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Abstract

Missing data are ubiquitous in many domains
such as healthcare. When these data entries are
not missing completely at random, the (condi-
tional) independence relations in the observed
data may be different from those in the complete
data generated by the underlying causal process.
Consequently, simply applying existing causal
discovery methods to the observed data may lead
to wrong conclusions. In this paper, we aim at de-
veloping a causal discovery method to recover the
underlying causal structure from observed data
that are missing under different mechanisms, in-
cluding missing completely at random (MCAR),
missing at random (MAR), and missing not at
random (MNAR). With missingness mechanisms
represented by missingness graphs (m-graphs),
we analyze conditions under which additional
correction is needed to derive conditional inde-
pendence/dependence relations in the complete
data. Based on our analysis, we propose Miss-
ing Value PC (MVPC), which extends the PC
algorithm to incorporate additional corrections.
Our proposed MVPC is shown in theory to give
asymptotically correct results even on data that
are MAR or MNAR. Experimental results on both
synthetic data and real healthcare applications il-
lustrate that the proposed algorithm is able to find
correct causal relations even in the general case
of MNAR.

1 Introduction

Determining causal relations plays a pivotal role in many
disciplines of science, especially in healthcare. In particular,
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understanding causality in healthcare can facilitate effective
treatments to improve quality of life. Traditional approaches
(Domeij-Arverud et al., 2016) to identify causal relations
are usually based on randomized controlled trails, which are
expensive or even impossible in certain domains. In con-
trast, owing to the availability of purely observational data
and recent technological developments in computational
and statistical analysis, causal discovery from observational
data is potentially widely applicable (Spirtes et al., 2001;
Peters et al., 2017). In recent years, causal discovery from
observational data has become popular in medical research
(Sokolova et al., 2017; Klasson et al., 2017).

Most existing algorithms for causal discovery are designed
for complete data (Pearl, 2000; Peters et al., 2017), such
as the widely used PC algorithm (Spirtes et al., 2001). Un-
fortunately, missing data entries are common in many do-
mains. For example, in healthcare, missing entries may
come from imperfect data collection, compensatory medical
instruments, and fitness of the patients etc. (Robins, 1986).

All missing data problems fall into one of the following
three categories (Rubin, 1976): Missing Completely At
Random (MCAR), Missing At Random (MAR), and Miss-
ing Not At Random (MNAR). Data are MCAR if the cause
of missingness is purely random, e.g., some entries are
deleted due to a random computer error. Data are MAR
when the direct cause of missingness is fully observed. For
example, a dataset consists of two variables: gender and
income, where gender is always observed and income has
missing entries. MAR missingness would occur when men
are more reluctant than women to disclose their income (i.e.,
gender causes missingness). Data that are neither MAR
nor MCAR fall under the MNAR category. In the example
above, MNAR would occur when gender also has missing
entries. These missingness mechanisms can be represented
by causal graphs as introduced in Section 2. While it might
be tempting to remove samples corrupted by missingness
and perform analysis solely with complete cases, it will
reduce sample size and, more importantly, bias the outcome
especially when data are MAR or MNAR (Rubin, 2004;
Mohan et al., 2013; Shpitser, 2016).

This paper is concerned with how to find the underlying
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causal structure over observed data even in the situation of
MAR or MNAR. For simplicity, we assume causal suffi-
ciency in the paper, as assumed by many causal discovery
methods including PC (Spirtes et al., 2001). Recoverability
of the data distribution under missing data has been dis-
cussed in a number of contributions; see, e.g., (Mohan et al.,
2013; Mohan and Pearl, 2014a). A straightforward solu-
tion is to recover all relevant distributions that are needed
for Conditional Independence (CI) tests involved in the CI-
based causal search procedure, such as PC. But compared
to the CI test on independent and identically distributed
observations, the CI test on corrected distributions is gen-
erally harder because it involves simulating new data or
importance reweighting with density ratios.

Therefore, instead of correcting all CI tests of the PC algo-
rithm, we aim to find under which condition, CI tests in the
observed data produce erroneous edges, and then we correct
only such edges by further applying CI tests on corrected
distributions. Our main contributions are:

• We provide a theoretical analysis of the error that dif-
ferent missingness mechanisms introduce in the results
given by traditional causal discovery methods, such as
the PC algorithm (Section 3). We will show that naive
deletion-based method may lead to incorrect results
due to the bias caused by missing data. One immedi-
ate way to extend constraint-based methods to handle
the missing data issue is correcting all the involved
CI tests. This approach is neither data-efficient nor
computation-efficient. Therefore, we identify possible
errors that different missingness mechanisms lead to in
the results given by deletion-based PC. We show that
one needs to correct only a small number of CI tests in
order to recover the true causal structure.

