. Nonlinear model pre-

dictive control, Vol. 26. Birkhäuser.
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