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Abstract

Weighted model integration (WMI) extends

weighted model counting to integration in

mixed discrete-continuous domains. It has

shown tremendous promise for solving proba-

bilistic inference problems in graphical models

and probabilistic programs. Yet, state-of-the-

art tools for WMI have limited performance

and ignore the independence structure that is

crucial to improving efficiency. To address this

limitation, we propose an efficient model in-

tegration algorithm for theories with tree pri-

mal graphs. We exploit the sparse graph struc-

ture by using search to performing integration.

Our algorithm greatly improves the compu-

tational efficiency on such problems and ex-

ploits context-specific independence between

variables. Experimental results show dramatic

speedups compared to existing WMI solvers

on problems with tree-shaped dependencies.

1 INTRODUCTION

Weighted model counting (WMC) is the task of count-

ing the weighted sum of all satisfying assignments of a

propositional logic theory. In recent years, WMC was

shown to be an effective solution for addressing proba-

bilistic inference in a wide spectrum of formalisms (Sang

et al., 2005; Chakraborty et al., 2014; Ermon et al., 2013;

Chavira and Darwiche, 2008; Choi et al., 2013; Van den

Broeck and Suciu, 2017; Fierens et al., 2015).

An inherent limitation of WMC is that it can only deal

with discrete distributions. In order to overcome this re-

striction, weighted model integration (WMI) (Belle et al.,

2015a) was introduced as a generalization of WMC to-

wards hybrid domains, characterized by both discrete

and continuous variables. The formalism relies on satis-

fiability modulo theory (SMT) (Barrett and Tinelli, 2018)

technology, which permits reasoning about the satisfi-

ability of theories involving, for example, linear con-

straints over reals. WMI works by summing a simple

weight function over solutions to Boolean variables and

integrating over solutions to the real variables of an SMT

theory. Weight functions play the role of (unnormalized)

densities, whereas the logic theory captures the structure

of the distribution. WMI (or closely related formula-

tions) has recently been applied to several probabilistic

graphical model and programming tasks (Chistikov et al.,

2015; Albarghouthi et al., 2017; Morettin et al., 2017;

Belle, 2017; de Salvo Braz et al., 2016).

Both WMI and WMC are sum-of-product prob-

lems (Bacchus et al., 2009). In discrete domains, such

problems are amenable to a divide-and-conquer ap-

proach called search-based inference, where variables

are instantiated recursively until the inference prob-

lem decomposes. Solving WMC by search, exploit-

ing problem-specific structure, has been shown to be

highly effective, in particular on graphical models that

exhibit sparsity (Chavira and Darwiche, 2008). How-

ever, progress in WMI is far from its Boolean counter-

part, and currently does not exploit independence. More

generally, exact inference algorithms for hybrid graphi-

cal models do not exploit sparsity and structure as much

as discrete graphical model inference algorithms.

As a first approach to leverage structure, in this paper,

we propose a search-based inference procedure for exact

model integration that leverages decomposition to speed

up inference. We demonstrate how local structure en-

coded in SMT theories gives rise to context-specific de-

composition during search, reducing the number of mod-

els to be generated and integrated over. The integration

problem is decomposed into sub-problems by instanti-

ating shared variables and recursing independently on

the resulting simplified SMT theories. We show how

to choose finitely many values to instantiate continuous

variables with, and subsequently do polynomial interpo-
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Figure 1: Feasible region of SMT theory γi from Example 2.1

lation to recover exact answers to WMI problems. Our

complexity analysis proves the first tractability result for

a non-trivial class of WMI problems. Moreover, our ex-

perimental evaluation confirms that the approach is dras-

tically faster than existing alternatives on WMI problems

with sparse, tree-shaped primal graphs.

2 BACKGROUND

We assume that the reader is familiar with propositional

logic and the SAT problem (Biere et al., 2009). Model

counting (#SAT) is the task of counting the number so-

lutions (models) to a given SAT problem (Gomes, 2009).