• We propose a novel, correction-based extension of the
PC algorithm, Missing Value PC (MVPC), that handles
all three types of missingness mechanisms: MCAR,
MAR, and MNAR (Section 4). Based on the result from
Section 3, we identify where corrections are required
and propose efficient correction methods for all three
types of the missingness mechanisms.

• MVPC demonstrates superior performance in different
settings, including two real-life healthcare scenarios
(Section 5). We first evaluate the proposed MVPC
on synthetic datasets under different settings. MVPC
shows clear improvement over multiple baselines. We
further apply MVPC to two real-world datasets: the US
Cognition study and Achilles Tendon Rupture study.
The results are consistent with medical domain knowl-
edge and demonstrate the efficacy of our method.

2 Related work

We discuss closely related works, including traditional
causal discovery algorithms and approaches that deal with

missing data from a causal perspective.

Causal discovery. Causal discovery from observational
data has been of great interest in various domains in the
past decades (Pearl, 2000; Spirtes et al., 2001). In gen-
eral, causal discovery consists of constraint-based meth-
ods, score-based methods, and methods based on functional
causal models. Typical constraint-based methods include
the PC algorithm and Fast Causal Inference (FCI). They
assume that all CI relations are entailed from the causal
Markov condition, according to the faithfulness assump-
tion, and use CI constraints in the data to recover causal
structure. The PC algorithm assumes no confounders (hid-
den direct common causes of two variables) and outputs
a Completed Partially Directed Acyclic Graph (CPDAG),
which is easy to interpret and often used in biomedical ap-
plications (Neto et al., 2008; Le et al., 2016). FCI allows
confounders and selection bias, and outputs a Partial Ances-
tral Graph (PAG). For simplicity, we use the PC algorithm
in this paper, but it is straightforward to transfer our frame-
work to other constraint-based methods. Score-based meth-
ods (e.g., Greedy Equivalence Search (Chickering, 2002))
find the best Markov equivalence class (which contains
DAGs that have the same CI relations) under certain score-
based criterion, such as the Bayesian Information Criterion
(BIC). Causal discovery based on functional causal mod-
els benefits from the additional assumptions on the data
distribution and/or the functional classes to further deter-
mine the causal direction between variables. Typical func-
tional causal models include the linear non-Gaussian acyclic
model (LiNGAM) (Shimizu et al., 2006), the post-nonlinear
(PNL) causal model (Zhang and Hyvärinen, 2009), and the
nonlinear additive noise model (ANM) (Peters et al., 2017).

Dealing with data with missing values from a causal per-
spective. Recent years have witnessed a growing interest
in analysing the problem of missing data from a causal per-
spective. In particular, the notions of recoverability and
testability have been studied by modeling the missingness
process using causal graphs (called missingness graphs or
m-graphs) (Mohan et al., 2013). Given a m-graph, a query
(such as conditional or joint distribution and causal effects)
is deemed recoverable if it can be consistently estimated
(Mohan and Pearl, 2014a). Testability, on the other hand,
deals with finding testable implications, i.e., claims refutable
by the (missing) data distribution (Mohan and Pearl, 2014b).
As for causal discovery, it aims to find the structure of vari-
ables of interest rather than the missingness. Relations of
variables of interest can be testable under appropriate as-
sumptions, although relations between variables of interest
and their missingness are untestable.

In causal discovery, there are few works for the MNAR
case. FCI by test-wise deletion regards the missingness
procedure as a particular type of selection bias to handle
the MNAR missingness (Strobl et al., 2017). It shows that
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FCI combined with test-wise deletion is still sound when
one aims to estimate the PAG for the variables including the
effect of missingness. Data missingness is usually different
from selection bias, because in the selection bias case we
only have the distribution of the selected samples but no clue
about the population. However, in the missing data case, we
may be able to check the (conditional) independence relation
between two variables given others by making use of the
available data for the involved variables. In the case where
the missingness mechanisms to be known, this problem is
closely related to the recoverability of models with missing
data. Gain and Shpitser (2018) utilize Inverse Probability
Weight (IPW) for each CI test, assuming the missing data
model is known, which may not be realistic in many real-life
applications. When the missing data model is unknown, they
choose the sparest resulting graph considering all possible
missingness structures, which is usually computationally
expensive.

