Efficient Search-Based Weighted Model Integration

Zhe Zeng and Guy Van den Broeck
Computer Science Department
University of California, Los Angeles
{zhezeng, guyvdb}@cs.ucla.edu

Abstract

Weighted model integration (WMI) extends
weighted model counting to integration in
mixed discrete-continuous domains. It has
shown tremendous promise for solving proba-
bilistic inference problems in graphical models
and probabilistic programs. Yet, state-of-the-
art tools for WMI have limited performance
and ignore the independence structure that is
crucial to improving efficiency. To address this
limitation, we propose an efficient model in-
tegration algorithm for theories with tree pri-
mal graphs. We exploit the sparse graph struc-
ture by using search to performing integration.
Our algorithm greatly improves the compu-
tational efficiency on such problems and ex-
ploits context-specific independence between
variables. Experimental results show dramatic
speedups compared to existing WMI solvers
on problems with tree-shaped dependencies.

1 INTRODUCTION

Weighted model counting (WMC) is the task of count-
ing the weighted sum of all satisfying assignments of a
propositional logic theory. In recent years, WMC was
shown to be an effective solution for addressing proba-
bilistic inference in a wide spectrum of formalisms (Sang
et al., 2005; Chakraborty et al., 2014; Ermon et al., 2013;
Chavira and Darwiche, 2008; Choi et al., 2013; Van den
Broeck and Suciu, 2017; Fierens et al., 2015).

An inherent limitation of WMC is that it can only deal
with discrete distributions. In order to overcome this re-
striction, weighted model integration (WMI) (Belle et al.,
2015a) was introduced as a generalization of WMC to-
wards hybrid domains, characterized by both discrete
and continuous variables. The formalism relies on satis-

fiability modulo theory (SMT) (Barrett and Tinelli, 2018)
technology, which permits reasoning about the satisfi-
ability of theories involving, for example, linear con-
straints over reals. WMI works by summing a simple
weight function over solutions to Boolean variables and
integrating over solutions to the real variables of an SMT
theory. Weight functions play the role of (unnormalized)
densities, whereas the logic theory captures the structure
of the distribution. WMI (or closely related formula-
tions) has recently been applied to several probabilistic
graphical model and programming tasks (Chistikov et al.,
2015; Albarghouthi et al., 2017; Morettin et al., 2017;
Belle, 2017; de Salvo Braz et al., 2016).

Both WMI and WMC are sum-of-product prob-
lems (Bacchus et al., 2009). In discrete domains, such
problems are amenable to a divide-and-conquer ap-
proach called search-based inference, where variables
are instantiated recursively until the inference prob-
lem decomposes. Solving WMC by search, exploit-
ing problem-specific structure, has been shown to be
highly effective, in particular on graphical models that
exhibit sparsity (Chavira and Darwiche, 2008). How-
ever, progress in WMI is far from its Boolean counter-
part, and currently does not exploit independence. More
generally, exact inference algorithms for hybrid graphi-
cal models do not exploit sparsity and structure as much
as discrete graphical model inference algorithms.

As a first approach to leverage structure, in this paper,
we propose a search-based inference procedure for exact
model integration that leverages decomposition to speed
up inference. We demonstrate how local structure en-
coded in SMT theories gives rise to context-specific de-
composition during search, reducing the number of mod-
els to be generated and integrated over. The integration
problem is decomposed into sub-problems by instanti-
ating shared variables and recursing independently on
the resulting simplified SMT theories. We show how
to choose finitely many values to instantiate continuous
variables with, and subsequently do polynomial interpo-

3,000
2,000
1,000

Price

l

[}

100

[~}
[=}
[=)

Square Footage

Figure 1: Feasible region of SMT theory ; from Example 2.1

lation to recover exact answers to WMI problems. Our
complexity analysis proves the first tractability result for
a non-trivial class of WMI problems. Moreover, our ex-
perimental evaluation confirms that the approach is dras-
tically faster than existing alternatives on WMI problems
with sparse, tree-shaped primal graphs.

2 BACKGROUND

We assume that the reader is familiar with propositional
logic and the SAT problem (Biere et al., 2009). Model
counting (#SAT) is the task of counting the number so-
lutions (models) to a given SAT problem (Gomes, 2009).
Weighted model counting (WMC) generalizes this task
by summing weights associated with individual SAT so-
lutions. It is widely used as tool for probabilistic reason-
ing (Sang et al., 2005; Chavira and Darwiche, 2008; Er-
mon et al., 2013; Chakraborty et al., 2014; Fierens et al.,
2015; Van den Broeck and Suciu, 2017).

Satisfiability Modulo Theories (SMT) generalizes SAT
to determining the satisfiability of a formula with respect
to a decidable background theory. In particular, we will
consider quantifier-free SMT formulas in the theory of
linear arithmetic over the reals, or SMT(LR.A). Here,
formulas are Boolean combinations of atomic proposi-
tions (e.g., a, b), and of atomic LR.A formulas over real
variables (e.g., x < y + 5). Variable instantiations are
denoted as b* or x*. Sets are denoted in boldface.

Example 2.1. For a house 1, let price; be its price
and sqft; its square footage. We can build a simple
SMT(LRA) formula of the relationship between these
real variables, with the corresponding solution space de-
picted in Figure 1. That is, SMT(LR.A) formula ~; is

(price; < 10 - sqft; +1000) V (price; < 20 - sqft; + 100)
(0 < price; < 3000) A (0 < sqft; < 200).

Weighted model integration (WMI) generalizes WMC to
support SMT(LR.A) formulas and real variables (Belle
et al,, 2015a). In its simplest form, model integra-
tion (MI) or #SMT (Chistikov et al., 2015) computes the
volume of the solution space. For example, the green
area in Figure 1 is 430,250. General WMI is defined as
follows (Belle et al., 2015a; Morettin et al., 2017).

Definition 2.2. Suppose we have n real variables x, m
Boolean variables b, an SMT(LR.A) formula 6(x,b),

ranging over x and b, and a weight function w(x,b)
that maps variable instantiations to real weights. Then,
weighted model integration (WMI) computes

WMI(G,w\w,b):Zb*eBm /9(b*)w(m,b*)d:c.
x,

That is, the WMI is obtained by summing over every
instantiation (total truth assignment) b* to the Boolean
variables, and integrating w(x, b*) over the set of solu-
tions {a* | 6(x*, b*) is SAT}.

Weight functions w are usually defined as products of lit-
eral weights (Belle et al., 2015a; Chavira and Darwiche,
2008). That is, for some set of literals £ we are given
a set of per-literal weight functions P = {p¢(x)}ecr-
When literal ¢ is satisfied in a world, denoted x A b |= ¢,
that world’s weight is multiplied by py (). Formally,

’UJ(ZIZ, b) = erﬁﬁc/\b\zépz(m).

When all variables are Boolean (i.e., z = (), the per-
literal weights py(x) are constants and we retrieve the
original definition of WMC as a special case of WMI
(Chavira and Darwiche, 2008). In this paper, we assume
that all per-literal weights are polynomials. This setting
is expressive enough to approximate any continuous dis-
tribution (Belle et al., 2015a).

Example 2.3. Consider a formula (b V —b) A 7;
where b is a Boolean variable and -y; is as defined
in Example 2.1. Consider the set of literals L =
{b,(0 < price; < 3000)} and per-literal weight func-
tions P = {pb,p(0<pm'cei<3000)}, with py(x) = 1.5 and
P(0<price; <3000) (T) = price?. Then, in worlds where
both literals in L are satisfied, our weight function is

po(price;, sqft;) - Pio<price, <s000) (price;, sqft;) = 1.5 - price?.
In worlds where b is false and only (0 < price; < 3000)
is satisfied, the weight function is pm’cef.