Weighted model counting (WMC) generalizes this task

by summing weights associated with individual SAT so-

lutions. It is widely used as tool for probabilistic reason-

ing (Sang et al., 2005; Chavira and Darwiche, 2008; Er-

mon et al., 2013; Chakraborty et al., 2014; Fierens et al.,

2015; Van den Broeck and Suciu, 2017).

Satisfiability Modulo Theories (SMT) generalizes SAT

to determining the satisfiability of a formula with respect

to a decidable background theory. In particular, we will

consider quantifier-free SMT formulas in the theory of

linear arithmetic over the reals, or SMT(LRA). Here,

formulas are Boolean combinations of atomic proposi-

tions (e.g., a, b), and of atomic LRA formulas over real

variables (e.g., x < y + 5). Variable instantiations are

denoted as b⋆ or x⋆. Sets are denoted in boldface.

Example 2.1. For a house i, let pricei be its price

and sqft i its square footage. We can build a simple

SMT(LRA) formula of the relationship between these

real variables, with the corresponding solution space de-

picted in Figure 1. That is, SMT(LRA) formula γi is

(pricei < 10 · sqft i + 1000) ∨ (pricei < 20 · sqft i + 100)

(0 < pricei < 3000) ∧ (0 < sqft i < 200).

Weighted model integration (WMI) generalizes WMC to

support SMT(LRA) formulas and real variables (Belle

et al., 2015a). In its simplest form, model integra-

tion (MI) or #SMT (Chistikov et al., 2015) computes the

volume of the solution space. For example, the green

area in Figure 1 is 430,250. General WMI is defined as

follows (Belle et al., 2015a; Morettin et al., 2017).

Definition 2.2. Suppose we have n real variables x, m
Boolean variables b, an SMT(LRA) formula θ(x, b),

ranging over x and b, and a weight function w(x, b)
that maps variable instantiations to real weights. Then,

weighted model integration (WMI) computes

WMI(θ, w | x, b) =
∑

b
⋆∈Bm

∫

θ(x,b⋆)

w(x, b⋆) dx.

That is, the WMI is obtained by summing over every

instantiation (total truth assignment) b⋆ to the Boolean

variables, and integrating w(x, b∗) over the set of solu-

tions {x∗ | θ(x∗, b⋆) is SAT}.

Weight functions w are usually defined as products of lit-

eral weights (Belle et al., 2015a; Chavira and Darwiche,

2008). That is, for some set of literals L we are given

a set of per-literal weight functions P = {pℓ(x)}ℓ∈L.

When literal ℓ is satisfied in a world, denoted x∧ b |= ℓ,
that world’s weight is multiplied by pℓ(x). Formally,

w(x, b) =
∏

ℓ∈L,x∧b|=ℓ
pℓ(x).

When all variables are Boolean (i.e., x = ∅), the per-

literal weights pℓ(x) are constants and we retrieve the

original definition of WMC as a special case of WMI

(Chavira and Darwiche, 2008). In this paper, we assume

that all per-literal weights are polynomials. This setting

is expressive enough to approximate any continuous dis-

tribution (Belle et al., 2015a).

Example 2.3. Consider a formula (b ∨ ¬b) ∧ γi
where b is a Boolean variable and γi is as defined

in Example 2.1. Consider the set of literals L =
{b, (0 < pricei < 3000)} and per-literal weight func-

tions P = {pb, p(0<pricei<3000)}, with pb(x) = 1.5 and

p(0<pricei<3000)(x) = price2i . Then, in worlds where

both literals in L are satisfied, our weight function is

pb(pricei, sqft i) · p(0<pricei<3000)(pricei, sqft i) = 1.5 · price2i .

In worlds where b is false and only (0 < pricei < 3000)
is satisfied, the weight function is price2i .

Moreover, we will show that this class of weight func-

tions is well-behaved. In particular, it allows for a nat-

ural reduction to unweighted model integration and is

amenable to efficient integration.