3 Deletion-based PC: A first proposal and
its behavior

We assume that there is no confounder or selection bias
relative to the set of observed variables. When the available
dataset has missing values, one may apply the PC algorithm
for causal discovery by performing CI tests on those records
which do not have missing values for the variables involved
in the tests. We term this first proposal deletion-based PC.
In this section, we discuss the influence of missing data on
the result of deletion-based PC.

Primarily, we investigate the situations where errors occur
to the output of deletion-based PC due to the missingness.
Firstly, we utilize m-graphs and summarize the assump-
tions that we need for properly dealing with missingness.
We then present the aforementioned deletion-based PC algo-
rithm. Our analysis focuses on properties of the results given
by this naive extension, and provides the conditions under
which the deletion-based PC produces erroneous edges.

Missingness graph. We utilize the notation of the m-
graph (Mohan et al., 2013). A m-graph is a causal DAG
G(V,E) where V = V[U[V⇤ [R. U is the set of unob-
servable nodes; in this paper, we assume causal sufficiency,
so U is an empty set. V is the set of substantive nodes
(observable nodes) containing Vo and Vm. Vo ✓ V is the
set of fully observed variables, denoted by white nodes in
our graphical representation. Vm ✓ V is the set of partially
observed variables that are missing in at least one record,
which is shadowed in gray. R is the set of missingness
indicators that represent the status of missingness and are
responsible for the values of proxy variables V⇤. For exam-
ple, the proxy variable Y ⇤ 2 V⇤ is introduced as an auxiliary
variable for the convenience of derivation. Ry = 1 means
that the corresponding record value of Y is missing and Y ⇤

corresponds to a missing entry; Ry = 0 indicates that the
corresponding record value of Y is observed and Y ⇤ takes
the value of Y .

In this work we adopt the CI-based definitions of miss-
ingness categories as stated in (Mohan et al., 2013). We
denote an independent relation in a dataset by "??" and
d-separation in a m-graph by "??d". As shown in Figure
1, data are MCAR if {Vm,Vo} ??dR holds in the m-graph,
MAR if Vm ??dR | Vo holds, and MNAR otherwise.

Assumptions for dealing with missingness. Apart from
the assumptions for the asymptotic correctness of the PC
algorithm (including the causal Markov condition, faithful-
ness, and no confounding or selection bias), we introduce
some additional assumptions that we make use of to deal
with missingness.
Assumption 1 (Missingness indicators are not causes). No
missingness indicator can be the cause of any substantive
(observed) variable.

This assumption is employed in most related work using
m-graphs (Mohan et al., 2013; Mohan and Pearl, 2014a).
Consequently, under this assumption, if variables of interest
X and Y are not d-separated by a variable set Z✓V\{X ,Y},
they are not d-separated by Z together with their missing-
ness indicators. Under the faithfulness assumption, this
means that if they are conditionally independent given Z
together with the their missingness indicators, they are con-
ditionally independent given only Z. Now the problem is
that generally speaking, we cannot directly verify whether
they are conditionally independent given Z and their miss-
ingness variables because we do not have the records for the
considered variables when their missingness indicators take
value one. We then need the following assumptions.
Assumption 2 (Faithful observability). Any conditional in-
dependence relation in the observed data also holds in the
unobserved data; formally, X ?? Y | {Z,RK = 0} ()
X ?? Y | {Z,RK = 1}. Here RK is the missingness in-
dicator set {Rx,Ry,Rz}. RK = 0 means all the missingness
indicators in RK taking the value zero; RK = 1 means at
least one missingness indicator in RK taking the value one.

This implies X ?? Y | {Z,RK = 0}() X ?? Y | {Z,RK},
which means that conditional independence relations in the
observed data also hold in the complete data, i.e., there is
no accidental conditional independence relation caused by
missingness.
Assumption 3 (No causal interactions between missingness
indicators). No missingness indicator can be a deterministic
function of any other missingness indicators.
Assumption 4 (No self-masking missingness). Self-
masking missingness refers to missingness in a variable
that is caused by itself. In the m-graph this is depicted by
an edge from X to Rx, for X 2 Vm (as shown in Figure 1d).
We assume that there is no such edges in the m-graph.
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Figure 1: Exemplar missingness graphs in MCAR, MAR, MNAR, and self-masking missingness. X , Y , Z, and W are
random variables. In m-graphs, gray nodes are partially observed variables, and white nodes are fully observed variables.
Rx, Ry, and Rw are the missingness indicators of X , Y , and W .

