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Abstract

We consider the problem of inferring causal re-
lationships between two or more passively ob-
served variables. While the problem of such
causal discovery has been extensively studied,
especially in the bivariate setting, the major-
ity of current methods assume a linear causal
relationship, and the few methods which con-
sider non-linear relations usually make the as-
sumption of additive noise. Here, we propose
a framework through which we can perform
causal discovery in the presence of general
non-linear relationships. The proposed method
is based on recent progress in non-linear in-
dependent component analysis (ICA) and ex-
ploits the non-stationarity of observations in
order to recover the underlying sources. We
show rigorously that in the case of bivariate
causal discovery, such non-linear ICA can be
used to infer causal direction via a series of in-
dependence tests. We further propose an al-
ternative measure for inferring causal direc-
tion based on asymptotic approximations to the
likelihood ratio, as well as an extension to mul-
tivariate causal discovery. We demonstrate the
capabilities of the proposed method via a se-
ries of simulation studies and conclude with an
application to neuroimaging data.

1 INTRODUCTION

Causal models play a fundamental role in modern sci-
entific endeavor (Pearl, 2009). While randomized con-
trol studies are the gold standard, such an approach is
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unfeasible or unethical in many scenarios (Spirtes and
Zhang, 2016). Even when it is possible to run random-
ized control trials, the number of experiments required
may raise practical challenges (Eberhardt et al., 2005).
Furthermore, big data sets publicly available on the in-
ternet often try to be generic and thus cannot be strongly
based on specific interventions; a prominent example is
the Human Connectome Project which collects resting
state fMRI data from over 500 subjects (Van Essen et al.,
2012). As such, it is important to develop causal discov-
ery methods through which to uncover causal structure
from (potentially large-scale) passively observed data.
Such data collected without explicit manipulation of cer-
tain variables is often termed observational data.

The intrinsic appeal of causal discovery methods is that
they allow us to uncover the underlying causal structure
of complex systems, providing an explicit description of
the underlying generative mechanisms. Within the con-
text of machine learning, causal knowledge has also been
shown to play an important role in many domains such as
semi-supervised and transfer learning (Schölkopf et al.,
2012; Zhang et al., 2013), covariate shift and algorith-
mic fairness (Kusner et al., 2017). A wide range of
methods have been proposed to discover casual knowl-
edge (Shimizu et al., 2006; Hoyer et al., 2009; Zhang
and Hyvärinen, 2009; Peters et al., 2016; Zhang et al.,
2017). However, many of the current methods rely on
restrictive assumptions regarding the nature of the causal
relationships. For example, Shimizu et al. (2006) assume
linear causal models with non-Gaussian disturbances and
demonstrate that independent component analysis (ICA)
may be employed to uncover causal structure. Hoyer
et al. (2009) provide an extension to non-linear causal
models but under the assumption of additive noise.

In this paper we propose a general method for bivari-
ate causal discovery in the presence of general non-
linearities. The proposed method is able to uncover non-
linear causal relationships without requiring assumptions
such as linear causal structure or additive noise. Our ap-



proach exploits a correspondence between a non-linear
ICA model and non-linear causal models, and is specif-
ically tailored for observational data which are collected
across a series of distinct experimental conditions or
regimes. Given such data, we seek to exploit the non-
stationarity introduced via distinct experimental condi-
tions in order to perform causal discovery. We demon-
strate that if latent sources can be recovered via non-
linear ICA, then a series of independence tests may be
employed to uncover causal structure. As an alternative
to independence testing, we further propose a novel mea-
sure of non-linear causal direction based on an asymp-
totic approximation to the likelihood ratio.

2 PRELIMINARIES

In this section we introduce the class of causal models
to be studied. We also present an overview of non-linear
ICA methods based on contrastive learning, upon which
we base the proposed method.

2.1 MODEL DEFINITION

Suppose we observe d-dimensional random variables
X = (X1, . . . , Xd) with joint distribution P(X). The
objective of causal discovery is to use the observed data,
which give the empirical version of P(X), to infer the
associated causal graph which describes the data gener-
ating procedure (Spirtes et al., 2000; Pearl, 2009).

A structural equation model (SEM) is here defined (gen-
eralizing the traditional definition) as a collection of d
structural equations:

Xj = fj(PAj , Nj), j = 1, . . . , d (1)

together with a joint distribution, P(N), over disturbance
(noise) variables, Nj , which are assumed to be mutually
independent. We write PAj to denote the parents of the
variableXj . The causal graph, G, associated with a SEM
in equation (1) is a graph consisting of one node corre-
sponding to each variable Xj ; throughout this work we
assume G is a directed acyclic graph (DAG).

