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ABSTRACT

Autonomous underwater gliders have become valuable tools
for a myriad of applications ranging from ocean exploration
to fish tracking to environmental sampling. To be suitable for
these types of applications, precise sensing and monitoring is de-
sired, which makes accurate trajectory control important. How-
ever, highly nonlinear under-actuated dynamics present signifi-
cant challenges in control of gliders. In this work a backstepping-
based controller is proposed for an underwater glider to track a
desired position and heading reference in the sagittal plane with
only two control inputs, the buoyancy and center of gravity along
the longitudinal direction. In particular,the under-actuation issue
is addressed by exploiting the coupled dynamics and introducing
a new modified error that combines the tracking errors of head-
ing and position references. In addition, an auxiliary system is
incorporated to account for input constraints. Finally, a sliding
mode observer is designed to obtain the estimates of body-fixed
velocities, to facilitate practical implementation of the designed
controller. The effectiveness of the proposed control scheme is
demonstrated via simulations and its advantages are shown via
comparison with a PID controller.
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1 INTRODUCTION

Underwater gliders realize horizontal travel by shifting the
center of gravity and changing the buoyancy in tandem. The
concept was first introduced by Henrey Stommel [1] and mo-
tivated several gliders, most notably SLOCUM [1], Spray [2],
and Seaglider [3]. These vehicles are known for high energy
efficiency, allowing them to have exceptionally long operation
time. The latter has inspired the development of other under-
water vehichles that exploit gliding. One example is the gliding
robotic fish [4], which combines the gliding mechanism with the
tail-actuated swimming [5] to realize both high energy-efficiency
and high maneuverability. It has demonstrated promise in envi-
ronmental sensing applications [6]. Given the myriad of appli-
cations in oceanography, marine science, water quality monitor-
ing, and surveillance, it is of interest to realize precise trajectory
tracking for underwater gliders and other gliding type-vehicles.
However, control of gliders presents a significant challenge, due
to their highly nonlinear and under-actuated dynamics.

Early work in control of gliders saw the use of PID con-
trollers for their simplicity [2], [3]. In the past 2 decades, more
advanced control methodologies have been proposed for steady-
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state glide stabilization, position control, path following, and tra-
jectory tracking in literature. Many of these can be seen in the
review by [7]. Sliding mode control is often adopted because
of its robustness to disturbances. Mat-Noh et al. used a lin-
earized glider model to compare an Integral Super Twisting Slid-
ing Mode controller to several other sliding mode variants for
stabilizing a gliding path between 30 degrees and 45 degrees [8].
Yang and Ma used sliding mode control to track trajectories of
the pitch angle and ballast mass [9]. A number of other control
methods have been proposed for underwater gliders. For exam-
ple, Leonard and Graver [10], [11] use a linear quadratic regula-
tor on linearized dynamics to control the magnitude of velocity
on a steady state glide path. Mahmoudian and Woosely develop
an efficient path planning strategy that concatenates equilibrium
turning and gliding motions, then implement the strategy using
PID controllers to reach specified center of gravity and center of
buoyancy [12]. Neural network-based control was used to im-
plement a self-tuning PID controller to track the velocity along
a single axis in the inertial frame [13]. Isa and Arshad analyzed
the use of a neural network as a model predictive controller and
a gain tuner algorithm to control pitch angle and linear velocities
of a linearized glider model [14]. Nag et al. [15] compared fuzzy
logic control against PID for pitch and depth tracking. Zhang
et al. [16] used nonlinear passivity-based control to stabilize the
glide path of a glider with a tale.

The aforementioned control approaches have largely fo-
cused on stabilization based on linearized models, or heading
and velocity control. In fact, most work on underwater glider
control focus on controllers designed to reach a desired pitch an-
gle, velocity, or specified depth [17]. The control of gliders has
progressed, but a systematic model-based control approach for
trajectory tracking that accommodates nonlinear under-actuated
dynamics and input constraints for such systems is still lacking.
In this paper, a backstepping-based trajectory tracking controller
is proposed for sagittal plane motion of underwater gliders, in-
cluding the heading, horizontal position, and vertical position
(depth). Backstepping-based control design presents a practical
and promising approach because it offers a systematic framework
that guarantees the stability of the closed-loop system, and allows
the accommodation of input constraints.