Assumption 3 and 4 guarantee the recoverability of a joint
distribution of substantive variables, as shown in (Mohan
et al., 2013). As discussed in Appendix A.1, in the lin-
ear Gaussian case, the "self-masking" only affects causal
discovery results when Rx has direct causes other than X .

In the end, we assume linear Gaussian causal models in
this work. Thus, one can check CI relations with the partial
correlation test, a simple CI test method. Note that our
proposed algorithm also works well for general situations.
In the non-linear case, we can use a suitable non-linear or
non-parametric one (Zhang et al., 2011).

Effect of missing data on the deletion-based PC. In the
presence of missing data, the list-wise deletion PC algorithm
deletes all records that have any missing value and then
applies the PC algorithm to the remaining data. In contrast,
the test-wise deletion PC algorithm only deletes records with
missing values for variables involved in the current CI test
when performing the PC algorithm (which can be seen as the
PC algorithm realization of (Strobl et al., 2017)). Test-wise
deletion is more data-efficient than list-wise deletion. In
this paper, we focus on the Test-wise Deletion PC algorithm
(TD-PC).

TD-PC gives asymptotically correct results when data are
MCAR since {Vm,Vo} ??dR is satisfied. Consider Figure
1a as an example. Ry ??d{X ,Y,Z} holds; thus, we have
X ??dY | Z () X ??dY | {Z,Ry}. With the faithfulness
assumption on m-graphs, X ?? Y | Z () X ?? Y | {Z,Ry}.
Furthermore, with the faithful observability assumption, we
conclude X ?? Y | Z () X ?? Y ⇤ | {Z,Ry = 0}. When ap-
plying the CI test to the test-wise deleted data of concerned
variables X , Y , and Z, we test whether X ?? Y ⇤ | {Z,Ry =
0} holds. Therefore, CI results imply d-separation/d-
connection relations of concerned variables in m-graphs
when data are MCAR, which guarantees the asymptotic
correctness of TD-PC.

In cases of MAR and MNAR, TD-PC may produce erro-
neous edges because {Vm,Vo} ??dR does not hold. There-
fore, in what follows in this section, we mainly address the
problems of TD-PC in cases of MAR and MNAR.

Erroneous edges produced by TD-PC. Since TD-PC
may produce erroneous edges when data are MAR and
MNAR, in the following propositions (proofs are given in
Appendix A.2.), we first show that the causal skeleton (undi-
rected graph) given by TD-PC has no missing edges, but
may contain extraneous edges. We then determine the con-
ditions under which extraneous edges occur in the output of
TD-PC.

Proposition 1. Under Assumptions 1⇠4, the CI relation in
test-wise deleted data, X ?? Y | {Z,Rx = 0,Ry = 0,Rz = 0},
implies the CI relation in complete data, X ?? Y | Z, where
X and Y are random variables and Z ✓ V\{X ,Y}.

Proposition 1 shows that CI relations in test-wise deleted
data implies the true corresponding d-separation relations
in a m-graph. However, dependence relations in test-wise
deleted data may imply the wrong corresponding relations
in the m-graph because X 6?? Y | {Z,Rx = 0,Ry = 0,Rz =
0} 6=) X 6?? Y | Z. In other words, TD-PC may wrongly
treat some d-separation relations of concerned variables
as to be not d-separated in a m-graph. Thus, TD-PC pro-
duces extraneous edges in the causal skeleton result rather
than missing edges. For example, in Figure 1b, we have
X 6?? Y ⇤ | {Z,Ry = 0} in the test-wise deleted data, but the
true d-separation relation is X ??dY | Z instead of X 6??dY | Z.
Thus, TD-PC produces an extraneous edge between X and
Y . Fortunately, such extraneous edges appear only under
special circumstances, as shown in the following proposi-
tion.

