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ABSTRACT

Autonomous underwater gliders have become valuable tools

for a myriad of applications ranging from ocean exploration

to fish tracking to environmental sampling. To be suitable for

these types of applications, precise sensing and monitoring is de-

sired, which makes accurate trajectory control important. How-

ever, highly nonlinear under-actuated dynamics present signifi-

cant challenges in control of gliders. In this work a backstepping-

based controller is proposed for an underwater glider to track a

desired position and heading reference in the sagittal plane with

only two control inputs, the buoyancy and center of gravity along

the longitudinal direction. In particular,the under-actuation issue

is addressed by exploiting the coupled dynamics and introducing

a new modified error that combines the tracking errors of head-

ing and position references. In addition, an auxiliary system is

incorporated to account for input constraints. Finally, a sliding

mode observer is designed to obtain the estimates of body-fixed

velocities, to facilitate practical implementation of the designed

controller. The effectiveness of the proposed control scheme is

demonstrated via simulations and its advantages are shown via

comparison with a PID controller.

1 INTRODUCTION

Underwater gliders realize horizontal travel by shifting the

center of gravity and changing the buoyancy in tandem. The

concept was first introduced by Henrey Stommel [1] and mo-

tivated several gliders, most notably SLOCUM [1], Spray [2],

and Seaglider [3]. These vehicles are known for high energy

efficiency, allowing them to have exceptionally long operation

time. The latter has inspired the development of other under-

water vehichles that exploit gliding. One example is the gliding

robotic fish [4], which combines the gliding mechanism with the

tail-actuated swimming [5] to realize both high energy-efficiency

and high maneuverability. It has demonstrated promise in envi-

ronmental sensing applications [6]. Given the myriad of appli-

cations in oceanography, marine science, water quality monitor-

ing, and surveillance, it is of interest to realize precise trajectory

tracking for underwater gliders and other gliding type-vehicles.

However, control of gliders presents a significant challenge, due

to their highly nonlinear and under-actuated dynamics.

Early work in control of gliders saw the use of PID con-

trollers for their simplicity [2], [3]. In the past 2 decades, more

advanced control methodologies have been proposed for steady-
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state glide stabilization, position control, path following, and tra-

jectory tracking in literature. Many of these can be seen in the

review by [7]. Sliding mode control is often adopted because

of its robustness to disturbances. Mat-Noh et al. used a lin-

earized glider model to compare an Integral Super Twisting Slid-

ing Mode controller to several other sliding mode variants for

stabilizing a gliding path between 30 degrees and 45 degrees [8].

Yang and Ma used sliding mode control to track trajectories of

the pitch angle and ballast mass [9]. A number of other control

methods have been proposed for underwater gliders. For exam-

ple, Leonard and Graver [10], [11] use a linear quadratic regula-

tor on linearized dynamics to control the magnitude of velocity

on a steady state glide path. Mahmoudian and Woosely develop

an efficient path planning strategy that concatenates equilibrium

turning and gliding motions, then implement the strategy using

PID controllers to reach specified center of gravity and center of

buoyancy [12]. Neural network-based control was used to im-

plement a self-tuning PID controller to track the velocity along

a single axis in the inertial frame [13]. Isa and Arshad analyzed

the use of a neural network as a model predictive controller and

a gain tuner algorithm to control pitch angle and linear velocities

of a linearized glider model [14]. Nag et al. [15] compared fuzzy

logic control against PID for pitch and depth tracking. Zhang

et al. [16] used nonlinear passivity-based control to stabilize the

glide path of a glider with a tale.

The aforementioned control approaches have largely fo-

cused on stabilization based on linearized models, or heading

and velocity control. In fact, most work on underwater glider

control focus on controllers designed to reach a desired pitch an-

gle, velocity, or specified depth [17]. The control of gliders has

progressed, but a systematic model-based control approach for

trajectory tracking that accommodates nonlinear under-actuated

dynamics and input constraints for such systems is still lacking.

In this paper, a backstepping-based trajectory tracking controller

is proposed for sagittal plane motion of underwater gliders, in-

cluding the heading, horizontal position, and vertical position

(depth). Backstepping-based control design presents a practical

and promising approach because it offers a systematic framework

that guarantees the stability of the closed-loop system, and allows

the accommodation of input constraints.