Limited work has been reported in on backstepping-based
control of underwater gliders [17]. In [17] the authors pro-
posed an adaptive backstepping control for tracking of the roll
angle, pitch angle, and velocity of an underwater glider. In ad-
dition, most works stray away from the position tracking prob-
lem because of the difficulty in measuring horizontal-plane po-
sition underwater. However, this is still a viable topic of interest
for applications where there are relative positions such as target
tracking. Our proposed trajectory tracking scheme in this pa-
per, on the other hand, addresses simultaneous tracking of head-
ing, depth, and horizontal position that are of direct relevance
to various sampling and target tracking applications for the un-

derwater environment. The proposed scheme accommodates the
under-actuation nature of the glider by exploiting coupling of the
dynamics, and it incorporates input constraints via an auxiliary
system. In particular, inspired by [18], a new error coordinate
dependent on both the heading and the horizontal position error
is designed, such that the vehicle’s pitch velocity can be used as
a virtual input to regulate the aforementioned modified error. In
this manner, the controller is able to handle the tracking of both
heading and horizontal trajectories, apart from tracking the ref-
erence in the depth direction. In addition, to compensate for the
error due to the difference between feasible and “desired” inputs,
an auxiliary system is incorporated. Furthermore, to implement
the trajectory tracking control, a sliding mode observer is imple-
mented to estimate the body-fixed velocities which are otherwise
not directly accessible. The rest of the paper is organized as fol-
lows. The dynamic model of a glider in the saggital plane is
described and the error dynamics are derived in Section 2. In
Section 3 the proposed controller scheme is presented. Simula-
tion results are provided in Section 4, followed by concluding
remarks in Section 5.

2 System Modeling

v
//Zb Z]) yb

Figure 1. lllustration of the reference frames and mass distribution for a
glider [4].

2.1 Glider Model

The glider in this work, pictured in Fig. 1, has two relevant
reference frames. The first is the inertial frame, represented by
A,y;. The A; axis is along the direction of gravity, and A, and A,
are defined in the horizontal plane, with the origin A as a fixed
point in space. The body-fixed frame is denoted by Oy, y,., with
the origin O at the geometry center of the glider body. The Oy,
axis is along the body’s longitudinal axis pointing to the head,
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the O, axis is perpendicular to the O,, axis in the sagittal plane
of the glider pointing towards the vehicles’s underbelly, and O,
axis is formed according to the right-hand orthonormal principle.
The glider is modeled as a six degree-of-freedom (DOF) rigid
body with an internal moving mass (for adjusting center of grav-
ity) and a ballast water tank (for buoyancy control). The internal
movable mass, which is restricted to the longitudinal axis, has
direct influence of the pitch angle, and through the coupling of
dynamics, influences motion in other degrees of freedom as well.
The negative net buoyancy is given as the sum of the uniformly
distributed stationary mass mg(including the water in tank), in-
ternal movable mass m, and non-uniformly distributed mass m,,
minus the mass m of the water displaced by the vehicle. This can
be expressed as my = mg + m + m,, —m where mgy < 0 cause the
vehicle to float and mg > 0 causes the vehicle to sink. Here my
is effectively determined by the water pumped in and out of the
ballast tank.

In this paper, the aim is to control the motion in the sagit-
tal plane, which is the primary mode of locomotion for gliders.
In this case, the control inputs are the negative net buoyancy my
and the distance r,; of a movable mass from the center of gravity.
The six dimensional state vector consisting of the position [x, z]
and pitch orientation 0 of the vehicle given in the inertial frame
and the body-fixed linear velocities [v|,v3] and pitch angular ve-
locity @, is given by

X:[X,Z,G,V1,V3,(D2}T (1)
There dynamic equations are given by [4]

v1cos0+v3sin0
—v18inO +v3cosO

(0}
ﬁ(_(’m +1m)v3my — mpg sinb+
X = Lsina.— DcosQ.) )

1
my+m

((my 4+ m)vi, 4+ mog cos 6+
Lcoso— Dsina)

é(Mz + (m3 —my)vivs + my,gry3sinf—

mgry1 cos0)

where o = arctanx—? is the angle of attack, and m; and mj3 are
components of the added mass due to surrounding fluid. The
hydrodynamic forces of lift, drag and pitch moment are given as

1
L= EszS(CLo +Cra)

1
D= 5pv2S(cDo +C%0?) 3)
1
M, = EPV2S(CM0 + CX.,CIP(X-l-qu(Dz)

where constants with ‘C’ in their notations are hydrodynamic
\/v3 413 is the total
magnitude of the velocity, S is the characteristic area of the vehi-

cle and K, is a rotational damping coefficient. For convenience,
we will refer to the accelerations as

coefficients, p is the density of water, V =

Vi fi(vi,m2,v3) +u181(8)
W | = | f(8,00,v1,v3) +1u282(0) “4)
V3 f3(vi,02,v3) +u183(0)

where u; = mg and up =ry;.