WMI was introduced as a tool for hybrid probabilistic

reasoning. Indeed, the weight of each world can be in-

terpreted as an unnormalized density, and the WMI is

its partition function subject to the logical constraints.

Under these semantics, suppose that we are interested in

the probability of query q = (pricei < 2000) in house

price model γi. That probability can be computed as

the ratio of two WMI problems: Pr(q) = WMI(γi ∧
q)/WMI(γi) = 350,250/430,250 = 81.4%.

Exact WMI Solvers The first solver for exact WMI

(Belle et al., 2015a) was a proof-of-concept relying









Algorithm 1 SMI : Search-Based Model Integration

Input: T : pseudo tree, θ: SMT(LRA) theory

Output: p: MI of theory θ

1: if T is a forest of trees T ′ then

2: θ′ ← sub-theories containing variables in T ′

3: return
∏

T ′ SMI (T ′, θ′)

4: p = 0, y = root(T ), STy = set of subtrees below y
5: I = PE NODE(θ, y)
6: for all polynomial piece {[l, u], d} ∈ I do

7: select d+ 1 distinct values αi’s in [l, u]
8: pi ← SMI (STr, θ |(y=αi))
9: pl,u(y)← polynomial interpolation on (αi, pi)’s

10: p← p+
∫ u

l
pl,u(y)dy

11: return p

The role of pseudo trees will be explained in Section 4.3.

Details on caching to speed up the algorithm are included

in Appendix B. The remaining problem is how to exactly

obtain pieces [l, u] and their associated degrees d in func-

tion PE NODE. We address this problem next.

4.2 FINDING PIECES VIA CRITICAL POINTS

Recall that by Proposition 4.1, WMI of SMT(LRA) the-

ory θ can be rewritten as WMI(θ, w | x, b) =
∫

I
p(y)dy

where p(y) is a piecewise polynomial, set I is a union of

disjoint support of polynomials in p(y), and each piece

[l, u] ∈ I is associated with a polynomial degree d. We

hope that when a real variable y in theory θ is chosen to

be instantiated, we can exactly find all pieces and their

associated degrees for piecewise polynomial p(y).

It turns out that this can be achieved. While integrat-

ing over satisfying assignments with respect to a cer-

tain variable given an SMT(LRA) theory, integration

upper bounds and lower bonds are defined by its liter-

als. Changes in integration bounds give rise to differ-

ent pieces of integration and therefore result in the piece-

wise nature of the polynomial in Proposition 4.1. In our

method we determine these pieces by collecting points

where certain bounds meet. Further, by propagating

polynomial piece and degree information in a bottom-up

manner along the primal graph, we can obtain the pieces

and degree for the chosen piecewise polynomial.

We will first describe our method in a basic case where

there are only two real variables in the theory. Then we

extend this approach to theories with tree primal graphs.

4.2.1 Base Case: Pieces of Two Real Variables

First we investigate a simple case where there are only

two real variables x and y in SMT(LRA) theory θ. Re-

call that we are solving an unweighted MI problem. We

would like to find pieces and associated degrees for vari-

able y such that we can instantiate y as in Section 4.1:

p(y) =

∫

θ(x,y)

1 dx =
∑

[l(y),u(y)]∈I(y)

∫ u(y)

l(y)

1 dx

=
∑

[l(y),u(y)]∈I(y)

u(y)− l(y)

where set I(y) is defined as

{[l(y), u(y)] | ∀x ∈ [l(y), u(y)], θ(x, y) is SAT}. (3)

That is, for any fixed value y∗, the set I(y∗) consists

of intervals of consistent values for variable x. For any

[l(y), u(y)] ∈ I(y), it gives a pair of integration bounds

for variable x. Further by integrating over x we can ob-

tain a polynomial with respect to variable y.