Limited work has been reported in on backstepping-based

control of underwater gliders [17]. In [17] the authors pro-

posed an adaptive backstepping control for tracking of the roll

angle, pitch angle, and velocity of an underwater glider. In ad-

dition, most works stray away from the position tracking prob-

lem because of the difficulty in measuring horizontal-plane po-

sition underwater. However, this is still a viable topic of interest

for applications where there are relative positions such as target

tracking. Our proposed trajectory tracking scheme in this pa-

per, on the other hand, addresses simultaneous tracking of head-

ing, depth, and horizontal position that are of direct relevance

to various sampling and target tracking applications for the un-

derwater environment. The proposed scheme accommodates the

under-actuation nature of the glider by exploiting coupling of the

dynamics, and it incorporates input constraints via an auxiliary

system. In particular, inspired by [18], a new error coordinate

dependent on both the heading and the horizontal position error

is designed, such that the vehicle’s pitch velocity can be used as

a virtual input to regulate the aforementioned modified error. In

this manner, the controller is able to handle the tracking of both

heading and horizontal trajectories, apart from tracking the ref-

erence in the depth direction. In addition, to compensate for the

error due to the difference between feasible and “desired” inputs,

an auxiliary system is incorporated. Furthermore, to implement

the trajectory tracking control, a sliding mode observer is imple-

mented to estimate the body-fixed velocities which are otherwise

not directly accessible. The rest of the paper is organized as fol-

lows. The dynamic model of a glider in the saggital plane is

described and the error dynamics are derived in Section 2. In

Section 3 the proposed controller scheme is presented. Simula-

tion results are provided in Section 4, followed by concluding

remarks in Section 5.

2 System Modeling

Figure 1. Illustration of the reference frames and mass distribution for a

glider [4].

2.1 Glider Model
The glider in this work, pictured in Fig. 1, has two relevant

reference frames. The first is the inertial frame, represented by

Axyz. The Az axis is along the direction of gravity, and Ax and Ay

are defined in the horizontal plane, with the origin A as a fixed

point in space. The body-fixed frame is denoted by Oxbybzb
with

the origin O at the geometry center of the glider body. The Oxb

axis is along the body’s longitudinal axis pointing to the head,
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the Ozb
axis is perpendicular to the Oxb

axis in the sagittal plane

of the glider pointing towards the vehicles’s underbelly, and Oyb

axis is formed according to the right-hand orthonormal principle.

The glider is modeled as a six degree-of-freedom (DOF) rigid

body with an internal moving mass (for adjusting center of grav-

ity) and a ballast water tank (for buoyancy control). The internal

movable mass, which is restricted to the longitudinal axis, has

direct influence of the pitch angle, and through the coupling of

dynamics, influences motion in other degrees of freedom as well.

The negative net buoyancy is given as the sum of the uniformly

distributed stationary mass ms(including the water in tank), in-

ternal movable mass m̄, and non-uniformly distributed mass mw

minus the mass m of the water displaced by the vehicle. This can

be expressed as m0 = ms + m̄+mw −m where m0 < 0 cause the

vehicle to float and m0 > 0 causes the vehicle to sink. Here m0

is effectively determined by the water pumped in and out of the

ballast tank.

In this paper, the aim is to control the motion in the sagit-

tal plane, which is the primary mode of locomotion for gliders.

In this case, the control inputs are the negative net buoyancy m0

and the distance rp1 of a movable mass from the center of gravity.