While functions fj in equation (1) can be any (possibly
non-linear) functions, to date the causal discovery com-
munity has focused on specific special cases in order to
obtain identifiability results as well as provide practical
algorithms. Pertinent examples include: a) the linear
non-Gaussian acyclic model (LiNGAM; Shimizu et al.,
2006), which assumes each fj is a linear function and the
Nj are non-Gaussian, b) the additive noise model (ANM;
Hoyer et al., 2009), which assumes the noise is additive,
and c) the post-nonlinear causal model, which also cap-
tures possible non-linear distortion in the observed vari-
ables (Zhang and Hyvärinen, 2009).

The aforementioned approaches enforce strict con-
straints on the functional class of the SEM. Otherwise,
without suitable constraints on the functional class, for
any two variables one can always express one of them as
a function of the other and independent noise (Hyväri-
nen and Pajunen, 1999). We are motivated to develop
novel causal discovery methods which benefit from new
identifiability results established from a different angle,
in the context of general non-linear (and non-additive)
relationships. A key component of our method exploits
some recent advances in non-linear ICA, which we re-
view next.

2.2 NON-LINEAR ICA VIA TCL

We briefly outline the recently proposed Time Con-
trastive Learning (TCL) algorithm, through which it is
possible to demix (or disentangle) latent sources from
observed non-linear mixtures; this algorithm provides
hints as to the identifiability of causal direction between
two variables in general non-linear cases under certain
assumptions and is exploited in our causal discovery
method. For further details we refer readers to Hyvärinen
and Morioka (2016) but we also provide a brief review
in Supplementary Material A. We assume we observe d-
dimensional data, X, which are generated according to a
smooth and invertible non-linear mixture of independent
latent variables S = (S1, . . . , Sd). In particular, we have

X = f(S). (2)

The goal of non-linear ICA is then to recover S from X.

TCL, as introduced by Hyvärinen and Morioka (2016),
is a method for non-linear ICA which is premised on the
assumption that both latent sources and observed data
are non-stationary time series. Formally, they assume
that while components Sj are mutually independent, the
distribution of each component is piece-wise stationary,
implying they can be divided into non-overlapping time
segments such that their distribution varies across seg-
ments, indexed by e ∈ E . In the basic case, the log-
density of the jth latent source in segment e is assumed
to follow an exponential family distribution such that:

log pe(Sj) = qj,0(Sj) + λj(e)qj(Sj)− log Z(e), (3)

where qj,0 is a stationary baseline and qj is a non-linear
scalar function defining an exponential family for the jth
source. (Exponential families with more than one suffi-
cient statistic are also allowed.) The final term in equa-
tion (3) corresponds to a normalization constant. It is
important to note that parameters λj(e) are functions of
the segment index, e, implying that the distribution of
sources will vary across segments. It follows from equa-
tion (2) that observations X may also be divided into non-
overlapping segments indexed by e ∈ E . We write X(i)



to denote the ith observation and Ci ∈ E to denote its
corresponding segment.

TCL proceeds by defining a multinomial classification
task, where we consider each original data point X(i)
as a data point to be classified, and the segment indices
Ci give the labels. Given the observations, X, together
with the associated segment labels, C, TCL can then
be proven to recover f−1 as well as independent com-
ponents, S, by learning to classify the observations into
their corresponding segments. In particular, TCL trains
a deep neural network using multinomial logistic regres-
sion to perform this classification task. The network ar-
chitecture employed consists of a feature extractor corre-
sponding to the last hidden layer, denoted by h(X(i); θ)
and parameterised by θ, together with a final linear layer.
The central Theorem on TCL is given in our notation as

Theorem 1 (Hyvärinen and Morioka (2016)) Assume
the following conditions hold:

1. We observe data generated by independent sources
according to equation (3) and mixed via invertible,
smooth function f as stated in equation (2).

2. We train a neural network consisting of a feature
extractor h(X(i); θ) and a final linear layer (i.e.,
softmax classifier) to classify each observation to
its corresponding segment label, Ci. We require the
dimension of h(X(i); θ) be the same as X(i).