Proposition 2. Suppose that X and Y are not adjacent
in the true causal graph and that for any variable set
Z ✓ V\{X ,Y} such that X ?? Y | Z, it is always the case
that X 6?? Y | {Z,Rx = 0,Ry = 0,Rz = 0}. Then under As-
sumptions 1⇠4, for at least one variable in {X}[{Y}[Z ,
its missingness indicator is either the direct common effect
or a descendant of the direct common effect of X and Y .

Proposition 2 indicates that extraneous edges can be iden-
tified from the output of TD-PC. For example, in Figure
1b and Figure 1c, W is the direct common effect of X and
Y and the missingness indicator Ry is a descendant of W .
Thus, the extraneous edge occurs between X and Y in the
causal skeleton produced by TD-PC.
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4 Proposed method: Missing-value PC

In this section, we present our proposed approach, Missing-
Value PC (MVPC), for causal discovery in the presence
of missing data based on PC. We introduce the general
MVPC framework in Section 4.1, and present our correction
methods for removing extraneous edges in Section 4.2.

4.1 Overview of MVPC

Algorithm 1 summarizes the framework of MVPC. We per-
form TD-PC on V (Step 1), and then involve R (Step 2).
This is equivalent to performing TD-PC on V[R under As-
sumption 1, 3, and 4. More details of Step 2 are introduced
in Appendix A.3. We then identify potential extraneous
edges (Step 3). These are the edges between variables of
which direct common effects are missingness indicators or
ancestors of missingness indicators. Since we do not have
orientation information at this stage, we cannot directly
locate such extra edges; however, we can find potentially
incorrect edges, as a superset of the incorrect edges. Next,
we perform correction for these candidate edges (Step 4).
Finally, we orient edges of the recovered causal skeleton
with the same procedure as the PC algorithm.

Algorithm 1 Missing-value PC
1: Skeleton search with deletion-based PC:

a Graph initialization: Build a complete undirected
graph G on the node set V.

b Causal skeleton discovery: Remove edges in G
with the same procedure as the PC algorithm
(Spirtes et al., 2001) with the test-wise deleted
data.

2: Detecting direct causes of missingness indicators:
For each variable Vi 2 V containing missing values and
for each j that j 6= i, test the CI relation of Ri and Vj. If
they are independent given a subset of V\{Vi,Vj}, Vj
is not a direct cause of Ri.

3: Detecting potential extraneous edges:
For each i 6= j, if Vi and Vj are adjacent and have at least
one common adjacent variable or missingness indicator,
the edge between Vi and Vj is potentially extraneous.

4: Recovering the true causal skeleton:
Perform correction methods for removing the extrane-
ous edges in G as shown in Section 4.2.

5: Determining the orientation:
Orient edges in G with the same orientation procedure
as the PC algorithm.

4.2 Recovery of the true causal skeleton

As shown in Section 3, TD-PC produces extraneous edges
in the causal skeleton result in the situations of Proposition
2. In this section, we introduce our correction methods to re-

move the extraneous edges. We first introduce Permutation-
based Correction (PermC) with an example. We then show
that PermC handles most of the missingness cases. Next,
we propose an alternative solution, named Density Ratio
Weighted correction (DRW), for the cases which PermC
does not cover.

Permutation-based correction. We use an example to
demonstrate how to remove the extraneous edges with
PermC. For example, suppose that we have a dataset with
missing values of which the underlying m-graph is shown in
Figure 1b. As discussed in Section 3, when applying TD-PC
to this dataset, we produce an extraneous edge between X
and Y in the output of TD-PC. The problem is that data sam-
ples from joint distribution P(X ,Y,Z) are not available in
the observed dataset. In this case, we test the CI relations in
the test-wise deleted data from P(X ,Y ⇤,Z | Ry = 0), which
leads to producing the extraneous edge.

PermC solves this problem by testing the CI relations in
the reconstructed virtual dataset utilizing the observed data
concerning:

P(X ,Y,Z) =
Z

W
P(X ,Y,Z |W )P(W )dW

=
Z

W
P(X ,Y ⇤,Z |W,Ry = 0)P(W )dW, (1)

such that reconstructed data follow the joint distribution
P(X ,Y,Z). As shown in the first step of Equation 1, we in-
troduce a random variable W which is the direct cause of Ry
in Figure 1b to reconstruct the dataset and then marginalize
it out. With W , the joint distribution P(X ,Y,Z) is estimated
by 1) learning the model for P(X ,Y,Z |W ) from test-wise
deleted data, 2) plugging in the values of W in the dataset,
as data samples from P(W ), and 3) disregarding the input
W and keeping the generated virtual data for {X ,Y,Z} to
marginalize W out. Given virtual data of X , Y , and Z that
follow the joint distribution P(X ,Y,Z), one can test CI rela-
tions in the complete data.