2.2 Error Dynamics

The problem of trajectory tracking involves controlling a ve-
hicle to follow a time-dependent path. In this work, aim is to have
the pose P = [x,z,6]” follow a trajectory in the inertial coordinate
system given by the desired path P (t) = [x4(t),z4(t),04(t)]". To
solve this problem, the inertial frame error P,(t) = [x,,z.,0.]" is
define as

X —Xq
P(t)=|z—2za (&)
0—0y

where we drop the time dependent notation for convenience. The
derivative of Pe = P — Pd is given by

X—Xq
Pe: .Z._Z:d (6)
0—06,

Since the velocity dynamics in equation (4) are given in the
body-fixed frame, we denote Rg as the rotation matrix from the
inertial frame to the body-fixed frame. R? is the inverse of R}
defining the rotation matrix from the body-fixed frame to the in-
ertial frame, and therefore, P = R?(8)[v;,v3,m,]T is given by the
first three entries of X.

With this formulation, trajectory tracking becomes a stabi-
lization problem with respect to the error dynamics. The control
objective is now to drive the kinematic error vector P, to a region
around the origin [0,0,0]7.

3 Control Design
3.1 Overview of Control Design

Given the error dynamics and problem formulation, there are
a few choices of Lyapunov functions that may, at first, seem like
good candidates for the design of a backstepping-based trajectory
tracking controller for underwater gliders. For instance, a natural
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choice would be to use the function V = 1 (x2 +z2 + 62). How-
ever, due to the under-actuated nature of the system and coupled
effects of the inputs, this choice can lead to an over constraint
on the design of the control law. The choice V = %(xg +22)
only tracks the position variables and requires the derivatives of
the accelerations and inputs. The choices V = (ze +02) and
V= %(xg + 95) allow for design of controllers that are only ca-
pable of tracking one position variable along with the pitch angle
which can be done reasonably well by a PID controller.

In order to achieve tracking for the entire set of references
(heading and horizontal and vertical positions), inspiration is
taken from [18] and a new variable is defined

Ye = 0, — ¢sin(0) tanh(x, ) .
=0 — (64 + csin(0) tanh(x,)) @
to be used in the Lyapunov analysis. The motivation for this
variable comes from the fact that the system does not have di-
rect control over translation in the horizontal direction. Instead,
it achieves forward translation by conversion of vertical velocity
via the lift force which is indirectly dependent on the pitch angle.
Since this is the only means to achieve translation, it is a natu-
ral way to correct for the error in the x position. y, is chosen to
allow the pitch angle to be used to minimize x,, but still allow
tracking of 8; when x, is small enough. In particular, x, = 0
and y, = 0 implies that 6, = 0. in (7), c is a positive constant
specifying a maximum perturbation from 0, due to x,. Since
|sin(0) tanh(x, )| < 1, to keep the magnitude of the error x, from
completely dominating the pitch error 0,, ¢ should be thought of
as the maximum control authority dedicated to minimizing x,.
The sin6 term plays two roles. First, when 0 is O or simply very
small, the ability to control translation in the longitudinal direc-
tion is lost, so less weight is placed on the correction angle. This
also mitigates the possibility that the summation of 6, and the
correction angle will negate each other to make 6 = 0 and cause
bad tracking. However, this also means that the vehicle cannot
minimize x, if 0; and 6 are zero, meaning it is not expected to
correct the x position during a flat dive trajectory. Secondly, the
sign of the correction angle is determined by both the orientation
and the position error. As it turns out, the sign of the correction
angle should be the product of the sign of x, and 8 which is han-
dled by the signum-like properties of the hyperbolic tangent and
sin functions.
We choose the Lyapunov function V = %(zz +2) to design
the control laws for u; and uy. V can be made negative definite
by choosing y, = —kyy. and 2, = —kz.