Moreover, we will show that this class of weight func-
tions is well-behaved. In particular, it allows for a nat-
ural reduction to unweighted model integration and is
amenable to efficient integration.

WMI was introduced as a tool for hybrid probabilistic
reasoning. Indeed, the weight of each world can be in-
terpreted as an unnormalized density, and the WMI is
its partition function subject to the logical constraints.
Under these semantics, suppose that we are interested in
the probability of query ¢ = (price; < 2000) in house
price model ~;. That probability can be computed as
the ratio of two WMI problems: Pr(q) = WMI(v; A
q)/ WMI(~;) = 350,250/430,250 = 81.4%.

Exact WMI Solvers The first solver for exact WMI
(Belle et al., 2015a) was a proof-of-concept relying

TR S S e — s
P T

240 ! f ke ALLSMI

?;:%0 - PA

10 4
Qﬂ ‘.i‘.....-q.....--l-—..—i--..--i—H-q---l—H“" =
2 6 8 10 12 14 16 18 20
number of nodes

Figure 2: WMI runtime on independent model in Example 3.1.

on a simple block-clause strategy (BC). It iteratively
generates new models of a Boolean abstraction of the
SMT formula. Each model individually is easily inte-
grated using tools such as LATTE (Baldoni et al., 2011;
De Loera et al.,, 2013). Belle et al. (2016) proposed
an all-satisfying-assignments-based solver (ALLSMT).
Unfortunately, enumerating models of the SMT ab-
straction is prohibitive in practice — there are exponen-
tially many models, and enumerating them does not
exploit structural properties of the SMT theory such
as independence. Improvements to this algorithm in-
clude predicate-abstraction solvers (Belle et al., 2016;
Morettin et al., 2017) (PA) and knowledge-compilation
solvers (Kolb et al., 2018) (XADD) and Symbo (Zuid-
berg Dos Martires et al., 2019). The PRAISE solver
(de Salvo Braz et al., 2016) performs search-based in-
ference on literals of SMT models (not theory variables)
and can also be used to solve WMI problems. Neverthe-
less, WMI solvers come with no tractability guarantees
and still enumerate Boolean models even when there is
abundant independence structure, as we will show next.

3 STRUCTURE IN WMI PROBLEMS

This section shows how to reduce WMI to model integra-
tion (MI) problems whose structural independence prop-
erties can be captured by graph abstractions.

3.1 INDEPENDENCE

We begin by motivating why we want to exploit indepen-
dence structure during probabilistic reasoning.

Example 3.1. Consider n houses, and conjoin the theory
~; from Example 2.1 n times, once for each house, into
a larger SMT theory v = A}_,v;. The n houses are
independent since no formula in ~y connects properties of
different houses. Thus, the WMI of v can be computed by
multiplying the WMI of each individual theory ;.
Figure 2 takes a trivial weight function and compares
existing WMI solvers on this simple problem. None is
able to exploit the extreme independence structure in .
Our proposed method SMI, however, runs in linear time,
as expected by the trivial factorization.

(a) Primal graph (b) Discrete And/Or Search Tree

Figure 3: Primal graph and search tree for (y V 1) A (y V z2).

This explosion in runtime is due to the fact that exist-
ing solvers ignore independence between variables in the
SMT(LR.A) theory. However, in discrete graphical mod-
els and WMC, leveraging independence to decompose
problems is at the core of all exact inference methods,
and search-based algorithms in particular (Darwiche,
2009; Dechter and Mateescu, 2007). Specifically, ex-
act discrete inference methods create independence even
when it is not immediately present, by performing a case
analysis on selected discrete variables, instantiating them
to all values, and simplifying the model. Through this
process, search-based inference algorithms induce and
exploit context-specific independence (Boutilier et al.,
1996). The decompositions afforded by (conditional and
context-specific) independence vastly reduce the compu-
tational cost of inference. Example 3.1 illustrated that
this intuition carries over to WMI problems.

In what follows, we first describe the graph abstraction of
SMT theories that characterizes dependencies between
variables. These form the basis of our algorithm. Sec-
ond, we show how WMI in hybrid domains can be re-
duced to unweighted MI in real domains. Hence, the
solver we develop in this paper will target MI problems.

3.2 GRAPH ABSTRACTION OF SMT

Primal graphs are often used to characterize variable
dependencies. For the example Boolean CNF formula
0 = (y V1) A (y V x2) the primal graph is shown in
Figure 3a. Its edges encode that variable pairs (y, 1)
and (y,x2) appear in the same clause, while (z1,2)
never appear together, and are thus independent given y.
Similarly, we will use primal graphs for SMT theories to
capture variable dependency information as follows.

Definition 3.2. (Primal graph of SMT) The primal
graph of an SMT(LRA) CNF is an undirected graph
whose vertices are all variables and whose edges con-
nect any two variables that appear in the same clause.

Example 3.3. Consider the following theory 0,

0 (-1<y<1HA(-05<z, 2, <0.5)
"l (@ 1<y)V(y<az—1), foralli € [n]

Figure 4 shows its primal graph and solution space.

7 05

T0.0 T2

=05
< 05
-10_g5 - 0.0

00 55 -~ 1
Y 05 44-05

(a) Primal graph of theory 6,, (b) Feasible region for 6>

Figure 4: Primal graph and feasible region from Example 3.3.

While there are many flavors of search-based exact
inference, including recursive conditioning (Darwiche,
2001), DPLL model counting (Sang et al., 2005), knowl-
edge compilation (Chavira and Darwiche, 2008), and
SumProd algorithms (Bacchus et al., 2009), we use the
And/Or-search framework to illustrate the required con-
cepts (Nilsson, 1982; Dechter and Mateescu, 2007).

The And/Or search algorithm for WMC problems recur-
sively simplifies a discrete counting problem by alter-
nating between two steps. The first (OR) step selects a
Boolean variable and tries to instantiate it to both true
and false (we will later see how to choose the variable).
The second (AND) step finds ways of partitioning the
WMC problem into independent sub-problems that can
be solved separately. Such sub-problems are introduced
by instantiating variables in the OR step in a way that
creates independence. The OR step is also called the
Shannon expansion. The AND step is also referred to
as component caching (Sang et al., 2005) or detecting
decomposability (Chavira and Darwiche, 2008).

This process is illustrated in Figure 3b for the earlier
Boolean CNF f#p. Circles denote OR-step variables
whose square-node children are its instantiations. After
instatiating y, the search tree creates independent prob-
lems for z; and z5. This independence can be read off di-
rectly from the primal graph in Figure 3a. Search-based
algorithms (with caching) are known to run efficiently
on WMC problems with a tree or tree-like primal graph
(Darwiche, 2009; Bacchus et al., 2009).

3.3 MODEL INTEGRATION IS ALL YOU NEED

This section casts hybrid WMI problems into MI prob-
lems over only real variables. We consider the case
where per-literal weight functions are monomials — func-
tions of the form [z{" .-z~ over real variables x;
where § € R and o; € IN. We further assume that lit-
erals in £ also appear in the theory, and that literals and

their weights range over the same real variables.

We first show that any WMI problem with Boolean
variables can be reduced to a WMI problem without
Booleans. Then we show that WMI problems with per-

literal weights can be reduced to an unweighted MI prob-
lem where the weight function is 1.

Proposition 3.4. For each problem WMI(0,w | x,b)
there exists an equivalent problem WMI(¢',w' |)
without Boolean variables b such that

WMI(0, w | &, b) = WMI(0, w' | &)

and the primal graphs of 0 and 0" are isomorphic.