Now the issue is that the data samples from P(X ,Y,Z |W )
are not directly available. Nevertheless, we learn a model for
P(X ,Y ⇤,Z |W,Ry = 0) to generate virtual data of X , Y , and
Z from W , as shown in the second step of Equation 1. Under
Assumptions 1⇠4 we have P(X ,Y,Z | W ) = P(X ,Y ⇤,Z |
W,Ry = 0) because Ry ??d{X ,Y,Z} | W ; moreover, data
samples from P(X ,Y ⇤,Z |W,Ry = 0) can be constructed by
test-wise deletion. For simplicity, under the linear Gaussian
assumption we apply linear regression to learning the model
for P(X ,Y ⇤,Z |W,Ry = 0) as :

X = a1W + e1, Y = a2W + e2, Z = a3W + e3, (2)

where ai is the parameter of linear regression models and ei
is the residual.

Next, we sample the input values from the probability distri-
bution P(W ). Estimating P(W ) for sampling input values is
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unnecessary in this case because we have the complete data
of W which follow P(W ). However, to generate virtual data
with linear regression models, we cannot directly input the
test-wise deleted data of W and add the residuals from the
linear regression models in Equation 2. In this way, the in-
put values follow the conditional distribution P(W |Ry = 0)
instead of P(W ). Thus, we shuffle the values of W in the
observed dataset such that P(W S | Ry = 0) = P(W S) where
W S denotes the shuffled W . We then feed test-wise deleted
values of W S into the linear regression models as :

bX := a1W S+e1, bY := a2W S+e2, bZ := a3W S+e3, (3)

where we denote the random variables with generated virtual
values by bX , bY , and bZ. Finally, we test the CI relations
among bX , bY , and bZ. PermC for this example is summarized
in Algorithm 2.

Algorithm 2 Permutation-based correction
Input: data of concerned variables, such as X , Y , and Z
in Figure 1b, and the direct causes of their corresponding
missingness indicators, such as the direct cause W of Ry in
Figure 1b.
Output: The CI relations among concerned variables, such
as the CI relations among X , Y , and Z.

1: Delete records containing any missing value. We de-
note the deleted dataset by Dd , and denote the original
dataset by Do.

2: Regress X , Y , and Z on W with Dd as Equation 2.
3: Shuffle data of W in Do, denoted by W S, and delete

records containing any missing value in Do (included
W S).

4: Generate virtual data of bX , bY , and bZ, with W S and the
residuals according to Equation 3.

5: Test the CI relations among bX , bY , and bZ in the generated
virtual data.

6: return The CI relations among X , Y , and Z.

Without loss of generality, we summarize the conditions
under which PermC correctly removes extraneous edges.
Suppose that we need to test the CI relation of X and Y
given Z ✓ V \ {X ,Y} in the generated virtual data. We
denote the direct causes of missingness indicators by Pa(R).
The conditions for the validity of PermC are as follows.

(i) {Rx,Ry,Rz,Rw} ??d{X ,Y,Z} | W, where the variable
set W is the set of direct causes of missingness indi-
cators Rx, Ry, and Rz; if variables in W also have
missing values, the direct causes of their missing-
ness indicators Rw are also included in W; formally,
W = Pa(Rx,Ry,Rz,Rw);

(ii) In the m-graph, the missingness indicators of W follow
the condition that X ??dY | Z () X ??dY | {Z,Rw}.

Under Conditions (i) and (ii), we have

P(X ,Y,Z | Rw = 0)

=
Z

W⇤
P(X⇤,Y ⇤,Z⇤ |W⇤,Rx = 0,Ry = 0,Rz = 0,Rw = 0)⇥

P(W⇤ | Rw = 0)dW⇤. (4)

To test the CI relation of X and Y given Z in data sam-
ples from P(X ,Y,Z), it is valid to test the CI relation in the
generated data samples from P(X ,Y,Z | Rw = 0). Under
Condition (ii) the conditional independence/dependence re-
lations in P(X ,Y,Z) also hold in P(X ,Y,Z | Rw = 0). More-
over, linear regression models in PermC are valid. Under
Condition (i), we have P(X ,Y,Z | W,Rx = 0,Ry = 0,Rz =
0,Rw = 0) = P(X ,Y,Z | W), in which X , Y , and Z are con-
ditionally Gaussian distributed given W. Thus, we use lin-
ear regression to estimate P(X⇤,Y ⇤,Z⇤ | W⇤,Rx = 0,Ry =
0,Rz = 0,Rw = 0) and use them in the correction.