The six dimensional state vector consisting of the position [x,z]
and pitch orientation θ of the vehicle given in the inertial frame

and the body-fixed linear velocities [v1,v3] and pitch angular ve-

locity ω2 is given by

X = [x,z,θ,v1,v3,ω2]
T (1)

There dynamic equations are given by [4]

Ẋ =































v1 cosθ+ v3 sinθ
−v1 sinθ+ v3 cosθ

ω2
1

m1+m̄
(−(m3 + m̄)v3ω2 −m0gsinθ+

Lsinα−Dcosα)
1

m1+m̄
((m1 + m̄)v1ω2 +m0gcosθ+

Lcosα−Dsinα)
1
J2
(M2 +(m3 −m1)v1v3 +mwgrw3 sinθ−

m̄grp1 cosθ)































(2)

where α = arctan
v3
v1

is the angle of attack, and m1 and m3 are

components of the added mass due to surrounding fluid. The

hydrodynamic forces of lift, drag and pitch moment are given as















L =
1

2
ρV 2S(CL0 +Cα

L α)

D =
1

2
ρV 2S(CD0 +Cα

Dα2)

M2 =
1

2
ρV 2S(CM0

+Cα
MP

α+Kq2ω2)















(3)

where constants with ‘C’ in their notations are hydrodynamic

coefficients, ρ is the density of water, V =
√

v2
1 + v2

3 is the total

magnitude of the velocity, S is the characteristic area of the vehi-

cle and Kq2 is a rotational damping coefficient. For convenience,

we will refer to the accelerations as





v̇1

ω̇2

v̇3



=





f1(v1,ω2,v3)+u1g1(θ)
f2(θ,ω2,v1,v3)+u2g2(θ)
f3(v1,ω2,v3)+u1g3(θ)



 (4)

where u1 = m0 and u2 = rp1.

2.2 Error Dynamics
The problem of trajectory tracking involves controlling a ve-

hicle to follow a time-dependent path. In this work, aim is to have

the pose P= [x,z,θ]T follow a trajectory in the inertial coordinate

system given by the desired path Pd(t) = [xd(t),zd(t),θd(t)]
T . To

solve this problem, the inertial frame error Pe(t) = [xe,ze,θe]
T is

define as

Pe(t) =





x− xd

z− zd

θ−θd



 (5)

where we drop the time dependent notation for convenience. The

derivative of Ṗe = Ṗ− Ṗd is given by

Ṗe =





ẋ− ẋd

ż− żd

θ̇− θ̇d



 (6)

Since the velocity dynamics in equation (4) are given in the

body-fixed frame, we denote RI
B as the rotation matrix from the

inertial frame to the body-fixed frame. RB
I is the inverse of RI

B

defining the rotation matrix from the body-fixed frame to the in-

ertial frame, and therefore, Ṗ = RB
I (θ)[v1,v3,ω2]

T is given by the

first three entries of Ẋ .

With this formulation, trajectory tracking becomes a stabi-

lization problem with respect to the error dynamics. The control

objective is now to drive the kinematic error vector Pe to a region

around the origin [0,0,0]T .

3 Control Design
3.1 Overview of Control Design

Given the error dynamics and problem formulation, there are

a few choices of Lyapunov functions that may, at first, seem like

good candidates for the design of a backstepping-based trajectory

tracking controller for underwater gliders. For instance, a natural
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choice would be to use the function V = 1
2
(x2

e + z2
e +θ2

e). How-

ever, due to the under-actuated nature of the system and coupled

effects of the inputs, this choice can lead to an over constraint

on the design of the control law. The choice V = 1
2
(x2

e + z2
e)

only tracks the position variables and requires the derivatives of

the accelerations and inputs. The choices V = 1
2
(z2

e + θ2
e) and

V = 1
2
(x2

e + θ2
e) allow for design of controllers that are only ca-

pable of tracking one position variable along with the pitch angle

which can be done reasonably well by a PID controller.

In order to achieve tracking for the entire set of references

(heading and horizontal and vertical positions), inspiration is

taken from [18] and a new variable is defined

ye = θe − csin(θ) tanh(xe)

= θ− (θd + csin(θ) tanh(xe))
(7)

to be used in the Lyapunov analysis. The motivation for this

variable comes from the fact that the system does not have di-

rect control over translation in the horizontal direction. Instead,

it achieves forward translation by conversion of vertical velocity

via the lift force which is indirectly dependent on the pitch angle.