3. The matrix L with elements Le,j = λj(e) − λj(1)
for segments e = 1, . . . , E and j = 1, . . . , d has
full rank.

Then in the limit of infinite data, the outputs of the feature
extractor are equal to q(S), up to an invertible linear
transformation.

Theorem 1 states that we may perform non-linear ICA
by training a neural network to classify the segments as-
sociated with each observation, followed by linear ICA
on the hidden representations, h(X; θ). This theorem
provides identifiability of this particular non-linear ICA
model, meaning that it is possible to recover the sources.
This is not the case with many simpler attempts at non-
linear ICA models (Hyvärinen and Pajunen, 1999), such
as the case with a single segment in the model above.

While Theorem 1 provides identifiability for a particular
non-linear ICA model, it requires a final linear unmixing
of sources (i.e., via linear ICA). However, when sources
follow the piece-wise stationary distribution detailed in
equation (3), traditional linear ICA methods may not be
appropriate as sources will only be independent condi-
tional on the segment. For example, it is possible that ex-
ponential family parameters, λj(e), are dependent across

sources (e.g., they may be correlated). This problem will
be particularly pertinent when data is only collected over
a reduced number of segments. As such, alternative lin-
ear ICA algorithms are required to effectively employ
TCL in such a setting, as addressed in Section 3.2.

3 NON-LINEAR CAUSAL DISCOVERY
VIA NON-LINEAR ICA

In this section we outline the proposed method for causal
discovery over bivariate data, which we term Non-linear
SEM Estimation using Non-Stationarity (NonSENS).
We begin by providing an intuition for the proposed
method in Section 3.1, which is based on the connection
between non-linear ICA and non-linear SEMs. In Sec-
tion 3.2 we propose a novel linear ICA algorithm which
complements TCL for the purpose of causal discovery,
particularly in the presence of observational data with
few segments. Our method is formally detailed in Sec-
tion 3.3, which also contains a proof of identifiability.
Finally in Section 3.4 we present an alternative measure
of causal direction based on asymptotic approximations
to the likelihood ratio of non-linear causal models.

3.1 RELATING SEM TO ICA

We assume we observe bivariate data X(i) ∈ R2 and
write X1(i) and X2(i) to denote the first and second
entries of X(i) respectively. We will omit the i index
whenever it is clear from context. Following the nota-
tion of Peters et al. (2016), we further assume data is
available over a set of distinct environmental conditions
E = {1, . . . , E}. As such, each X(i) is allocated to an
experimental condition denoted byCi ∈ E . Let ne be the
number of observations within each experimental condi-
tion such that ntot =

∑
e∈E ne.

The objective of the proposed method is to uncover the
causal direction between X1 and X2. Suppose that
X1 → X2, such that the associated SEM is of the form:

X1(i) = f1(N1(i)), (4)
X2(i) = f2(X1(i), N2(i)), (5)

whereN1, N2 are latent disturbances whose distributions
are also assumed to vary across experimental conditions.
The DAG associated with equations (4) and (5) is shown
in Figure 1. Fundamentally, the proposed NonSENS al-
gorithm exploits the correspondence between the non-
linear ICA model described in Section 2.2 and non-linear
SEMs. This correspondence is formally stated as fol-
lows: observations generated according to the (possi-
bly non-linear) SEM detailed in equations (4) and (5)
will follow a non-linear ICA model where each distur-
bance variable, Nj , corresponds to a latent source, Sπ(j).
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Figure 1: Visualization of DAG, G, associated with the
SEM in equations (4) and (5).

Moreover, structural equations f1 and f2 jointly define
a bivariate non-linear mapping from sources to observa-
tions as in non-linear ICA. However, the mixing function
f in non-linear ICA is not exactly the same as f1 and f2
(see Supplementary Material B). We note that due to the
permutation indeterminacy present in ICA, each distur-
bance variable, Nj , will only be identifiable up to some
permutation π of the set {1, 2}.

The proposed method consists of a two-step procedure.
First, it seeks to recover latent disturbances via non-
linear ICA. Given the estimated latent disturbances, the
following property highlights how we may employ statis-
tical independencies between observations and estimated
sources in order to infer the causal structure:

Property 1 Assume the true causal structure follows
equations (4) and (5), as depicted in Figure 1. Then,
assuming each observed variable is statistically depen-
dent on its latent disturbance (thus avoiding degenerate
cases), it follows that X1 ⊥⊥ N2 while X1 6⊥⊥ N1 and
X2 6⊥⊥ N1 as well as X2 6⊥⊥ N2. 1

Property 1 highlights the relationship between observa-
tions X and latent sources, N, and provides some insight
into how a non-linear ICA method, together with inde-
pendence testing, could be employed to perform bivari-
ate causal discovery. This is formalized in Section 3.3.