This reduction encodes Boolean variables using fresh
real variables and replaces each Boolean atom and its
negation by two exclusive LR.A atoms over those real
variables. Proposition 3.4 allows us to focus on WMI
problems without Boolean variables involved. Certain
weight functions can also be reduced, as we show next.

Proposition 3.5. For each problem WMI(0, w | x) with
per-literal weights w as defined in this section, there ex-
ists an equivalent unweighted problem MI(0 | ') s.t.

WMI(0, w |) = MI(¢' | o).

Moreover, when weights w are defined over univariate
literals, theories 0 and 0’ have identical primal graph
treewidth (Robertson and Seymour, 1986). !

This reduction encodes weights using auxiliary parame-
ter variables. For each literal over which a weight is de-
fined, two set of clauses will be appended such that if the
literal holds, the MI over the auxiliary variables equals
the monomial weight function; otherwise, it equals 1.

Crucially, both reductions can be constructed in polyno-
mial time. Similar efficient reductions exist for arbitrary
polynomial weight functions, but can slightly increase
treewidth. Detailed descriptions of these reduction pro-
cesses are included in Appendix A.3.

Example 3.6. Consider SMT(LR.A) theory (b\V —b) A~;
with literal set L and per-literal weight functions P
as defined in Example 2.3. There exists an equiva-

lent MI problem MI(6 | U {\p, 2p, zl(l), zgz)}) with a
weight function of 1 and without Boolean variables. Its
SMT(LRA) theory § is shown below. Note that its pri-

mal graph remains a tree.

YViN(=1 <X <1)Ajm12 (0< zi(j) < price;)
>0 = (0< 2, <1.5)

(A >0)= (0< 2, < 1).

0

4 SEARCH-BASED MI

The goal of our work is to take advantage of the inde-
pendence structure in SMT(LR.A) theories to reduce the

"An earlier version of this paper omitted the requirement
that the per-literal weights need to be defined over univariate
literal for treewidth to remain the same after reduction.

many values
I

3_
[Y 1dan
2

3_
[Y 1das

(a) Infinite Search Tree (b) Our Finite Search Tree

Figure 5: Continuous search trees for 62 from Example 3.3.

computational cost of model integration. Our solution is
to exploit context-specific independence by search.

One obstacle is that to introduce independence in discrete
search, we instantiate a variable with all values in its do-
main. Unfortunately, when the variable has a real domain
(e.g.,y € [0, 1]), we cannot instantiate it with every value
in its domain, since there are uncountably many (see Fig-
ure 5a). This basic limitation has precluded the use of
search-based inference in continuous graphical models.

We overcome this problem by observing that MI is an
integration over a piecewise polynomial, which can be
fully recovered from a finite number of points. Specif-
ically, for real variable y in theory 6, if we instantiate
the variable y with a value «, then the MI of theory
0 A (y = «) is the density of WMI(0,w) at y = a.
Recall that a polynomial function p(y) with degree d de-
fined over an interval I is uniquely defined by its values
at d+1 distinct points in I, and that a closed-form expres-
sion for p(y) can be recovered exactly and efficiently.

Consider again the theory «; from Example 2.1. As
shown in Figure 1, function f(a) = MI(vy; A (sqft; =
«)) is a piecewise polynomial with three intervals. We
can recover all three polynomials from a finite number
of points, and thus obtain the integration of f(«), that is,
the model integration MI(~y;). This motivates the search-
based model integration algorithm we develop next.

4.1 VARIABLE INSTANTIATION

We first show that when per-literal weight functions P
are polynomials, WMI of theory 6§ can be obtained by
doing search with finite instantiations on real variables.

Proposition 4.1. Let y be a real variable in SMT(LRA)
theory 6 with a tree primal graph. If per-literal weight
functions P are polynomials, the WMI is an integration
over a univariate piecewise polynomial p(y), that is,

WMI(0, w | ,b) = /I p(y)dy ()

where piecewise polynomial p(y
*

I = {y* | 3&*,3b" s.t. O(y*,

) is integrated over set
T*,b") is SAT} with &

Figure 6: Piecewise polynomial p(y) as defined in Proposi-
tion 4.1 for theory 02 from Example 3.3, whose integration is
MI(62). The two polynomials p_ (y) and p. (y) are unknown,
but we can recover them from a finite number of points.

being the remaining real variables.

The set I is a union of disjoint supports for piecewise
polynomial p(y). We refer to these intervals as “pieces”.
To describe our MI algorithm, we first assume in this
section that these intervals and their polynomial degrees
are given. Our method to explicitly find these intervals
and degrees will be given in Section 4.2.

Although Proposition 4.1 holds for WMI problems with
polynomial per-literal weight functions in general, we
use the insights from Section 3.3 to only focus on MI
problems. For interval set I defined in Proposition 4.1,
suppose we are given the interval pieces [l,u] € I and
degrees d of their associated polynomials. If we instanti-
ate variable y with d+1 distinct values in each piece [[, u]
of degree d, and solve any sub-problems recursively, we
can recover polynomial p; ,,(y) defined on interval [I, u]
by performing interpolation on d + 1 points. Finally, MI
of the full theory 6 can be computed as follows.

MI(0,w | z,b) = Z[l u}el/l pLa(y)dy. (2

For example, consider theory 6> from Example 3.3. We
can interpret MI(f3) as an integration over piecewise
polynomial p(y) whose intervals [—1, —0.5] and [0.5, 1]
both have associated degree two. After instantiating y
to three values in each interval, we get two independent
sub-MI problems that contain variable z; and variable x4
respectively. By solving these sub-problems, we obtain
three points fitted by each polynomial p_(y) and p (y)
as shown in Figure 6. Therefore, we can recover both
by polynomial interpolation and can obtain MI(3) by
Equation 2. Figure 5b depicts the search space of our
algorithm on interval [0.5, 1].

The above discussion has shown that for MI problems,
we can instantiate a real variable to finitely many values,
decompose the problem into independent parts, and then
solve the sub-problems recursively. Algorithm 1 follows
exactly this strategy for search-based model integration.

Algorithm 1 SMI: Search-Based Model Integration
Input: 7T': pseudo tree, 0: SMT(LR.A) theory
Output: p: MI of theory 6

. if T is a forest of trees 7" then

0" <+ sub-theories containing variables in 7"
: return [[, SMI(T",0")

1

2

3

4: p=0,y =root(T), ST, = set of subtrees below y
5. I =PE_NODE(®, y)

6: for all polynomial piece {[l,u],d} € I do

7 select d + 1 distinct values o;’s in [1, u]

8 Pi < SMI(STT, 0 |(y:04i))

9: Piu(y) < polynomial interpolation on (cv;, p;)’s
10 p+p+ [pruy)dy

11: return p

The role of pseudo trees will be explained in Section 4.3.
Details on caching to speed up the algorithm are included
in Appendix B. The remaining problem is how to exactly
obtain pieces [, u] and their associated degrees d in func-
tion PE_NODE. We address this problem next.

4.2 FINDING PIECES VIA CRITICAL POINTS

Recall that by Proposition 4.1, WMI of SMT(LR.A) the-
ory 6 can be rewritten as WMI(6, w | =, b) = [, p(y)dy
where p(y) is a piecewise polynomial, set [is a union of
disjoint support of polynomials in p(y), and each piece
[[,u] € I is associated with a polynomial degree d. We
hope that when a real variable y in theory 6 is chosen to
be instantiated, we can exactly find all pieces and their
associated degrees for piecewise polynomial p(y).