Each piece [l, u] corresponds to a certain class of values

that gives the same symbolic integration bounds to vari-

able x. The two values y = l and y = u are endpoints

of the piece only if integration bound set I(y) changes at

these points, since the piecewise polynomial p(y) is de-

fined by these bounds. That is, for arbitrarily small ǫ, we

have I(l− ǫ) 6= I(l+ ǫ), and it also holds at point y = u.

We formally define critical points below.

Definition 4.2. (Critical Point) Let θ be an SMT(LRA)

theory with two real variables, and denote one of the real

variables by y. Let I(y) be an integration bound set as

defined in Equation 3. Then y = α is a critical point if

for arbitrarily small ǫ, it holds that I(α− ǫ) 6= I(α+ ǫ).

Remark. The comparison of set I(y) is done symboli-

cally. That is, for two distinct values α, β, we say I(α) =
I(β) if they have the same set of symbolic integration

bounds. For example, if at y = α, I(y) = {[1, y]} and at

y = β 6= α, I(x) = {[1, y]}, it holds that I(α) = I(β).
However, if at y = α, I(y) = {[1, y]} and at y = β,

I(y) = {[y, 2]}, then we say I(α) 6= I(β).

Our idea is that, if we can find all critical points y = α
where the set I(y) changes, then we can partition real

domains of y into disjoint intervals, such that any sup-

port of piecewise polynomial p(y) is either one of these

intervals or a union of some intervals. For the result-

ing interval [l, u], we can apply an SMT(LRA) solver to

θ′ = θ ∧ (l < y < u) to check whether it is a satisfiable

piece of function p(y); if this is true, we can obtain the

polynomial degree of pl,u(y) defined over this piece by

simply traversing theory θ′. We summarize this proce-

dure as PE EDGE in Algorithm 2 in Appendix C.

4.2.2 General Case: Pieces of Tree Structures

Given an SMT(LRA) theory θ with a tree-shape primal

graph G, our goal is to enumerate pieces and their as-

sociated degrees for the root variable y, building on the



algorithm we developed in the base case above. This can

be done in a bottom-up manner with tree primal graphs.

Specifically, we first partition theory θ into sub-theories

θr,c and θGc
for each c, such that θ =

∧

c(θr,c ∧ θGc
),

where variables c are the child variables of root r, and

graph Gc is the sub-tree rooted at variable c. Each theory

θr,c contains only variables r and c, on which we can

apply the enumeration for the base case above, and each

theory θGc
contains only variables in sub-tree Gc. This

is possible provided that the primal graph of theory θ has

a tree structure, which is why our algorithm is restricted

to SMT(LRA) theories with tree-shaped primal graphs.

For each child variable c, we first obtain its pieces with

respect to theory θGc
in a recursive way. Then we can

apply our enumeration algorithm for two-variable theory

PE EDGE to theory θr,c with the given pieces of vari-

able c. What we would get are sets of pieces for each

child variable c. To be consistent with theory θ, we need

to take intersections of these sets which we refer to as the

shattering operation. Finally, the resulting intersections

are pieces and polynomial degrees for root variable r. We

provide more details of this procedure called PE NODE
in Algorithm 2 in Appendix C.

As described above, our piece enumeration algorithm is

applicable to MI problems for theories with tree primal

graphs. Moreover, it is also applicable to WMI problems

whose SMT theory has a tree primal graph and whose

per-literal weights are monomials over univariate literals

as described in Section 3.3, since our reduction process

can preserve the tree structure of the primal graph.

4.3 COMPLEXITY ANALYSIS

Inference over networks involving real variables raises

considerable challenges for inference, and network struc-

tures that are tractable in the discrete case, such as poly-

trees, give rise to NP-hard inference problems in the hy-

brid case (Koller and Friedman, 2009). We show that

the complexity of our algorithm is mainly exponentially

bounded by the tree height of the primal graph.

Our search algorithm for MI needs to choose which vari-

ables to instantiate first. This choice can be based on a

tree data structure that orders the variables. Such a tree

characterizes the computational complexity as it does for

discrete And/Or search algorithms. We first formally de-

fined the tree that helps guide our search.