3.2 A LINEAR ICA ALGORITHM FOR
PIECE-WISE STATIONARY SOURCES

Before proceeding, we have to improve the non-linear
ICA theory of Hyvärinen and Morioka (2016). Assump-
tions 1–3 of Theorem 1 for TCL guarantee that the fea-
ture extractor, h(X; θ), will recover a linear mixture of
latent independent sources (up to element-wise transfor-
mation by q). As a result, applying a linear unmixing
method to the final representations, h(X; θ), will allow
us to recover latent disturbances. However, the use of

1We note that the property that effect is dependent on its
direct causes typically holds, although one may construct spe-
cific examples (with discrete variables or continuous variables
with complex causal relations) in which effect is independent
from its direct causes. In particular, if faithfulness is as-
sumed (Spirtes et al., 2000), the above property clearly holds.

ordinary linear ICA to unmix h(X; θ) is premised on the
assumption that latent sources are independent. This is
not necessarily guaranteed when sources follow the ICA
model presented in equation (3) with a fixed number of
segments. For example, it is possible that parameters
λj(e) are correlated across segments. We note that this
is not a problem when the number of segments increases
asymptotically and parameters λj(e) are assumed to be
randomly generated, as stated in Corollary 1 of Hyväri-
nen and Morioka (2016).

In order to address this issue, we propose an alternative
linear ICA algorithm to be employed in the final stage of
TCL, through which to accurately recover latent sources
in the presence of a small number of segments.

The proposed linear ICA algorithm explicitly models la-
tent sources as following the piece-wise stationary distri-
bution specified in equation (3). We write Z(i) ∈ Rd to
denote the ith observation, generated as a linear mixtures
of sources: Z(i) = AS(i), where A ∈ Rd×d is a square
mixing matrix. Estimation of parameters proceeds via
score matching (Hyvärinen, 2005), which yields an ob-
jective function of the following form:

J =
∑
e∈E

d∑
j=1

λj(e)
1

ne

∑
Ci=e

q
′′
j (wTj Z(i))

+
1

2

∑
e∈E

d∑
j,k=1

λk(e)λj(e)wTk wj
1

ne

∑
Ci=e

q
′
k(wTk Z(i))q′j(wTj Z(i)),

where W ∈ Rd×d denotes the unmixing matrix and q′j
and q′′j denote the first and second derivatives of the non-
linear scalar functions introduced in equation (3). Details
and results are provided in Supplementary C, where the
proposed method is shown to outperform both FastICA
and Infomax ICA, as well as the joint diagonalization
method of Pham and Cardoso (2001), which is explicitly
tailored for non-stationary sources.

3.3 CAUSAL DISCOVERY USING
INDEPENDENCE TESTS

Now we give the outline of NonSENS. NonSENS per-
forms causal discovery by combining Property 1 with a
non-linear ICA algorithm. Notably, we employ TCL, de-
scribed in Section 2.2, with the important addition that
the final linear unmixing of the hidden representations,
h(X; θ), is performed using the objective given in Sec-
tion 3.2. The proposed method is summarized as follows:

1. (a) Using TCL, train a deep neural network with
feature extractor h(X(i); θ) to accurately clas-
sify each observation X(i) according to its seg-
ment label Ci.

(b) Perform linear unmixing of h(X; θ) using the
algorithm presented in Section 3.2.



2. Perform the four tests listed in Property 1, and con-
clude a cause-effect relationship in the case where
there is evidence to reject the null hypothesis in
three of the tests and only one of the tests fails to
reject the null. The variable for which the null hy-
pothesis was not rejected is considered the cause.

Each test is run at a pre-specified significance level, α,
and Bonferroni corrected in order to control the family-
wise error rate. Throughout this work we employ HSIC
as a test for statistical independence (Gretton et al.,
2005). Pseudo-code is provided in Supplementary G.
Theorem 2 formally states the assumptions and identi-
fiability properties of the proposed method.

Theorem 2 Assume the following conditions hold:

1. We observe bivariate data X which has been gen-
erated from a non-linear SEM with smooth non-
linearities and no hidden confounders.

2. Data is available over at least three distinct exper-
imental conditions and latent disturbances, Nj , are
generated according to equation (3).