It turns out that this can be achieved. While integrat-
ing over satisfying assignments with respect to a cer-
tain variable given an SMT(LR.A) theory, integration
upper bounds and lower bonds are defined by its liter-
als. Changes in integration bounds give rise to differ-
ent pieces of integration and therefore result in the piece-
wise nature of the polynomial in Proposition 4.1. In our
method we determine these pieces by collecting points
where certain bounds meet. Further, by propagating
polynomial piece and degree information in a bottom-up
manner along the primal graph, we can obtain the pieces
and degree for the chosen piecewise polynomial.

We will first describe our method in a basic case where
there are only two real variables in the theory. Then we
extend this approach to theories with tree primal graphs.

4.2.1 Base Case: Pieces of Two Real Variables

First we investigate a simple case where there are only
two real variables x and y in SMT(LR.A) theory 6. Re-

call that we are solving an unweighted MI problem. We
would like to find pieces and associated degrees for vari-
able y such that we can instantiate y as in Section 4.1:

u(y)
p(y):/ l1dz = / 1dz
0(@.y) l(y)uly)el(y) 1Y)

> uly) —lw)

[L(y),u(y)]€l(y)
where set I(y) is defined as

{ll(y), u)] | Vo € [U(y),u(y)], Oz, y) is SAT}. (3)
That is, for any fixed value y*, the set I(y*) consists
of intervals of consistent values for variable . For any
[1(y),u(y)] € I(y), it gives a pair of integration bounds
for variable x. Further by integrating over = we can ob-
tain a polynomial with respect to variable y.

Each piece [l, u] corresponds to a certain class of values
that gives the same symbolic integration bounds to vari-
able z. The two values y = [and y = u are endpoints
of the piece only if integration bound set I(y) changes at
these points, since the piecewise polynomial p(y) is de-
fined by these bounds. That is, for arbitrarily small €, we
have I(l—¢€) # I(l+€), and it also holds at point y = w.
We formally define critical points below.

Definition 4.2. (Critical Point) Let 6 be an SMT(LRA)
theory with two real variables, and denote one of the real
variables by y. Let I(y) be an integration bound set as
defined in Equation 3. Then y = « is a critical point if
for arbitrarily small ¢, it holds that I(« — €) # I(a+¢).

Remark. The comparison of set I(y) is done symboli-
cally. That is, for two distinct values «, 8, we say I(«) =
1(B) if they have the same set of symbolic integration
bounds. For example, ifaty = «, I(y) = {[1,y]} and at
y=p0# a, I(z) = {[1,y]}, it holds that I () = I(S).
However, if at y = o, I(y) = {[1,y]} and at y = 3,
I(y) = {ly, 2]}, then we say I(c) # I(B3).

Our idea is that, if we can find all critical points y = «
where the set I(y) changes, then we can partition real
domains of y into disjoint intervals, such that any sup-
port of piecewise polynomial p(y) is either one of these
intervals or a union of some intervals. For the result-
ing interval [, u], we can apply an SMT(LR.A) solver to
0" =0 A (I <y < u) to check whether it is a satisfiable
piece of function p(y); if this is true, we can obtain the
polynomial degree of p; ,,(y) defined over this piece by
simply traversing theory 6’. We summarize this proce-
dure as PE_EDGE in Algorithm 2 in Appendix C.

4.2.2 General Case: Pieces of Tree Structures

Given an SMT(LR.A) theory 6 with a tree-shape primal
graph G, our goal is to enumerate pieces and their as-
sociated degrees for the root variable y, building on the

algorithm we developed in the base case above. This can
be done in a bottom-up manner with tree primal graphs.

Specifically, we first partition theory 6 into sub-theories
0, and f¢_ for each c, such that 0 = A (6, A 0g.),
where variables ¢ are the child variables of root r, and
graph G is the sub-tree rooted at variable c. Each theory
0., contains only variables r and ¢, on which we can
apply the enumeration for the base case above, and each
theory f¢_ contains only variables in sub-tree G.. This
is possible provided that the primal graph of theory 6 has
a tree structure, which is why our algorithm is restricted
to SMT(LR.A) theories with tree-shaped primal graphs.

For each child variable ¢, we first obtain its pieces with
respect to theory 0, in a recursive way. Then we can
apply our enumeration algorithm for two-variable theory
PE_EDGE to theory 6, . with the given pieces of vari-
able c. What we would get are sets of pieces for each
child variable c. To be consistent with theory 6, we need
to take intersections of these sets which we refer to as the
shattering operation. Finally, the resulting intersections
are pieces and polynomial degrees for root variable . We
provide more details of this procedure called PE_NODE
in Algorithm 2 in Appendix C.

As described above, our piece enumeration algorithm is
applicable to MI problems for theories with tree primal
graphs. Moreover, it is also applicable to WMI problems
whose SMT theory has a tree primal graph and whose
per-literal weights are monomials over univariate literals
as described in Section 3.3, since our reduction process
can preserve the tree structure of the primal graph.

4.3 COMPLEXITY ANALYSIS

Inference over networks involving real variables raises
considerable challenges for inference, and network struc-
tures that are tractable in the discrete case, such as poly-
trees, give rise to NP-hard inference problems in the hy-
brid case (Koller and Friedman, 2009). We show that
the complexity of our algorithm is mainly exponentially
bounded by the tree height of the primal graph.

Our search algorithm for MI needs to choose which vari-
ables to instantiate first. This choice can be based on a
tree data structure that orders the variables. Such a tree
characterizes the computational complexity as it does for
discrete And/Or search algorithms. We first formally de-
fined the tree that helps guide our search.

Definition 4.3. (Pseudo Tree) Given an undirected
graph G with vertices and edges (V, E¢), a pseudo tree
for G is a directed rooted tree T with vertices and edges
(V, ET), such that any edge e that is in G but not in T
must connect a vertex in T to one of its ancestors.

That is, edge e = (v1,v2) such thate € Eg and e ¢ Er
implies that either vertex vy is an ancestor of vertex vy in
T or vertex vs is an ancestor of vertex vy in 7'. Note that
the pseudo tree has the same set of vertices as G. Such a
pseudo tree guides SMI (Algorithm 1) in deciding which
variable to instantiate, and when to decompose.

Next, we analyze the complexity of SMI. Since our algo-
rithm performs search, its time and space complexity is
characterized by the size of its search space. Our analysis
does not take caching improvements into consideration.

Theorem 4.4. (Size of Search Space) Consider an
SMT(LRA) theory 6 with a tree-shaped primal graph
with height hy, and a pseudo tree T' with | leaves and
height h;. Let m be the number of LRA literals in 0,
and n be the number of real variables. Then the size of
the SMI search space is O(l - (n® - m"»)ht).

Hence, we can conclude that the complexity of our al-
gorithm is bounded exponentially by tree heights of both
the primal graph and pseudo tree. In fact, for any tree-
shaped primal graph, we can always choose a pseudo tree
whose height h; is O(log n) to guide the search (Dechter
and Mateescu, 2007). Moreover, the number of leaves [
in pseudo tree 7" is no larger than the number of nodes n.
Thus, we have the following corollary.

Corollary 4.5. Following the notation in Theorem 4.4,
with properly chosen pseudo tree T whose tree height hy
is O(logn), the size of the search space generated by
SMI is O(nHS log n+h, log m)

Therefore, the complexity of our algorithm is mainly de-
cided by tree heights of primal graphs h,. In the worst
case when tree primal graphs have height O(n) — for in-
stance path graphs, whose tree height is n when rooted
at the start node — then the worst-case complexity of our
algorithm is O(n"1°8™) by Corollary 4.5. That is, the
time complexity is worst-case super-exponential.