Definition 4.3. (Pseudo Tree) Given an undirected

graph G with vertices and edges (V,EG), a pseudo tree

for G is a directed rooted tree T with vertices and edges

(V,ET ), such that any edge e that is in G but not in T
must connect a vertex in T to one of its ancestors.

That is, edge e = (v1, v2) such that e ∈ EG and e /∈ ET

implies that either vertex v1 is an ancestor of vertex v2 in

T or vertex v2 is an ancestor of vertex v1 in T . Note that

the pseudo tree has the same set of vertices as G. Such a

pseudo tree guides SMI (Algorithm 1) in deciding which

variable to instantiate, and when to decompose.

Next, we analyze the complexity of SMI. Since our algo-

rithm performs search, its time and space complexity is

characterized by the size of its search space. Our analysis

does not take caching improvements into consideration.

Theorem 4.4. (Size of Search Space) Consider an

SMT(LRA) theory θ with a tree-shaped primal graph

with height hp, and a pseudo tree T with l leaves and

height ht. Let m be the number of LRA literals in θ,

and n be the number of real variables. Then the size of

the SMI search space is O(l · (n3 ·mhp)ht).

Hence, we can conclude that the complexity of our al-

gorithm is bounded exponentially by tree heights of both

the primal graph and pseudo tree. In fact, for any tree-

shaped primal graph, we can always choose a pseudo tree

whose height ht is O(log n) to guide the search (Dechter

and Mateescu, 2007). Moreover, the number of leaves l
in pseudo tree T is no larger than the number of nodes n.

Thus, we have the following corollary.

Corollary 4.5. Following the notation in Theorem 4.4,

with properly chosen pseudo tree T whose tree height ht

is O(log n), the size of the search space generated by

SMI is O
(

n1+3 logn+hp logm
)

.

Therefore, the complexity of our algorithm is mainly de-

cided by tree heights of primal graphs hp. In the worst

case when tree primal graphs have height O(n) – for in-

stance path graphs, whose tree height is n when rooted

at the start node – then the worst-case complexity of our

algorithm is O(nn logm) by Corollary 4.5. That is, the

time complexity is worst-case super-exponential.

In cases when the tree primal graph has tree height

of size O(log n), the complexity of our algorithm is

O(n1+(3+logm) logn) which is of quasi-polynomial com-

plexity, and considered to be efficient. Trees with tree

height in O(log n) are a general class of trees used in

various models. Balancing trees like AVL trees and full

k-ary trees are of tree height O(log n). Another exam-

ple is a star graph, which has one internal node and all

other nodes as leaves. This graph corresponds to the

well-known naive Bayes structure for directed graphical

models. It is the primal graph of a theory modeling inde-

pendent variables predicting one and the same dependent

(class) variable. The tree height of star graphs is constant

1 when choosing the internal node as root. Hence, our al-

gorithm runs efficiently on such WMI problems.
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A PROOFS

A.1 PROOF OF PROPOSITION 3.4

Proof. (Proof of Proposition 3.4)

Consider the most basic case when there is only one

Boolean variable b in theory θ. Let θ′ be an SMT(LRA)

theory defined as follow

θ′ = θ{b : λb} ∧ (−1 ≤ λb ≤ 1)

where θ{b : λb} is obtained by replacing all atom b by

0 < λb and replacing all its negation ¬b by λb < 0 in

theory θ.

Recall that weight functions are defined by a set of lit-

erals L and a set of per-literal weight functions P =
{pℓ(x)}ℓ∈L. When a literal ℓ is satisfied in a world, de-

noted by x ∧ b |= ℓ, weights are defined as follows

w(x, b) =
∏

ℓ∈L
x∧b|=ℓ

pℓ(x).

Let L′ be a set of literals obtained by replacing Boolean

literal b by 0 < λb and replacing its negation ¬b by λb <
0 in theory θ as we do for theory. For the set of per-

literal weight functions P ′, we define it for introduced

real variable λb by p(λb>0) = pb and p(λb<0) = p¬b.