Since this is the only means to achieve translation, it is a natu-

ral way to correct for the error in the x position. ye is chosen to

allow the pitch angle to be used to minimize xe, but still allow

tracking of θd when xe is small enough. In particular, xe ⇒ 0

and ye ⇒ 0 implies that θe ⇒ 0. in (7), c is a positive constant

specifying a maximum perturbation from θd due to xe. Since

|sin(θ) tanh(xe)|< 1, to keep the magnitude of the error xe from

completely dominating the pitch error θe, c should be thought of

as the maximum control authority dedicated to minimizing xe.

The sinθ term plays two roles. First, when θ is 0 or simply very

small, the ability to control translation in the longitudinal direc-

tion is lost, so less weight is placed on the correction angle. This

also mitigates the possibility that the summation of θe and the

correction angle will negate each other to make θ = 0 and cause

bad tracking. However, this also means that the vehicle cannot

minimize xe if θd and θ are zero, meaning it is not expected to

correct the x position during a flat dive trajectory. Secondly, the

sign of the correction angle is determined by both the orientation

and the position error. As it turns out, the sign of the correction

angle should be the product of the sign of xe and θ which is han-

dled by the signum-like properties of the hyperbolic tangent and

sin functions.

We choose the Lyapunov function V = 1
2
(z2

e + y2
e) to design

the control laws for u1 and u2. V̇ can be made negative definite

by choosing ẏe =−kyye and że =−kze.

V̇ = ze(−v1 sinθ+ v3 cosθ− żd)+ ye(ω2 −ω2d

−c(sin(θ)sech(xe)
2
ẋe + cos(θ)θ̇ tanh(xe)))

(8)

We choose the virtual inputs as αz and αy and define new states

ζ1 and ζ2 as the difference between the virtual inputs and their

desired values αzd and αyd .

αz =−v1 sinθ+ v3 cosθ

αzd = żd − kzze

αy = ω2 − c(sin(θ)sech(xe)
2
ẋe + cos(θ)θ̇ tanh(xe))

αyd = ω2d − kyye

ζ1 = αz −αzd

ζ2 = αy −αyd

(9)

To incorporate the additional states, a new Lyapunov function

and its derivative are defined as

VA =
1

2
(z2

e + y2
e)+

1

2
(ζ2

1 +ζ2
2)

V̇A = ze(ζ1 − kzze)+ ye(ζ2 − kyye)+ζ1ζ̇1 +ζ2ζ̇2

(10)

The derivatives

ζ̇1 = α̇z − α̇zd

ζ̇2 = α̇y − α̇yd (11)

introduce ω̇2, v̇1, and v̇3 which are directly influenced by the in-

puts u1 and u2. Using these to achieve stability allows the design

of a controller which will be discussed later in the paper. If we

choose

α̇z = α̇zd − k1ζ1

α̇y = α̇yd − k2ζ2
(12)

the derivative of the Lyapunov function becomes

V̇A = ze(ζ1 − kzze)+ ye(ζ2 − kyye)− k1ζ2
1 − k2ζ2

2 (13)

By adding and subtracting the terms ( 1
4kz

ζ2
1 +

1
4ky

ζ2
2), it can be

rewritten as

V̇A =−kz(z
2
e −

zeζ1

kz

+
1

4k2
z

ζ2
1)− ky(y

2
e −

yeζ2

ky

+
1

4k2
y

ζ2
2)

−ζ2
1(−kz +

1

4k1
)−ζ2

2(−ky +
1

4k2
)

=−
1

4kz

(ze −
ζ1

2kz

)2 −
1

4ky

(ye −
ζ2

2ky

)2 −ζ2
1(

1

4kz

− k1)

−ζ2
2(

1

4ky

− k2)

(14)
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From this it is easy to see that V̇A < 0 for 1
4
< k1kθ and 1

4
< k2kθ.

By Lyapunov’s stability theorem, the system is asymptotically

stable about the point (ze = 0,ye = 0) .