In cases when the tree primal graph has tree height
of size O(logn), the complexity of our algorithm is
O(n'+B+logm)logn) which is of quasi-polynomial com-
plexity, and considered to be efficient. Trees with tree
height in O(logn) are a general class of trees used in
various models. Balancing trees like AVL trees and full
k-ary trees are of tree height O(logn). Another exam-
ple is a star graph, which has one internal node and all
other nodes as leaves. This graph corresponds to the
well-known naive Bayes structure for directed graphical
models. It is the primal graph of a theory modeling inde-
pendent variables predicting one and the same dependent
(class) variable. The tree height of star graphs is constant
1 when choosing the internal node as root. Hence, our al-
gorithm runs efficiently on such WMI problem:s.

400 m==mmdt f "'rf _______________________ 1000 m==c==mpom—- I'_-,'f“""" % XADD w00 f o
’ l ’ 8- XADD %00 . I/ =<+ Symbo l * ~%- XADD
300 . =< Symbo I) -®- PRAISE =< Symbo
2 I ‘7 I ~®- PRAISE 2 600 d I -®- BC 500 l‘ /% —@- PRAISE
Ezoo ’ , -®- BC E) 4! | —A- ALLSMT 2400 ‘I ‘/‘ - BC
Bl —A- ALLSMT 400 ! ' PA = ” /¢ —A- ALLSMT
’ oy I / H < SMI P }”‘ PA
A - SMI 200 ‘,(I y FV"” 200 “ _,("Zﬁ I L
0 mﬁ i’-£+++1—+++++++++4 o 1o ool et et pat it 0 mnﬁhﬁdﬁi—*“ '

20 0 4
numbcr of nodcs

(a) MI runtime on star primal graphs.

number of nodes

(b) MI runtime on full 3-ary tree graphs.

12 16 20 0 4 8 12 16 20
number of nodes

(c) MI runtime on path primal graphs.

QO
oVS0 ®
O—=F_—O %9@90 OFS
ONOXO, OR0 © Q-GG

(d) Star primal graph with nodes n = 8.

(e) Full 3-ary tree with nodes n = 12.

(f) Path primal graph with nodes n = 5.

Figure 7: (a)-(c) MI execution time on SMT(LR.A) with tree primal graphs. (d)-(f) Example tree primal graphs.

S EMPIRICAL EVALUATION

We analyze the performance of our search-based MI al-
gorithm on SMT(LR.A) theories with tree primal graphs.
First, we show that our algorithm is efficient for theories
whose primal graphs have constant tree heights, or tree
heights of log scale w.r.t. the number of real variables n.
For theories whose primal graph has tree height in O(n)
— the cases where our algorithm has super-exponential
worst-case complexity in theory — empirical results show
that our algorithm still runs efficiently. We also consider
a more complex house price model where house sizes are
dependent, as opposed to those in Example 3.1. More-
over, the house price model has non-trivial weight func-
tions that our algorithm first reduces to a MI problem as
outlined in Section 3.3. We compare our algorithm to al-
ternative WMI solvers and conclude that it significantly
outperforms existing solvers on these benchmarks.

Benchmarks We compare our algorithm (SMI) with
other WMI solvers. The block-clause-strategy-based
solver (BC) (Belle et al., 2015a) iteratively generates new
models by adding the negation of the latest model to the
formula for the following iteration. The all-satisfying-
assignments-based solver (ALLSMT) (Belle et al., 2016)
first generates the set of all LR.A-satisfiable total truth
assignments on atoms that propositionally satisfy the
theory. The implementation of de Salvo Braz et al.
(2016) (PRAISE) is a variable-elimination-based solver.
The predicate-abstraction-based solver (PA) (Morettin
et al., 2017) exploits the power of SMT-based predi-
cate abstraction to reduce the number of models to be
integrated over. Both the extended algebraic-decision-
diagram-based solver (XADD) (Kolb et al., 2018)
and sentential-decision-diagram-based solver (Symbo)
(Zuidberg Dos Martires et al., 2019) use circuit-based

compilation languages and exploits the circuit structures.

5.1 TREE PRIMAL GRAPHS

We investigate the performance of our algorithm on
SMT(LR.A) theories with three types of tree primal
graphs: 1) star graphs, consisting of one center node
connected to all other nodes, and no other connections;
2) full 3-ary trees, whose non-leaf vertices have exactly
three children and all levels are full except for some
rightmost position of the bottom level; 3) path graphs,
consisting of linearly connected nodes. These structural
constraints arise naturally in data and many probabilistic
graphical modeling problems.

For each graph type, given a number of nodes n, we in-
troduce n real variables © = {xg, 21, ,Zp_1} With
bounded domains Vi, (—1 < z; < 1). Denote the graph
by G = (V,E) where V = {0,1,--- ,n — 1} is the
vertex set and E = {(¢,7),i,7 € V} the edge set. We
perform MI for the following theories and increasing n.

f Niev (1< <1)
=)= { Neses (@+152,)V @

Figure 7 shows example primal graphs and the execution
time of experiments comparing SMI with baselines.

<z;—1))

For MI over theories with all three types of tree pri-
mal graphs, our algorithm significantly outperform other
WMI solvers in terms of execution time. The runtime
curves of other solvers grow seemingly exponentially
while our curve grows slowly with the number of real
variables. For theories with star graphs and full 3-ary
trees as primal graphs, the time curves of SMI are con-
sistent with the complexity analysis in Section 4.3 stating
that our algorithm has quasi-polynomial complexity. For
theories with path graphs as primal graphs, which are

1400 "_r ________ | &K S— ~#- XADD
. 11 —@- PRAISE
1200 L X
! I -®: BC
o 1000 i I H —A- ALLSMT
T o800 - 1= PA
£ 600 ’ H * =f- SMI
400 ,]
200] dq—H""*" oo
0 ﬂtﬂ*
0 4 3 12 16

number of nodes

Figure 8: Runtime and primal graph for house price model.

still sparse graphs, we perform caching and the runtime
curve grows slowly, even though our worst-case analysis
allows for a super-exponential time complexity.

5.2 HOUSE PRICE SMT(LR.A) MODEL

In Example 3.1 we performed MI for multiple houses
based on extreme independence assumptions. Now we
consider a more complicated case where houses are
not independent and there are Boolean variables in the
SMT(LR.A) model. Moreover, we choose non-trivial
per-literal weight functions in order to evaluate our al-
gorithm for reducing WMI to unweighted MI problems.

Specifically, we consider n houses that are located along
a street. Each house ¢ has its price and square footage
model as in Example 2.1. Also, we enforce the constraint
that square footage between two neighboring houses
should not vary too much and we use a Boolean vari-
able b to indicate whether or not these houses are located
in an urban area. This gives the following SMT theory.

o = L OV AN
street A= (sqft; < sqftiq + offset)

with offset a constant characterizing maximum differ-
ence in square footage between two neighboring houses.
For weights w, consider the set of literals £ = {b} U{0<
price; < 3000,7 = 1,---,n} and per-literal weight
functions P = {pb} U {p(0<pm-cei<3000),i = 1, tee ,n},
with py(z) = 1.5 and p(o<price, <3000) (T) = price? for
all 4. Then, in worlds where all literals in £ are satisfied,
our weight function is 1.5 [}, price?. In worlds where
b is false but other literals are satisfied, the weight func-
tion is [T, price?. Figure 8 shows an example primal
graph and WMI runtime for this house price model.

6 RELATED WORK

SMT (Barrett et al., 2010) has been one of the most
prominent advances in automated reasoning and many
efficient SMT solvers have been built (De Moura and
Bjgrner, 2008; Barrett et al., 2011; Cimatti et al., 2013;
Dutertre, 2014). The counting version of SMT, that

is #SMT, and in particular #SMT(L.A) is a fundamen-
tal problem in quantitative program analysis (Liu and
Zhang, 2011; Geldenhuys et al., 2012; Filieri et al., 2014;
Phan et al., 2014; von Gleissenthall et al., 2015; Filieri
et al., 2015). The #SMT(L.A) problem is #P-hard, as is
model counting (Valiant, 1979). Other first-order hybrid
probability models have been proposed, usually based on
sampling inference (Ravkic et al., 2015).