V = z,(—v18in0+ 30080 — 24) + ye (W — g

—c(sin(8) sech(xe)zxe +cos(8)0tanh(x,))) ®

We choose the virtual inputs as o, and o, and define new states

C1 and {; as the difference between the virtual inputs and their
desired values 0,4 and Oty.

o, = —v1sin@-+v3cosH
Oyg = 2q — k2,

o, = ) — c(sin(8) sech(x, )*x, + cos(6)O tanh(x, ))
Olyg = g — kyye

1 = 0ty — Oy

G =0y —0yq

(€))

To incorporate the additional states, a new Lyapunov function
and its derivative are defined as

Loy oy Lo n
5@ +y) +5E+8) (10)

Va = 2e(81 —kize) +ye(C = kye) + 61 + GG

Vy =

The derivatives

C:l = 0l — Oy
G =0y — Oy (11)

introduce @, vy, and v3 which are directly influenced by the in-
puts u; and u;. Using these to achieve stability allows the design
of a controller which will be discussed later in the paper. If we
choose

az Ode lel
Oy = Olyg — k2 Go

12)
the derivative of the Lyapunov function becomes

Vi :Ze(CI *kzze)ﬂLye(CZ*kyye) *le%*/QC% (13)
By adding and subtracting the terms (71-C7 + ﬁ@%), it can be

rewritten as

. Zet..l

: k05 0

kT

Bkt ) - Blok + )

1 Cl 1 &2
__E( 2k)_ﬁ(e 2k) Cz(ﬁ—/ﬂ)

2
- Cz(szy —ka)
(14)
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From this it is easy to see that V4 < 0 for % < k1kg and % < kokg.
By Lyapunov’s stability theorem, the system is asymptotically
stable about the point (z, = 0,y, =0) .

3.2 Synthesis of Controller

The controller design follows from the final steps of the sta-
bility analysis in the previous section. Using Eqgs. (4) and (12)
control laws are created for u; and u,. From Eq. (12) the deriva-
tives of the virtual inputs are

G, = —v1sin® — v; cos(8)@ +v3 cos® — v3sin(0)H
= —v;sin@+v3cos0+7;

&, = @ — c(sin(8)((sech(x,)>%,) — 252 tanh (x, ) sech(x, )
— 62 tanh(x, )) + cos(0) (6, tanh(x, ) + O sech(x, ) 2k, )
= (1 — ccos(B) tanh(x, )) — csin(0) sech(x, ) (vi cos
+v3sin@) +7,

¥, = v cos® — vy sin(0)0 + v3sin O +v3 cos(0)d — &
=vj cosO+v3sin(0) + vy
15)
where v, vy, and Y, are the state-dependent terms that are not
functions of the inputs. Plugging Eq. (4) into Eq. (15) and mov-
ing ¥y and Y, to the left hand side of the equations yield

—(fi +g1ur)sin®+ (f3 4 g3u;)cos® = 0y — k1§ —:
(f2 + g2uz)(1 — ccos(0) tanh(x,)) — csin(0) sech(xe)z((fl +
g1u1)cosO+ (f3+g3u)sin®) = &,y —kalo — 7y,
(16)

where g; and f; are short-hand for the corresponding functions in
Eq. (4). Using these equations, the input can be calculated as

m] [1 o] '[r
HE R a7
where

_ 1 5
I = vmergcoe) (Ga — kil — 1
+f1sin0 — f3cos0)

I = ayd — k2§2 —Yy— f2(1 — CCOS(G) tanh(xe))
+csin(8) sech(x,)*(fi cos 0+ f3sin0) (13)

W, = —csin(0) sech(x,)?(g1 cos O + g3 sin6)

¥, = g2(1 —ccos(B) tanh(x,))

We will denote this controller as c1 hereafter.

3.3 Synthesis of Controller Incorporating Input Con-
straints

To take control constraints into consideration, we take inspi-
ration from [19] and [20] to introduce artificial state variables to
retain information about the input saturation. The vector [), %]
is generated by the difference between saturated inputs that are
actually applied to the system and the inputs u; and u, generated
by the controller. We desire to make use of the input saturation
in such a way that the controller can provide more meaningful
input to the system (e.g. calculate inputs within achievable lim-
its) while still achieving acceptable performance. To design the
new controller, let the following equations define the generation

of [Xz,Xy]-

Xz = _kngz _A(ﬁl - ul)
Xy = —ky, Xy — V2 (li2 — u2) (19)
A= (—g1sinB+ g3cos0)

where ] and #; play the role of the saturated input. By solving
for these, the aim is to design a controller that tends to compute
inputs that lie within the saturation limits. In addition, let