3.2 Synthesis of Controller
The controller design follows from the final steps of the sta-

bility analysis in the previous section. Using Eqs. (4) and (12)

control laws are created for u1 and u2. From Eq. (12) the deriva-

tives of the virtual inputs are

α̇z =−v̇1 sinθ− v1 cos(θ)θ̇+ v̇3 cosθ− v3 sin(θ)θ̇

=−v̇1 sinθ+ v̇3 cosθ+ γz

α̇y = ω̇2 − c(sin(θ)((sech(xe)
2
ẍe)−2ẋ2

e tanh(xe)sech(xe)
2

− θ̇2 tanh(xe))+ cos(θ)(ω̇2 tanh(xe)+ θ̇sech(xe)
2
ẋe)

= ω̇2(1− ccos(θ) tanh(xe))− csin(θ)sech(xe)
2(v̇1 cosθ

+ v̇3 sinθ)+ γy

ẍe = v̇1 cosθ− v1 sin(θ)θ̇+ v̇3 sinθ+ v3 cos(θ)θ̇− ẍ

= v̇1 cosθ+ v̇3 sin(θ)+ γx

(15)

where γx, γy, and γz are the state-dependent terms that are not

functions of the inputs. Plugging Eq. (4) into Eq. (15) and mov-

ing γy and γz to the left hand side of the equations yield

−( f1 +g1u1)sinθ+( f3 +g3u1)cosθ = α̇zd − k1ζ1 − γz

( f2 +g2u2)(1− ccos(θ) tanh(xe))− csin(θ)sech(xe)
2(( f1+

g1u1)cosθ+( f3 +g3u1)sinθ) = α̇yd − k2ζ2 − γy

(16)

where gi and fi are short-hand for the corresponding functions in

Eq. (4). Using these equations, the input can be calculated as

[

u1

u2

]

=

[

1 0

Ψ1 Ψ2

]−1 [
Γ1

Γ2

]

(17)

where

Γ1 =
1

(−g1 sinθ+g3 cosθ) (α̇zd − k1ζ1 − γz

+ f1 sinθ− f3 cosθ)

Γ2 = α̇yd − k2ζ2 − γy − f2(1− ccos(θ) tanh(xe))

+csin(θ)sech(xe)
2( f1 cosθ+ f3 sinθ)

Ψ1 =−csin(θ)sech(xe)
2(g1 cosθ+g3 sinθ)

Ψ2 = g2(1− ccos(θ) tanh(xe))

(18)

We will denote this controller as c1 hereafter.

3.3 Synthesis of Controller Incorporating Input Con-
straints

To take control constraints into consideration, we take inspi-

ration from [19] and [20] to introduce artificial state variables to

retain information about the input saturation. The vector [χz,χy]
is generated by the difference between saturated inputs that are

actually applied to the system and the inputs u1 and u2 generated

by the controller. We desire to make use of the input saturation

in such a way that the controller can provide more meaningful

input to the system (e.g. calculate inputs within achievable lim-

its) while still achieving acceptable performance. To design the

new controller, let the following equations define the generation

of [χz,χy].

χ̇z =−kχzχz −A(û1 −u1)

χ̇y =−kχyχy −Ψ2(û2 −u2)

A = (−g1 sinθ+g3 cosθ)

(19)

where û1 and û2 play the role of the saturated input. By solving

for these, the aim is to design a controller that tends to compute

inputs that lie within the saturation limits. In addition, let

α̃z = αz −χz

α̃y = αy −χy
(20)

where α̃z and α̃y are virtual input errors. With this with the sta-

bility analysis proceeds as in Eqs. (8)-(10). In Eq. (11), it can be

assumed that in practical implementation, an achievable input is

applied to the system and let Eq. (11) be represented by

ζ̇1 = ˙̃αz − α̇zd

ζ̇2 = ˙̃αy − α̇yd (21)

Using the derivative of (20), a substitution is made to arrive

at

ζ̇1 = α̇z − χ̇z − α̇zd

ζ̇2 = α̇y − χ̇y − α̇yd (22)

The choice

α̇z = α̇zd + χ̇z − k1ζ1

α̇y = α̇yd + χ̇y − k2ζ2
(23)

5 Copyright © 2019 ASME



leads to the same results as the stability analysis of the original

controller presented in the previous section. Control laws for

û1 and û2 can now be designed using Eqs. (2), (19), and (23).