SGDPLL(T) is an algorithm for solving probabilistic in-
ference modulo theories while also generating simpler
sub-problems (de Salvo Braz et al., 2016). It performs
case analysis on SMT literals, whereas SMI instead op-
erates on continuous theory variables. Similar to our ob-
servation that WMI problems can be reduced to MI prob-
lems, Chakraborty et al. (2015) propose a method to re-
duce WMC to unweighted model counting. Although the
focus of this paper is on exact inference, there also exist
notable approximate solutions to #SMT(L.4) and WMI
(Ma et al., 2009; Belle et al., 2015b; Chakraborty et al.,
2016; Chistikov et al., 2017).

Morettin et al. (2017) enumerate integrable spaces by
predicate abstraction and allow general weight functions.
Kolb et al. (2018) use case functions as weights, which
still permits compilation into XADD circuits. Weight
functions in these two cases are not consistent with the
factorization structure of the SMT sentence. The factor-
ization structure is a crucial aspect of efficient inference,
and its isolation to the logical part of WMC/WMI is con-
sidered to be an advantage, facilitating solver building.
Our definition of factorized weight functions is similar
to Belle et al. (2015a) and Zuidberg Dos Martires et al.
(2019). Belle et al. (2016) exploit independence in WMI
problems that are exactly equivalent to WMC problems.

7 Conclusions

This paper proposed a search-based WMI algorithm that
exploits structural independence properties to improve
efficiency. For WMI on SMT(LR.A) theories with tree
primal graphs and piecewise polynomial weight func-
tions, our algorithm decomposes WMI problems dur-
ing search. A complexity analysis showed that for bal-
anced tree primal graphs, our algorithm yields quasi-
polynomial complexity. Experimental comparisons con-
firmed a drastic efficiency improvement over baselines.

Acknowledgements The authors would like to thank
Brendan Juba, Andrea Passerini, and Roberto Sebastiani
for valuable discussions. This work is partially supported
by NSF grants #IIS-1657613, #IIS-1633857, #CCF-
1837129, DARPA XAI grant #N66001-17-2-4032, NEC
Research, and gifts from Intel and Facebook Research.

References

Aws Albarghouthi, Loris D’ Antoni, Samuel Drews, and
Aditya V. Nori. Fairsquare: Probabilistic verification
of program fairness. Proc. ACM Program. Lang.,
(OOPSLA):80:1-80:30, 2017.

Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi.
Solving #SAT and Bayesian inference with backtrack-
ing search. Journal of Artificial Intelligence Research,
34:391-442, 2009.

Velleda Baldoni, Nicole Berline, Jesus De Loera,
Matthias Koppe, and Michele Vergne. How to inte-
grate a polynomial over a simplex. Mathematics of
Computation, 80(273):297-325, 2011.

Clark Barrett and Cesare Tinelli. Satisfiability modulo
theories. In Handbook of Model Checking, pages 305—
343. Springer, 2018.

Clark Barrett, Leonardo de Moura, Silvio Ranise, Aaron
Stump, and Cesare Tinelli. The smt-lib initiative and
the rise of smt (hvc 2010 award talk). In Proceed-
ings of the 6th international conference on Hardware
and software: verification and testing, pages 3-3.
Springer-Verlag, 2010.

Clark Barrett, Christopher L. Conway, Morgan Deters,
Liana Hadarean, Dejan Jovanovi¢, Tim King, An-
drew Reynolds, and Cesare Tinelli. Cvc4. In Inter-
national Conference on Computer Aided Verification,
pages 171-177. Springer, 2011.

Vaishak Belle. Weighted model counting with function
symbols. In Proceedings of the 33rd Conference on
Uncertainty in Artificial Intelligence (UAI), 2017.

Vaishak Belle, Andrea Passerini, and Guy Van den
Broeck. Probabilistic inference in hybrid domains
by weighted model integration. In Proceedings of
24th International Joint Conference on Artificial In-
telligence (IJCAI), pages 2770-2776, 2015a.

Vaishak Belle, Guy Van den Broeck, and Andrea
Passerini. Hashing-based approximate probabilistic
inference in hybrid domains. In UAI, pages 141-150,
2015b.

Vaishak Belle, Guy Van den Broeck, and Andrea
Passerini. Component caching in hybrid domains with
piecewise polynomial densities. In AAAI, pages 3369—
3375, 2016.

Armin Biere, Marijn Heule, and Hans van Maaren.
Handbook of satisfiability, volume 185. IOS press,
2009.

Craig Boutilier, Nir Friedman, Moises Goldszmidt, and
Daphne Koller. Context-specific independence in
bayesian networks. In Proceedings of the Twelfth in-
ternational conference on Uncertainty in artificial in-

telligence, pages 115-123. Morgan Kaufmann Pub-
lishers Inc., 1996.

Supratik Chakraborty, Daniel J Fremont, Kuldeep S
Meel, Sanjit A Seshia, and Moshe Y Vardi.
Distribution-aware sampling and weighted model
counting for sat. In Twenty-Eighth AAAI Conference
on Artificial Intelligence, 2014.

Supratik Chakraborty, Dror Fried, Kuldeep S Meel, and
Moshe Y Vardi. From weighted to unweighted model
counting. In Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, 2015.

Supratik Chakraborty, Kuldeep S Meel, Rakesh Mistry,
and Moshe Y Vardi. Approximate probabilistic infer-
ence via word-level counting. In Thirtieth AAAI Con-
ference on Artificial Intelligence, 2016.

Mark Chavira and Adnan Darwiche. On probabilistic
inference by weighted model counting. 2008.

Dmitry Chistikov, Rayna Dimitrova, and Rupak Majum-
dar. Approximate counting in smt and value estima-
tion for probabilistic programs. In International Con-
ference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 320-334. Springer,
2015.

Dmitry Chistikov, Rayna Dimitrova, and Rupak Majum-
dar. Approximate counting in smt and value estima-
tion for probabilistic programs. Acta Informatica, 54
(8):729-764, 2017.

Arthur Choi, Doga Kisa, and Adnan Darwiche. Com-
piling probabilistic graphical models using sentential
decision diagrams. In European Conference on Sym-
bolic and Quantitative Approaches to Reasoning and
Uncertainty, pages 121-132. Springer, 2013.

Alessandro Cimatti, Alberto Griggio, Bastiaan Joost
Schaafsma, and Roberto Sebastiani. The mathsat5 smt
solver. In International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems,
pages 93-107. Springer, 2013.

Adnan Darwiche. Recursive conditioning. Artificial In-
telligence, 126(1-2):5-41, 2001.

Adnan Darwiche.
Bayesian networks.

2009.

Jesis A De Loera, Brandon Dutra, Matthias Koeppe,
Stanislav Moreinis, Gregory Pinto, and Jianqiu Wu.
Software for exact integration of polynomials over
polyhedra. Computational Geometry, 46(3):232-252,
2013.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An effi-
cient smt solver. In International conference on Tools

and Algorithms for the Construction and Analysis of
Systems, pages 337-340. Springer, 2008.

Modeling and reasoning with
Cambridge University Press,

Rodrigo de Salvo Braz, Ciaran O’Reilly, Vibhav Gogate,
and Rina Dechter. Probabilistic inference modulo
theories. In Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence,

pages 3591-3599. AAAI Press, 2016.