Density ratio weighted correction. DRW removes extra-
neous edges in situations where Condition (i) and Condition
(ii) are not satisfied (e.g., Figure 1c). In these cases, we con-
sistently estimate the joint distribution P(Va) of concerned
variables X , Y , and Z in a CI test and the direct causes
W = Pa(Rx,Ry,Rz,Rw), based on Theorem 2 of (Mohan
et al., 2013), as shown in the first line of Equation 5. Here,
R represents the missingness indicators of Va. Equation 5
provides a way to reconstruct the observed dataset:

P(Va) =
P(R = 0,Va)

’i P(Ri = 0 | Pa(Ri),RPa(Ri) = 0)

= P(Va | R = 0)⇥ c⇥’
i

bPa(Ri) , (5)

where c = P(R=0)
’i P(Ri=0|RPa(Ri)

=0) and bPa(Ri) =

P(Pa(Ri)|RPa(Ri)
=0)

P(Pa(Ri)|Ri=0,RPa(Ri)
=0) . In the second line of Equation

5, every (conditional) probability distribution can be
consistently estimated. We first apply test-wise deletion to
the observed data of Va. Then, we reweight such data with
the density ratios ’i bPa(Ri) and the normalizing constant c.
We estimate density ratios ’i bPa(Ri) with the kernel density
estimation (Sheather and Jones, 1991) and compute the
normalizing constant c. Finally, we test CI the relations
of the concerned variables in the reweighted data samples
from their corresponding joint distribution.

5 Experiments

We evaluate our method, MVPC, on both synthetic and
real-world datasets. We first show experimental results on
synthetic data (Section 5.1) and the behavior of our method
in a situation with ground truth. After that, we apply our
method to two healthcare datasets where data entries are
significantly missing. The first is from the Cognition and
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Figure 2: Performance comparison using structural Hamming distance. Lower value is better. Panel (a) shows the
performance for MAR with 20 variables. Panel (b) and (c) show the performance for MNAR with 20 and 50 variables.
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Figure 3: Precision and recall for adjacencies and orientation comparison (Higher is better). All experiments above use 20
nodes with 10000 data samples.

Aging USA (CogUSA) study (McArdle et al., 2015) (Sec-
tion 5.2), and the second is about Achilles Tendon Rupture
(ATR) rehabilitation research study (Praxitelous et al., 2017;
Domeij-Arverud et al., 2016). MVPC demonstrates superior
performance compared to multiple baseline methods.

5.1 Synthetic data evaluation

To best demonstrate the behavior of different causal discov-
ery methods, we first perform the evaluation on synthetic
data where the ground truth of causal graphs is known.

Baselines. Our baseline methods include deletion-based
PC algorithms (as mentioned in Section 3): TD-PC and
List-wise Deletion PC (LD-PC). Additionally, we apply
the PC algorithm to the oracle data (without missing data),
denoted by "ideal". Finally, to decouple the effect of sample
size, we construct virtual datasets in MCAR with the same
sample size as in each CI test of TD-PC. PC with such
virtual MCAR data as a reference is denote by "target" .

Data Generation. We follow the procedures in (Colombo
et al., 2012; Strobl et al., 2017) to randomly generate Gaus-
sian DAG and sample data based on the given DAG. Addi-
tionally, we include at least two collider structures in the
random Gaussian DAG, in order for deletion-based PC to
have erroneous edges, as implied by Proposition 2. We
generate two groups of synthetic data to show the scala-

bility of our methods: One group has 20 variables (with
6-10 partially observed variables), and the other is with 50
variables (with 10-14 partially observed variables) for MAR
and MNAR. Note that in MNAR case, we assume that the di-
rect causes of missingness indicators are partially observed.
This is different from (Strobl et al., 2017), which assumes
that the cause is a hidden variable. For each group of the
experiments, we generate 400 DAGs with sample size of
100, 1000, 5000, and 10000, respectively.