Substituting Eqs. (2) and (19) into Eq. (23) yields

Au1 − f1 sin(θ)+ f3 cos(θ)+ γz = α̇zd − k1ζ1

−kχz χz −A(û1 −u1)
(24)

Ψ1u1 +Ψ2u2 + f2(1− ccos(θ) tanh(xe))

−csin(θ)sech(xe)
2( f1 cosθ+ f3 sinθ)+ γy

= α̇yd − k2ζ2 − kχy χy −Ψ1(û1 −u1)−Ψ2(û2 −u2)
(25)

Substituting Γ1 for u1 and solving for û1 and û2 yields

[

û1

û2

]

=

[

1 0

Ψ1 Ψ2

]−1 [
Γ1

Γ2

]

−

[

kχz χz

(−g1 sinθ+g3 cosθ)

kχyχy

]

(26)

where Ψ1, Ψ2, Γ1, and Γ2 have the same definitions as Eq. (18).

We will denote this controller as c2 throughout the rest of the

paper.

It is worth noting that the design does not stop the controller

from exceeding the input constraint values as they are not di-

rectly incorporated. It, instead, uses saturation as feedback to

penalize the controller for generating control signals beyond the

constraints and drives the difference between the controller gen-

erated inputs and saturated inputs to zero. For this reason, the

new control laws for û1 and û2 are treated as a replacement for

the original controller u1 and u2 in Eq. 20. If there is no occur-

rence of saturation, the controller acts as the original design c1

in Eq. (17).

3.4 Sliding Mode Observer Design
A challenging problem for the underwater gliders is to mea-

sure the linear velocities which are highly dispersed through out

the dynamic equations. In order to implement the control design,

a sliding mode observer based on results by Yaun et al. [21] is

used to estimate the body-fixed velocities. This is done by first

deriving the velocity vz along the Az axis described in Section 2

via the measurements of the depth z. This will be taken as the

measurement vz. A sliding function

s = ż− ˙̂z = vz − v̂z (27)

is then defined, where v̂z is the estimate of vz. The sliding surface

is guaranteed if sṡ < 0. Note that

[

vx

vz

]

=

[

ẋ

ż

]

= RB
I

[

v1

v3

]

(28)

which implies inertial velocity dynamics become

[

v̇x

v̇z

]

= RB
I

[

v̇1

v̇3

]

+ ṘB
I

[

v1

v3

]

(29)

Using this result, the dynamics of the inertial velocity estimate

become a function of the body fixed velocity estimates and the

measured state variables defined as

[

˙̂vx

˙̂vz

]

= RB
I

[

˙̂v1

˙̂v3

]

+ ṘB
I

[

v̂1

v̂3

]

+

[

kx sgn(s)
kz sgn(s)

]

(30)

With this, the sliding function dynamics become

ṡ = (−( ˙̃v1 + ṽ3ω2)sinθ+( ˙̃v3 − ṽ1ω2)cosθ− kz sgn(s))

˙̃v1 = f1(ṽ1,ω2, ṽ3)+u1g1(θ)

˙̃v3 = f3(ṽ1,ω2, ṽ3)+u1g3(θ)

(31)

where ṽi = vi − v̂i, i = 1,3. Choosing the gain

kz > |− ( ˙̃v1 + ṽ3ω2)sinθ+( ˙̃v3 − ṽ1ω2)cosθ| (32)

ensures that s reaches the sliding surface. Following the results

of Yaun et. al [21], invoking Phillipov’s theory of equivalent

dynamics on Eq. (30) and locally linearizing them around the

inertial frame velocities yield.

˙̃vx = (
∂ fx

∂vx

−
kx

kz

∂ fz

∂vx

)ṽx (33)

where ( fx, fz) = (v̇x, v̇z). The convergence of vx can be ensured

by designing kx such that
∂ fx
∂vx

− kx
kz

∂ fz
∂vx

< 0.