(:xz =0; =Xz (20)

Oy = Oy =Xy
where &, and @, are virtual input errors. With this with the sta-
bility analysis proceeds as in Egs. (8)-(10). In Eq. (11), it can be
assumed that in practical implementation, an achievable input is
applied to the system and let Eq. (11) be represented by

C:l = (.;Xz — Olzg
CZ = dy - (xyd (21

Using the derivative of (20), a substitution is made to arrive
at

C:I :az*Xz*azd
C.>2 = (xy - Xy - (xyd (22)
The choice

o, = azd"‘Xz_lel

. . . 23
(xy = (xyd +Xy - kZCZ ( )
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leads to the same results as the stability analysis of the original
controller presented in the previous section. Control laws for
i1 and i can now be designed using Egs. (2), (19), and (23).
Substituting Egs. (2) and (19) into Eq. (23) yields

Auy — fi Sin(e) +f3 COS(G) + Y, =0y — lel

- 24
—ky Xz — A —uy) 4

Yiug +Waup + f2(1 —ccos(0) tanh(x,))
—csin(0) sech(x,)*(fi cos 0+ f3sin0) + Ty (25)
= Cyg — k28 — ky, Xy — W1 (i1 — ) — W2 (o —u2)

Substituting I't for u; and solving for i and i, yields

A —1 k- Xz
%1 = 1 0 I — | (—& sinyé—&-gg cos0) (26)
up ‘P] \Pz Fz kXyXy

where W1, ¥,, I'1, and I'; have the same definitions as Eq. (18).
We will denote this controller as c2 throughout the rest of the
paper.

It is worth noting that the design does not stop the controller
from exceeding the input constraint values as they are not di-
rectly incorporated. It, instead, uses saturation as feedback to
penalize the controller for generating control signals beyond the
constraints and drives the difference between the controller gen-
erated inputs and saturated inputs to zero. For this reason, the
new control laws for 7 and i, are treated as a replacement for
the original controller u; and u; in Eq. 20. If there is no occur-
rence of saturation, the controller acts as the original design cl
in Eq. (17).

3.4 Sliding Mode Observer Design

A challenging problem for the underwater gliders is to mea-
sure the linear velocities which are highly dispersed through out
the dynamic equations. In order to implement the control design,
a sliding mode observer based on results by Yaun et al. [21] is
used to estimate the body-fixed velocities. This is done by first
deriving the velocity v, along the A, axis described in Section 2
via the measurements of the depth z. This will be taken as the
measurement v,. A sliding function

s=2—f=v,—¥, 27)

is then defined, where 7. is the estimate of v,. The sliding surface
is guaranteed if ss < 0. Note that

MEHEM (8)

which implies inertial velocity dynamics become

V| _ HB| VI 5B | V1
el e

Using this result, the dynamics of the inertial velocity estimate
become a function of the body fixed velocity estimates and the
measured state variables defined as

[V} =RB {V‘} +RE [f‘] + {kxsgn(s)} (30)

vz V3 V3 k;sgn(s)
With this, the sliding function dynamics become
§ = (—(\51 + \73(1)2) sin0 + (\73 — 171(02) cosO—k, sgn(s))

,02,73) +u181(0) (31
,02,73) +u183(0)

< <

fi(
(01

1
3
where v; = v; — V;, i = 1,3. Choosing the gain

k, > | — (¥1 + P30;) sin@ + (73 — 7,0 ) cos 8| (32)

ensures that s reaches the sliding surface. Following the results
of Yaun et. al [21], invoking Phillipov’s theory of equivalent
dynamics on Eq. (30) and locally linearizing them around the
inertial frame velocities yield.

dfy ke df:, _

Ve (avx k, avx)vx

(33)

where (fy, fz) = (Vx,v;). The convergence of vy can be ensured

by designing k, such that g% - % ngi <0.