Result. In all different experimental settings, we compare
the results of different algorithms with structural Hamming
distance from the ground truth, shown in Figure 2, and with
the precision and recall of their adjacency and orientation,
given in Figure 3. Across both metrics, as seen from Figure
2 and Figure 3, our proposed algorithm consistently has
superior performance compared to both TD-PC and LD-PC,
and is very close to the "target" performance. Similar to
(Strobl et al., 2017), TD-PC also performs better than LD-
PC in the context of PC. Additionally, our proposed method
benefits from large volume of data samples as shown in
Figure 2, in contract to (Strobl et al., 2017).

5.2 The Cognition and aging USA (CogUSA) study

In this experiment, we aim to discovery causal relations
in the CogUSA study as in (Strobl et al., 2017). This is a
typical survey based healthcare dataset with a large amount
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variables with missing values. In this scenario, the missing-

ness mechanism is unknown and we could expect MCAR,

MAR, and MNAR occur.
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Figure 4: Performance of different methods on CogUSA

study. Lower cost is better. The cost is the count of errors

comparing with known causal constrains from experts.

We use the same 16 variables of interest in the CogUSA

study as in (Strobl et al., 2017). Since the missingness indi-

cators of the 16 variables can be caused by other variables,

we utilize the rest variables when applying MVPC to the

dataset. We use the BIC score for CI test (likelihood ra-

tio test with the BIC penalty as the threshold). Figure 4

shows the performance evaluated using the known causal

constraints: 1) Variables are in two groups with no inter-

group causal relation; 2) there are causal relations between

two pairs of variables given by the domain expertise. Each

violation of these known causal relations adds 1 in the cost

shown in Figure 4. Our proposed method obtains the best

performance (lowest cost) comparing with deletion-based

PC and deletion-based FCI (Strobl et al., 2017). This demon-

strates the capabilities of our method in real life applications.

5.3 Achilles Tendon Rupture study

In the end, we perform causal discovery on a Achilles Ten-

don Rupture (ATR) study dataset (Praxitelous et al., 2017;

Hamesse et al., 2018), collected in multiple hospitals 1. ATR

is a type of soft tissue injury involving a long rehabilitation

process. Understanding causal relations among various fac-

tors and healing outcomes is essential for practitioners. The

list-wise deletion method is not applicable for this case

because about 70% of the data entries are missing, which

means that very rare patients have complete data. Thus,

we apply our method and TD-PC to this dataset. We ran

experiments on the full dataset with more than 100 variables.

Figure 5a shows part of the causal graph.

We find that age, gender, BMI (body mass index), and LSI

(Limb Symmetry Index) in the causal graph given by MVPC

do not affect the healing outcome measured by Foot Ankle

Outcome Score (FAOS). This result is consistent with (Prax-

itelous et al., 2017; Domeij-Arverud et al., 2016). To test the

1In the ATR study experiment, only Paul Ackermann and Ruibo
Tu get access to the ATR dataset.

effectiveness of MNAR, we further introduce an auxiliary

variable S which is generated from two variables: Operation

time (OPtime) and FAOS. This variable further causes the

missingness indicator of FAOS. Figure 5b and 5c show the

results of these variables using TD-PC and our proposed

method. Our proposed MVPC is able to correctly remove

the extraneous edge between Operation time and FAOS.

Age Gender

BMILSI FAOS

(a) Consistent results

OPtime FAOS

S

(b) Test-wise deletion PC

Optime FAOS

S

(c) MVPC (proposed)

Figure 5: Causal discovery results in the ATR study. Exper-

iments were run over all variables. We show only a part of

the whole causal graph. Panel (a) shows the relations among

five variables given by MVPC. The relations are consistent

with medical studies. Panel (b) and (c) show an example

where MVPC is able to correct the error of TD-PC.

6 Discussion

In this work, we address the problem of causal discovery in

the presence of missing data. We first provide theoretical

analysis to identify possible errors in the results given by a

simple extension of PC. We then show that erroneous causal

edges occur only in particular graph structures. Based on our

analysis, we propose a novel algorithm MVPC, which cor-

rects erroneous edges under mild assumptions. We demon-

strate the asymptotic correctness and the effectiveness of

our method on both synthetic data and real-world applica-

tions. As future work, we will explore the possibility of

further relaxing the assumptions in MVPC, as well as work

jointly with practitioners on causal analysis of large-scale

healthcare applications in the presence of missing data.
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