Then we have that for any x
∗,

w′(x∗, λb) =

{

w(x∗, b), 1 > λb > 0
w(x∗,¬b), −1 < λb < 0

By definition of WMI, we write WMI(θ, w | x, b) in its

integration form as follows.

WMI(θ, w | x, b)

=

∫

θ(x,b)

w(x, b)dx+

∫

θ(x,¬b)

w(x,¬b)dx

For the first term in the above equation, we can rewrite it

s.t. Boolean variable b is replaced by real variable λb in

the following way.

∫

θ(x,b)

w(x, b)dx =

∫ 1

0

∫

θ(x,b)

w(x, b)dxdλb

=

∫

θ′(x,λb)

w′(x, λb)dxdλb

By doing this to the other integration term of WMI(θ, w |
x, b), and also by the definition of WMI, we finally ob-

tain that

WMI(θ, w | x, b) = WMI(θ′, w′ | x′)

where x′ = x∪{λb} is a set of real variables. The proof

above can be easily adapted to multiple Boolean variable

cases, which proves our proposition.

A.2 PROOF OF PROPOSITION 3.5

Proof. (Proof of Proposition 3.5) To start with, we con-

sider SMT(LRA) theory θ with no Boolean variables

with a simple weight function w where the set of literal

L = {ℓ} has only one literal and literal weight function

pℓ(x) =
∏n

i=0 x
pi

i .

Claim A.1. For a monomial function f(x) =
∏n

i=0 x
pi

i ,

let θf =
∧n

i=0

∧pi

j=1(0 ≤ zij ≤ xi). Then we have the

monomial f(x) = MI(θf | z;x), where z is the set of

real variables zij in theory θf , and x is parameters of

theory θf .

Let θ′ = θ ∧ (ℓ ⇒ θp) ∧ (¬ℓ ⇒ θ̂p) where p = pℓ
for brevity, θp is as defined in Claim A.1 and θ̂p :=
∧n

i=0

∧pi

j=1(0 ≤ zij ≤ 1). Then we can rewrite

WMI(θ, w | x) as MI problem by Claim A.1 as follows.

WMI(θ, w | x) =

∫

θ(x)

w(x)dx

=

∫

θ(x)∧ℓ(x)

p(x)dx+

∫

θ(x)∧¬ℓ(x)

1dx

=

∫

θ(x)∧ℓ(x)

MI(θp | z;x)dx+

∫

θ(x)∧¬ℓ(x)

1dx

=

∫

θ(x)∧ℓ(x)

∫

θp(z)

1dzdx+

∫

θ(x)∧¬ℓ(x)∧θ̂p

1dxdz

= MI(θ ∧ (ℓ⇒ θp) ∧ (¬ℓ⇒ θ̂p) | x, z)

Take x
′ = x ∪ z then the proposition holds. The

proof can be easily adapted for monomials with non-

trivial coefficient by inducing more real variables z. It

also holds for more general weight functions with literal

set L = {ℓi}
k
i=1 and set of monomial per-literal weight

functions P = {pℓi}
k
i=1, by taking theory θ′ as follows

which completes the proof of proposition.

θ′ = θ ∧
k
∧

i=1

(ℓi ⇒ θpℓi
) ∧

k
∧

i=1

(¬ℓi ⇒ θ̂pℓi
).



Proof. (Proof of Claim A.1) By definition of theory θf ,

MI(θf | z;x) =

∫

θf (z)

1dz

=

n
∏

i=1

pi
∏

j=1

∫ xi

0

1dzij

=

n
∏

i=1

pi
∏

j=1

xi =

n
∏

i=1

xpi

i = f(x).

A.3 REDUCTION TO MI WITH POLYNOMIAL

WEIGHTS

The reduction from WMI problems to MI problems in

Proposition 3.5 can also be done for arbitrary polyno-

mial weight functions but can increase treewidth of pri-

mal graphs. We give a formal description on this reduc-

tion as follows.