4 Simulation Results

Model parameters for simulation are shown in Table 1 with
limits of 0.1 kg on mp and =7 mm on rp;. Two scenarios
are chosen to show the effectiveness of the proposed controller
with (c2) and without (c1) consideration of saturation and com-
pare them to a PID controller that was tuned with the matlab
PID tuner and then refined through simulation runs to give good
tracking performance. The PID controller is chosen as the base-
line method over an LQR due to the fact that it is simple to im-
plement, used in many existing gliders, and the fact that linear
control laws based on local linearization have good performance
only near the gliding equilibrium. [22]. The trajectory in both
simulations are generated by a virtual copy of the vehicle using
the same parameters as the actual vehicle.
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Table 1. Simulation Parameters

Parameter Value Parameter Value
mi 8 kg S 0.019 m?
m3 10.8 kg Chtp 0.5665
m 1.6 kg Cro 0.074606
J 0.08 m/s? c* 0.45275
8 9.81 kg Cpo 0.45275
w3 0.005 m Kp -0.8
c % radians Cu, 0.0075719
P 997 kg/m?

4.1 Simulation 1: Mismatched Initial Conditions

The first scenario has the vehicle at an offset from the trajec-
tory with no disturbances. The initial conditions of the state vec-
tor [v1(0),v3(0),®,(0),x(0),z(0),0(0)] for the vehicle and vir-
tual copy are [0.001,0.001,0,0,2,0] and [0.001,0.001,0,0,0,0].
The x-z path are plotted for the PID and the proposed controller
with (c2) and without saturation considerations (c1) in Fig. (2).
The evolution of the control is also plotted for each controller in
Fig. (3) as well as the velocity estimates associated with c2. It
can be seen that, after stabilizing ze, the PID tracks 0, fairly well
and maintains a steady offset in x. c1 and c2 both converge to the
path. Of course, they initially induce an error on the pitch angle
to minimize the error x, along the horizontal direction and then
stabilizes the pitch error. The main difference between c1 and c2
is the control evolution. It can be seen that c2 produces less ag-
gressive behavior, while achieving similar tracking performance.
This is desirable since the rate of change of the inputs has direct
implications in the energy expenditure of underwater gliders.

4.2 Simulation 2: Constant Disturbance

The second scenario keeps the same initial conditions, but
adds a constant disturbance of —0.05 N to the drag D and —0.01
N on the lift L terms in the dynamic equations. It can be seen in
Fig. (4) that the velocity estimation error is increased by noise.
This slightly affect the performance of the c1 and c2 as they have
small steady state offsets from and desired pitch angle. The PID
on the other hand is diverging from the path, but tracks z; and
0, well. Fig. (5) shows similar results to that of simulation 1 as
well as the ability of c1 and c2 to take advantage of the force to
reduce control effort.

5 Conclusion and Future Work
In this paper the design of a backstepping-based trajectory
tracking controller for underwater gliders was presented. In par-

0 50 100

t(s)

(b)

0.3 vi
v
est

v3
0.2 3
est

(7]
£0.1 J

0 50 100
t(s)

(©

Figure 2. Resultant and reference trajectories of (a) xz-plane path and
(b) pitch of the proposed controller, with (c2) and without (c1) saturation
consideration, and the PID with mismatched initial conditions. (c) depicts
the estimated and actual velocities.

ticular, a choice of a Lyapunov function that allowed the con-
troller to achieve tracking of a sagittal plane position and head-
ing was presented. The proposed controller is able to make use of
the pitch angle to control both orientation and horizontal transla-
tion. This control scheme is applicable to both hybrid gliders and
gliding robotic fish, where it can be used to mitigate energy con-
sumption, and purely buoyancy-propelled gliders, where there is
no direct control for horizontal velocity. A simple modification
that uses saturation as feedback, producing a slightly less ag-
gressive controller while achieving similar performance is also
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0.1
0.05;

-0.057

Figure 3. Control input (a) u2 (7p1) and (b) u1 (m,) of the proposed con-
troller with (c2) and without (c1) saturation consideration and PID during
simulation 1.

presented. In this implementation, only magnitude saturation is
considered by providing upper and lower limits. However, this
scheme can also capture input saturation due to rate limits if the
inputs can be measured.

Future work will include estimating disturbances in the ob-
server design, followed by estimating the x position via dead
reckoning and sporadic surface measurements. Next, experimen-
tal validation of both the observer and controller designs will
be performed. Finally, the design approach will be extended to
tracking control of a glider in full 3D motion.
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Figure 4. Resultant and reference trajectories of (a) xz-plane path and
(b) pitch of the proposed controller, with (c2) and without (c1) saturation
consideration, and the PID with mismatched initial conditions and con-
stant disturbance. (c) depicts the estimated and actual velocities.
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