Rina Dechter and Robert Mateescu. And/or search
spaces for graphical models. Artificial intelligence,
171(2-3):73-106, 2007.

Bruno Dutertre. Yices 2.2. In International Confer-
ence on Computer Aided Verification, pages 737-744.
Springer, 2014.

Stefano Ermon, Carla P Gomes, Ashish Sabharwal, and
Bart Selman. Embed and project: Discrete sampling
with universal hashing. In Advances in Neural Infor-
mation Processing Systems, pages 2085-2093, 2013.

Daan Fierens, Guy Van den Broeck, Joris Renkens, Dim-
itar Shterionov, Bernd Gutmann, Ingo Thon, Gerda
Janssens, and Luc De Raedt. Inference and learning in
probabilistic logic programs using weighted boolean
formulas. Theory and Practice of Logic Programming,
15(3):358-401, 2015.

Antonio Filieri, Corina S Pasareanu, and Willem Visser.
Reliability analysis in symbolic pathfinder: A brief
summary. 2014.

Antonio Filieri, Corina S Pasareanu, and Guowei Yang.
Quantification of software changes through prob-
abilistic symbolic execution (n). In 2015 30th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 703-708. IEEE,
2015.

Jaco Geldenhuys, Matthew B Dwyer, and Willem Visser.
Probabilistic symbolic execution. In Proceedings of
the 2012 International Symposium on Software Testing
and Analysis, pages 166—-176. ACM, 2012.

Carla P. Gomes. Model counting. Handbook of Satisfia-
bility, 20, 2009.

Samuel Kolb, Martin Mladenov, Scott Sanner, Vaishak
Belle, and Kristian Kersting. Efficient symbolic in-
tegration for probabilistic inference. In IJCAI, pages
5031-5037, 2018.

Daphne Koller and Nir Friedman. Probabilistic graphical
models. 2009.

Sheng Liu and Jian Zhang. Program analysis: from qual-
itative analysis to quantitative analysis (nier track). In
2011 33rd International Conference on Software En-
gineering (ICSE), pages 956-959. IEEE, 2011.

Feifei Ma, Sheng Liu, and Jian Zhang. Volume com-
putation for boolean combination of linear arithmetic
constraints. In International Conference on Automated
Deduction, pages 453-468. Springer, 2009.

Paolo Morettin, Andrea Passerini, and Roberto Sebas-
tiani. Efficient weighted model integration via smt-
based predicate abstraction. In Proceedings of the
26th International Joint Conference on Artificial In-
telligence, pages 720-728. AAAI Press, 2017.

Nils J Nilsson. Principles of artificial intelligence. Sym-
bolic Computation, Berlin: Springer, 1982, 1982.

Quoc-Sang Phan, Pasquale Malacaria, Corina S
Pdsdreanu, and Marcelo d’Amorim. Quantifying in-
formation leaks using reliability analysis. In Proceed-
ings of the 2014 International SPIN Symposium on
Model Checking of Software, pages 105-108. ACM,
2014.

Irma Ravkic, Jan Ramon, and Jesse Davis. Learning re-
lational dependency networks in hybrid domains. Ma-
chine Learning, 100(2):217-254, 2015.

Neil Robertson and P.D Seymour. Graph minors. ii. algo-
rithmic aspects of tree-width. Journal of Algorithms,
7(3):309 — 322, 1986. ISSN 0196-6774.

Tian Sang, Paul Beame, and Henry A Kautz. Performing
bayesian inference by weighted model counting. In
AAAI volume 5, pages 475-481, 2005.

Leslie G Valiant. The complexity of enumeration and
reliability problems. SIAM Journal on Computing, 8
(3):410-421, 1979.

Guy Van den Broeck and Dan Suciu. Query Process-
ing on Probabilistic Data: A Survey. Foundations and
Trends in Databases. Now Publishers, August 2017.

Klaus von Gleissenthall, Boris Kopf, and Andrey Ry-
balchenko. Symbolic polytopes for quantitative in-
terpolation and verification. In International Confer-
ence on Computer Aided Verification, pages 178—194.
Springer, 2015.

Pedro Miguel Zuidberg Dos Martires, Anton Dries, and
Luc De Raedt. Exact and approximate weighted
model integration withprobability density functions
using knowledge compilation. In Proceedings of
the 30th Conference on Artificial Intelligence. AAAI
Press, 2019.

A PROOFS

A1l PROOF OF PROPOSITION 3.4

Proof. (Proof of Proposition 3.4)

Consider the most basic case when there is only one
Boolean variable b in theory 6. Let 6’ be an SMT(LR.A)
theory defined as follow

9’29{b2>\b}/\(—1§)\b§1)

where 6{b : Ay} is obtained by replacing all atom b by
0 < Ay and replacing all its negation —b by A\, < 0 in
theory 6.

Recall that weight functions are defined by a set of lit-
erals £ and a set of per-literal weight functions P =
{pe(x)}eer. When a literal ¢ is satisfied in a world, de-
noted by x A b |= £, weights are defined as follows

H pe(x)

el
T A\b=L

Let £’ be a set of literals obtained by replacing Boolean
literal b by 0 <) and replacing its negation =b by A\, <
0 in theory 6 as we do for theory. For the set of per-
literal weight functions P’, we define it for introduced
real variable A, by p(x,>0) = p» and p(x, <0y = P-b-

Then we have that for any *,

w'(m*,)\b){ w(x*,b), 1>X>0

—1< A <0

w(x*, -b),

By definition of WMI, we write WMI(6, w | «, b) in its
integration form as follows.
WMI(0, w | ,b)

= / w(x,b)dr +

6(,b) 0(x,—b)

w(x, —b)dx

For the first term in the above equation, we can rewrite it
s.t. Boolean variable b is replaced by real variable \; in
the following way.

w(ac,b)da:—/o1 / w(x, b)dxdAy

0(x,b) 0(x,b)

= / w'(z, \p)dzdy
0’ (z,\p)
By doing this to the other integration term of WMI(6, w |

x,b), and also by the definition of WMI, we finally ob-
tain that

WMI(, w | z,b) = WMI(¢',w' | ')

where ' = £ U{)\;} is a set of real variables. The proof
above can be easily adapted to multiple Boolean variable
cases, which proves our proposition. [

A.2 PROOF OF PROPOSITION 3.5

Proof. (Proof of Proposition 3.5) To start with, we con-
sider SMT(LR.A) theory # with no Boolean variables
with a simple weight function w where the set of literal
L = {¢} has only one literal and literal weight function

Claim A.1. For a monomial function f(x) =[]}, z!",
let 0y = N_g N5, (0 < 2§ < ;). Then we have the
monomial f(x) = MI(0; | z;x), where z is the set of
real variables z; in theory 0y, and x is parameters of
theory 0+.

Let 0 = A (£ = 6,) A (~£ = 6,) where p = py
for brevity, 6, is as defined in Claim A.1 and ép =
Nico Nj2i (0 < 22 < 1), Then we can rewrite
WMI(6, w | x) as MI problem by Claim A.1 as follows.

WMI(O,w | x) = / w(x)dx
0()

:/ p(a:)da:Jr/ ldx
0(x)NL(x) 0(x)AN—L(x)

:/ M(,,\z:c)daz—!—/ ldx
0(x)NL(x

0(x)N—L(x)

/ / 1dzdac+/ ldxdz
0(x)NE(x) () A—L(x) A,

= MI(OA (0= 0,) A (- = 0,) |z, 2)

Take ©’ = x U z then the proposition holds. The
proof can be easily adapted for monomials with non-
trivial coefficient by inducing more real variables z. It
also holds for more general weight functions with literal
set L = {£;}%_, and set of monomial per-literal weight
functions P = {p, }*_,, by taking theory ¢’ as follows
which completes the proof of proposition.

k k
0 =0N N\(li= 0,)N N\l = 6p,).
i=1

i=1

Proof. (Proof of Claim A.1) By definition of theory ¢,

MI(0f|z;ac):/ ldz
05 (=)
_HH/lw

i=1j5=1
n
=[Is0 = 1@
i=1

n o Pi

=111]=

i=1j=1

A.3 REDUCTION TO MI WITH POLYNOMIAL
WEIGHTS

The reduction from WMI problems to MI problems in
Proposition 3.5 can also be done for arbitrary polyno-
mial weight functions but can increase treewidth of pri-
mal graphs. We give a formal description on this reduc-
tion as follows.