Let θ be an SMT(LRA) theory with no Boolean vari-

ables with weight functions where the set of literal L =
{ℓ} has only one literal and literal weight function is

a polynomial, denoted by p(x) =
∑k

i=1 αifi(x) with

each fi a monomial function.

It has been shown in the proof of Proposition 3.5 in Sec-

tion A.2 that for each monomial function fi, there ex-

ist two SMT(LRA) theories θi and θ̂i such that MI(θi |

zi;x) = fi(x) and MI(θ̂i | zi;x) = 1.

Let’s define theories θ′i = θi ∧ (0 < vi < αi) and θ̂′i =

θ̂i ∧ (0 < vi < 1) with parameter variables vi. Also

define an indicator variable λ with real domain [0, k] and

literals ℓi = i − 1 < λ < i with i ∈ {1, 2, · · · , k}.
Then we have that for an SMT(LRA) theory θ′ defined

as follows, it holds that WMI(θ, w | x) = MI(θ′ | x, z)
with z denoting all auxiliary variables.

θ′ = θ ∧ (ℓ ⇐⇒ ∨ki=1ℓi)

k
∧

i=1

(ℓi ⇒ θ′i)

k
∧

i=1

(¬ℓi ⇒ θ̂′i)

Why the WMI problem and the MI problem are equal

can be proved by the following observations.

WMI(θ, w | x) =

∫

θ(x)

w(x)dx (4)

=

∫

θ(x)∧ℓ(x)

p(x)dx+

∫

θ(x)∧¬ℓ(x)

1dx (5)

For the first term in Equation 5, we have that

∫

θ(x)∧ℓ(x)

p(x)dx =

k
∑

i=1

∫

θ(x)∧ℓ(x)

αifi(x)dx

=
k

∑

i=1

∫

θ(x)∧ℓ(x)∧ℓi

αifi(x)dxdλ

=

k
∑

i=1

∫

θ(x)∧ℓ(x)∧ℓi∧θi

1dxdz

= MI(θ′ ∧ ℓ | x, z)

Also for the second term in Equation 5, it equates to

MI(θ′ ∧ ¬ℓ | x, z). Therefore, reduction from the WMI

problem to the MI problem holds. Although the reduc-

tion process we show here is for theories with one poly-

nomial weight function, this process can be generalized

to theories with multiple polynomial weight functions

with little modification.

A.4 PROOF OF PROPOSITION 4.1

Proof. (Proof of Proposition 4.1) It follows from defi-

nition of WMI. Denote the set of real variables x\{y} by

x̂. From the definition of WMI in Equation 2.2, we can

obtain the following partial derivative of WMI of theory

θ w.r.t. variable y.

∂

∂x
WMI(θ, w | x, b) |y=y∗

=
∑

µ∈Bm

∫

θ(y∗,x̂,µ)

w(y∗, x̂, µ)dx̂

where the variable y is fixed to value y∗ in weight func-

tion, µ are total truth assignments to Boolean variables as

defined before. The weight function is integrated over set

{x̂∗ | θ(y∗, x̂∗, µ) is true}. We define p(y) as follows

p(y) :=
∑

µ∈Bm

∫

y,θ(x̂,µ)

w(y, x̂, µ)dx̂

Since weight functions w are piecewise polynomial,

function p(y) is a univariate piecewise polynomial p(y),
and WMI(θ, w | x, b) is an integration over p(y), which

finishes our proof.

A.5 PROOF OF THEOREM 4.4

Claim A.2. For each path in the primal graph that starts

with the root and ends with a leaf, and each real variable

in path with height i, its number of polynomial pieces is

O(n · ci+1).