3. We employ TCL, with a sufficiently deep neural net-
work as the feature extractor, followed by linear
ICA (as described in Section 3.2) on hidden repre-
sentations to recover the latent sources.

4. We employ an independence test which can capture
any type of departure from independence, for ex-
ample HSIC, with Bonferroni correction and signif-
icance level α.

Then in the limit of infinite data the proposed method will
identify the cause variable with probability 1− α.

See Supplementary D for a proof. Theorem 2 extends
previous identifiability results relying on constraints on
functional classes (e.g., ANM in Hoyer et al. (2009)) to
the domain of arbitrary non-linear models, under further
assumptions on nonstationarity of the given data.

3.4 LIKELIHOOD RATIO-BASED MEASURES
OF CAUSAL DIRECTION

While independence tests are widely used in causal dis-
covery, they may not be statistically optimal for decid-
ing causal direction. In this section, we further propose
a novel measure of causal direction which is based on
the likelihood ratio under non-linear causal models, and
which thus is likely to be more efficient.

The proposed measure can be seen as the extension of
linear measures of causal direction, such as those pro-
posed by Hyvärinen and Smith (2013), to the domain of

non-linear SEMs. Briefly, Hyvärinen and Smith (2013)
consider the likelihood ratio between two candidate mod-
els of causal influence: X1 → X2 or X2 → X1. The
log-likelihood ratio is then defined as the difference in
log-likelihoods under each model:

R = L1→2 − L2→1 (6)

where we write L1→2 to denote the log-likelihood un-
der the assumption that X1 is the causal variable and
L2→1 for the alternative model. Under the assumption
that X1 → X2, it follows that the underlying SEM is
of the form described in equations (4) and (5). The log-
likelihood for a single data point may thus be written as

L1→2 = logPX1(X1) + logPX2|X1
(X2|X1).

Furthermore, in the context of linear causal models we
have that equations (4) and (5) define a bijection between
N2 and X2 whose Jacobian has unit determinant, such
that the log-likelihood can be expressed as:

L1→2 = logPX1
(X1) + logPN2

(N2).

In the asymptotic limit we can take the expectation of
log-likelihood, and the log-likelihood converges to:

E[L1→2] = −H(X1)−H(N2) (7)

where H(·) denotes the differential entropy. Hyvärinen
and Smith (2013) note that the benefit of equation (7)
is that only univariate approximations of the differential
entropy are required. In this section we seek to derive
equivalent measures for causal direction without the as-
sumption of linear causal effects. Recall that after train-
ing via TCL, we obtain an estimate of g = f−1 which is
parameterized by a deep neural network.

In order to compute the log-likelihood, L1→2, we con-
sider the following change of variables:(

X1

N2

)
= g̃

(
X1

X2

)
=

(
X1

g2(X1, X2)

)
where we note that g2 : R2 → R refers to the second
component of g. Further, we note that the the mapping
g̃ only applies the identity to the first element, thereby
leavingX1 unchanged. Given such a change of variables,
we may evaluate the log-likelihood as follows:

L1→2 = log pX1
(X1) + log pN2

(N2) + log |det Jg̃|,

where Jg̃ denotes the Jacobian of g̃, as we have X1 ⊥⊥
N2 by construction under the assumption thatX1 → X2.

Due to the particular choice of g̃, we are able to easily
evaluate the Jacobian, which can be expressed as:

Jg̃ =

(
∂g̃1

∂X1

∂g̃1

∂X2
∂g̃2

∂X1

∂g̃2

∂X2

)
=

(
1 0
∂g2

∂X1

∂g2

∂X2

)
.



As a result, the determinant can be directly evaluated as
∂g2

∂X2
. Furthermore, since g2 is parameterized by a deep

network, we can directly evaluate its derivative with re-
spect to X2. This allows us to directly evaluate the log-
likelihood of X1 being the causal variable as:

L1→2 = log pX1
(X1) + log pN2

(N2) + log

∣∣∣∣ ∂g2

∂X2

∣∣∣∣ .
Finally, we consider the asymptotic limit and obtain the
non-linear generalization of equation (7) as:

E[L1→2] =−H(X1)−H(N2) + E
[
log

∣∣∣∣ ∂g2

∂X2

∣∣∣∣] .
In practice we use the sample mean instead of the expec-
tation.