Let @ be an SMT(LR.A) theory with no Boolean vari-
ables with weight functions where the set of literal £ =
{¢} has only one literal and literal weight function is
a polynomial, denoted by p(x) = Zle a; fi(x) with
each f; a monomial function.

It has been shown in the proof of Proposition 3.5 in Sec-
tion A.2 that for each monomial function f;, there ex-
ist two SMT(LR.A) theories ; and 0, such that MI(6; |
ziix) = fi(x) and MI(6; | z;;) = 1.

Let’s define theories 6 = 6; A (0 < v; < ;) and 0} =
0; N (0 < v; < 1) with parameter variables v;. Also
define an indicator variable A with real domain [0, k] and
literals ; = i — 1 < A < i withi € {1,2,--- ,k}.
Then we have that for an SMT(LR.A) theory 6’ defined
as follows, it holds that WMI(0, w |) = MI(¢’ | x, z)
with z denoting all auxiliary variables.

o~

k
0 =0N(< Vit /\ﬁ:»e’/\ﬂz = 0;)

Why the WMI problem and the MI problem are equal
can be proved by the following observations.

WMI(G,w | x) = /()w(w)dw 4)
0(x

:/ p(a:)d:c+/ ldx (5)
0(x)NL(x) 0(x)N—L(x)

For the first term in Equation 5, we have that

k

p(x)dx = / a; fi(x)de
/G(m)/\é(w) Z 0(x)NL(x)

= Z / i fi(x)dad\
z)NL(x)N

= Z/ ldxdz
) AL(X)AL; AO;

=MI(0' AL | x,2)

Also for the second term in Equation 5, it equates to
MI(0' A =€ | x, z). Therefore, reduction from the WMI
problem to the MI problem holds. Although the reduc-
tion process we show here is for theories with one poly-
nomial weight function, this process can be generalized
to theories with multiple polynomial weight functions
with little modification.

A4 PROOF OF PROPOSITION 4.1

Proof. (Proof of Proposition 4.1) It follows from defi-
nition of WMI. Denote the set of real variables x\{y} by
&. From the definition of WMI in Equation 2.2, we can
obtain the following partial derivative of WMI of theory
6 w.r.t. variable y.

0

% WMI(Gv w | Z, b) ‘y=y*

= Z / w(y*, &, pn)de
HEB™ oy 1)

where the variable y is fixed to value y* in weight func-
tion, 4 are total truth assignments to Boolean variables as
defined before. The weight function is integrated over set

{&" | 0(y*, 2", p) is true}. We define p(y) as follows
p(y) == Y w(y, &, p)d&
HEB™y 0(@ 1)

Since weight functions w are piecewise polynomial,
function p(y) is a univariate piecewise polynomial p(y),
and WMI(6,w | ,b) is an integration over p(y), which
finishes our proof. O

A.5 PROOF OF THEOREM 4.4

Claim A.2. For each path in the primal graph that starts
with the root and ends with a leaf, and each real variable

in path with height 1, its number of polynomial pieces is
O(n - 1.

Algorithm 2 Polynomial pieces and degree enumeration algorithms

a) PE_EDGE - For Two Variable Theory

Input: 0: SMT(LR.A) theory with two real variables

I : interval and degree tuples of variable x

Output: I,: pieces and degrees for variable y
1: B < collect integration bounds on variable x
2: Y <+ y values where two bounds in B meet
3: for all interval [/, u] resulting from Y do
4: 0 —0n(I<y<u)
5 if 0" is SAT then
6 {l(y), u(y),d} + get_bound_degree(z,0’,I)
7: d' <+ argmax, get_degree(l(y), u(y),d)})
8 I, I, U ([l,u],d)
9: Return I,

b) PE_NODE - For Tree Primal Graph

Input: §: SMT theory with tree primal graph

G: primal graph for theory 6

Output: I,: interval and degree tuples of root variable y
1: if root y has no child then

2 1, < get_bound_degree(0)

3: return [,

4: 0y.’s, 0g,.’s < partition SMT(LR.A) theory 6
5: for all child c do

6: 1.+ PENODE(,,G.)

7 I < PE_EDGE(, ., I.)

8

: Return I, = shatter ({I}.)

Proof. The proof can be done by mathematical induc-
tion. Denote the real variable with height ¢ in the path by
x; For i = 0, since the number of LR A literals is c, then
there are at most c critical points for real variable zy and
therefore there are at most ¢ + 1 polynomial pieces for
Zo.

Suppose that the claim holds for ¢, that is, the number of
polynomial pieces for z; is O(n-c**1). To obtain critical
points for variable x;;;, we collect integration bounds
on variable z; whose size is O(n - ¢'T1) by assumption.
Since the critical points of variable ;1 are obtained by
solving b; = bs w.r.t. variable x;,1 for by, by in bounds
on variable x;, where there are at most ¢ bounds contain-
ing x;4+1 and the rest bounds are numerical ones, there
are at most O(n - ¢**2) solutions. Therefore, the num-
ber of polynomial pieces for ;11 is O(n - ¢**2), which
finishes our proof. O

Proof. (Proof of Theorem 4.4) Let p be an arbitrary
path in the pseudo tree T that starts with the root and ends
with a leaf. Denote the maximum polynomial degree in
weight functions by d. By Claim A.2 for each variable,
it has at most O(n - ¢*») polynomial pieces. Moreover
from Prop. 4.1, polynomials defined over each pieces
have at most n(d + h,) polynomial degree. Therefore
the set of values chosen to do instantiation on a certain
real variable has size O(n®-c/») and each path p induces
a search space with size O((n? - ¢")"t) since length of
each path is bounded by h;.

The pseudo tree 7" is covered by [such directed paths.
The union of their individual search spaces covers the
whole search space, where every distinct full path in the
search space appears exactly once. Therefore, the size of
the search space is bounded by O(l - (n3 - che)he). [

B CACHING

Our algorithm allows caching in two sense. The first is
the caching of pieces, i.e. intervals and polynomial de-
grees obtained from child nodes, which can be consid-
ered as constraints from child nodes. The pieces of a cer-
tain nodes is decided both by instantiation values from
its father node as well as pieces from child nodes. Al-
though we instantiate root nodes with distinct values, the
constraints from child nodes for a certain node remains
unchanged as long as they have the same father-child re-
lation in subtree.

Another case where caching is possible is values of p(y)
as defined in Prop. 4.1 at instantiations of variable x.
This is possible because for a certain node, its pieces re-
sulting from different instantiation values of its grand-
father node might intersects. This is especially helpful
when there is a long path in primal graphs and caching
can save a lot computational effort.

C PIECE ENUMERATION
ALGORITHM

We summarize piece enumeration algorithms for two
variable theory and for theory with tree primal graphs
as described in Section 4.2 in Algorithm 2. Both
get_bound_degree and get_degree are trivial operations
for specifying integration bounds and polynomial degree.
They are applied when the magnitude order of integra-
tion bounds are fixed and thus they can be done by scan-
ning through related theories.