4 Simulation Results
Model parameters for simulation are shown in Table 1 with

limits of ±0.1 kg on m0 and ±7 mm on rp1. Two scenarios

are chosen to show the effectiveness of the proposed controller

with (c2) and without (c1) consideration of saturation and com-

pare them to a PID controller that was tuned with the matlab

PID tuner and then refined through simulation runs to give good

tracking performance. The PID controller is chosen as the base-

line method over an LQR due to the fact that it is simple to im-

plement, used in many existing gliders, and the fact that linear

control laws based on local linearization have good performance

only near the gliding equilibrium. [22]. The trajectory in both

simulations are generated by a virtual copy of the vehicle using

the same parameters as the actual vehicle.
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Table 1. Simulation Parameters

Parameter Value Parameter Value

m1 8 kg S 0.019 m2

m3 10.8 kg Cα
MP

0.5665

m̄ 1.6 kg CL0 0.074606

J2 0.08 m/s2 Cα
L 0.45275

g 9.81 kg CD0 0.45275

rw3 0.005 m Kq2 -0.8

c π
6

radians CM0
0.0075719

ρ 997 kg/m3

4.1 Simulation 1: Mismatched Initial Conditions
The first scenario has the vehicle at an offset from the trajec-

tory with no disturbances. The initial conditions of the state vec-

tor [v1(0),v3(0),ω2(0),x(0),z(0),θ(0)] for the vehicle and vir-

tual copy are [0.001,0.001,0,0,2,0] and [0.001,0.001,0,0,0,0].
The x-z path are plotted for the PID and the proposed controller

with (c2) and without saturation considerations (c1) in Fig. (2).

The evolution of the control is also plotted for each controller in

Fig. (3) as well as the velocity estimates associated with c2. It

can be seen that, after stabilizing ze, the PID tracks θd fairly well

and maintains a steady offset in x. c1 and c2 both converge to the

path. Of course, they initially induce an error on the pitch angle

to minimize the error xe along the horizontal direction and then

stabilizes the pitch error. The main difference between c1 and c2

is the control evolution. It can be seen that c2 produces less ag-

gressive behavior, while achieving similar tracking performance.

This is desirable since the rate of change of the inputs has direct

implications in the energy expenditure of underwater gliders.

4.2 Simulation 2: Constant Disturbance
The second scenario keeps the same initial conditions, but

adds a constant disturbance of −0.05 N to the drag D and −0.01

N on the lift L terms in the dynamic equations. It can be seen in

Fig. (4) that the velocity estimation error is increased by noise.

This slightly affect the performance of the c1 and c2 as they have

small steady state offsets from and desired pitch angle. The PID

on the other hand is diverging from the path, but tracks zd and

θd well. Fig. (5) shows similar results to that of simulation 1 as

well as the ability of c1 and c2 to take advantage of the force to

reduce control effort.

5 Conclusion and Future Work
In this paper the design of a backstepping-based trajectory

tracking controller for underwater gliders was presented. In par-
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Figure 2. Resultant and reference trajectories of (a) xz-plane path and

(b) pitch of the proposed controller, with (c2) and without (c1) saturation

consideration, and the PID with mismatched initial conditions. (c) depicts

the estimated and actual velocities.

ticular, a choice of a Lyapunov function that allowed the con-

troller to achieve tracking of a sagittal plane position and head-

ing was presented. The proposed controller is able to make use of

the pitch angle to control both orientation and horizontal transla-

tion. This control scheme is applicable to both hybrid gliders and

gliding robotic fish, where it can be used to mitigate energy con-

sumption, and purely buoyancy-propelled gliders, where there is

no direct control for horizontal velocity. A simple modification

that uses saturation as feedback, producing a slightly less ag-

gressive controller while achieving similar performance is also

7 Copyright © 2019 ASME
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Figure 3. Control input (a) u2 (rp1) and (b) u1 (mo) of the proposed con-

troller with (c2) and without (c1) saturation consideration and PID during

simulation 1.

presented. In this implementation, only magnitude saturation is

considered by providing upper and lower limits. However, this

scheme can also capture input saturation due to rate limits if the

inputs can be measured.

Future work will include estimating disturbances in the ob-

server design, followed by estimating the x position via dead

reckoning and sporadic surface measurements. Next, experimen-

tal validation of both the observer and controller designs will

be performed. Finally, the design approach will be extended to

tracking control of a glider in full 3D motion.
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