Algorithm 2 Polynomial pieces and degree enumeration algorithms

a) PE EDGE – For Two Variable Theory

Input: θ: SMT(LRA) theory with two real variables

I : interval and degree tuples of variable x
Output: Iy: pieces and degrees for variable y

1: B ← collect integration bounds on variable x
2: Y ← y values where two bounds in B meet

3: for all interval [l, u] resulting from Y do

4: θ′ ← θ ∧ (l ≤ y ≤ u)
5: if θ′ is SAT then

6: {l(y), u(y), d} ← get bound degree(x,θ′,I)

7: d′ ← argmaxd get degree(l(y), u(y), d)})
8: Iy ← Iy ∪ ([l, u], d′)

9: Return Iy

b) PE NODE – For Tree Primal Graph

Input: θ: SMT theory with tree primal graph

G: primal graph for theory θ
Output: Iy: interval and degree tuples of root variable y

1: if root y has no child then

2: Iy ← get bound degree(θ)

3: return Iy

4: θy,c’s, θGc
’s← partition SMT(LRA) theory θ

5: for all child c do

6: Ic ← PE NODE(θc, Gc)
7: Icy ← PE EDGE(θy,c, Ic)

8: Return Iy = shatter
(

{Icy}c
)

Proof. The proof can be done by mathematical induc-

tion. Denote the real variable with height i in the path by

xi For i = 0, since the number of LRA literals is c, then

there are at most c critical points for real variable x0 and

therefore there are at most c + 1 polynomial pieces for

x0.

Suppose that the claim holds for i, that is, the number of

polynomial pieces for xi is O(n ·ci+1). To obtain critical

points for variable xi+1, we collect integration bounds

on variable xi whose size is O(n · ci+1) by assumption.

Since the critical points of variable xi+1 are obtained by

solving b1 = b2 w.r.t. variable xi+1 for b1, b2 in bounds

on variable xi, where there are at most c bounds contain-

ing xi+1 and the rest bounds are numerical ones, there

are at most O(n · ci+2) solutions. Therefore, the num-

ber of polynomial pieces for xi+1 is O(n · ci+2), which

finishes our proof.

Proof. (Proof of Theorem 4.4) Let p be an arbitrary

path in the pseudo tree T that starts with the root and ends

with a leaf. Denote the maximum polynomial degree in

weight functions by d. By Claim A.2 for each variable,

it has at most O(n · chp) polynomial pieces. Moreover

from Prop. 4.1, polynomials defined over each pieces

have at most n(d + hp) polynomial degree. Therefore

the set of values chosen to do instantiation on a certain

real variable has size O(n3 ·chp) and each path p induces

a search space with size O((n3 · chp)ht) since length of

each path is bounded by ht.

The pseudo tree T is covered by l such directed paths.

The union of their individual search spaces covers the

whole search space, where every distinct full path in the

search space appears exactly once. Therefore, the size of

the search space is bounded by O(l · (n3 · chp)ht).

B CACHING

Our algorithm allows caching in two sense. The first is

the caching of pieces, i.e. intervals and polynomial de-

grees obtained from child nodes, which can be consid-

ered as constraints from child nodes. The pieces of a cer-

tain nodes is decided both by instantiation values from

its father node as well as pieces from child nodes. Al-

though we instantiate root nodes with distinct values, the

constraints from child nodes for a certain node remains

unchanged as long as they have the same father-child re-

lation in subtree.

Another case where caching is possible is values of p(y)
as defined in Prop. 4.1 at instantiations of variable x.

This is possible because for a certain node, its pieces re-

sulting from different instantiation values of its grand-

father node might intersects. This is especially helpful

when there is a long path in primal graphs and caching

can save a lot computational effort.

C PIECE ENUMERATION

ALGORITHM

We summarize piece enumeration algorithms for two

variable theory and for theory with tree primal graphs

as described in Section 4.2 in Algorithm 2. Both

get bound degree and get degree are trivial operations

for specifying integration bounds and polynomial degree.

They are applied when the magnitude order of integra-

tion bounds are fixed and thus they can be done by scan-

ning through related theories.