One remaining issue to address is the permutation invari-
ance of estimated sources (note this this permutation is
not about the causal order of the observed variables). We
must consider both permutations π of the set {1, 2}. In
order to resolve this issue, we note that if the true permu-
tation is π = (1, 2), then assuming X1 → X2, we have
∂g1

∂X2
= 0 while ∂g2

∂X2
6= 0. This is because g1 unmixes

observations to return the latent disturbance for causal
variable, X1, and is therefore not a function of X2. The
converse is true if the permutation is π = (2, 1). Sim-
ilar reasoning can be employed for the reverse model:
X2 → X1. As such, we propose to select the permuta-
tion as follows:

π∗ = argmax
π

{
E
[
log

∣∣∣∣∂gπ(2)

∂X2

∣∣∣∣]+ E
[
log

∣∣∣∣∂gπ(1)

∂X1

∣∣∣∣]} .
For a chosen permutation, π∗, we may therefore compute
the likelihood ratio in equation (6) as:

R = −H(X1)−H(Nπ∗(2)) + E
[
log

∣∣∣∣∂gπ∗(2)

∂X2

∣∣∣∣]
+H(X2) +H(Nπ∗(1))− E

[
log

∣∣∣∣∂gπ∗(1)

∂X1

∣∣∣∣] .
If R is positive, we conclude that X1 is the causal vari-
able, whereas ifR is negativeX2 is reported as the causal
variable. When computing the differential entropy, we
employ the approximations described in Kraskov et al.
(2004). We note that such approximations require vari-
ables to be standardized; in the case of latent variables
this can be achieved by defining a further change of vari-
ables corresponding to a standardization.

Finally, we note that the likelihood ratio presented above
can be connected to the independence measures em-
ployed in Section 3.3 when mutual information is used a
measure of statistical dependence. In particular, we have

R = −I(X1, Nπ(2)) + I(X2, Nπ(1)), (8)

where I(·, ·) denotes the mutual information between
two variables. We provide a full derivation in Sup-

plementary E. This result serves to connect the pro-
posed likelihood ratio to independence testing methods
for causal discovery which use mutual information.

3.5 EXTENSION TO MULTIVARIATE DATA

It is not straightforward to extend NonSENS to mul-
tivariate cases. Due to the permutation invariance of
sources, we would require d2 independence tests, where
d is the number of variables, leading to a significant drop
in power after Bonferroni correction. Likewise, the like-
lihood ratio test inherently considers only two variables.

Instead, we propose to extend to proposed method to the
domain of multivariate causal discovery by employing it
in conjunction with a traditional constraint based method
such as the PC algorithm, as in Zhang and Hyvärinen
(2009). Formally, the PC algorithm is first employed to
estimate the skeleton and orient as many edges as pos-
sible. Any remaining undirected edges are then directed
using either proposed bivariate method.

3.6 RELATIONSHIP TO PREVIOUS METHODS

NonSENS is closely related to linear ICA-based methods
as described in Shimizu et al. (2006). However, there
are important differences: LiNGAM focuses exclusively
on linear causal models whilst NonSENS is specifically
designed to recover arbitrary non-linear causal structure.
Moreover, the proposed method is mainly designed for
bivariate causal discovery whereas the original LiNGAM
method can easily perform multivariate causal discovery
by permuting the estimated ICA unmixing matrix. In this
sense NonSENS is more closely aligned to the Pairwise
LiNGAM method (Hyvärinen and Smith, 2013).

Hoyer et al. (2009) and Peters et al. (2014) propose a
non-linear causal discovery method named regression
and subsequent independence test (RESIT) which is able
to recover the causal structure under the assumption of
an additive noise model. RESIT essentially shares the
same underlying idea as NonSENS, with the difference
being that it estimates latent disturbances via non-linear
regression, as opposed to via non-linear ICA. Related is
the Regression Error Causal Inference (RECI) algorithm
(Blöbaum et al., 2018), which proposes measures of
causal direction based on the magnitude of (non-linear)
regression errors. Importantly, both of those methods re-
strict the non-linear relations to have additive noise.

Recently several methods have been proposed which
seek to exploit non-stationarity in order to perform causal
discovery. Following Schölkopf et al. (2012), Peters
et al. (2016) propose to leverage the invariance of causal
models under covariate shift in order to recover the true
causal structure. Their method, termed Invariant Causal



Prediction (ICP), is tailored to the setting where data is
collected across a variety of experimental regimes, simi-
lar to ours. However, their main results, including iden-
tifiability are in the linear or additive noise settings.

Zhang et al. (2017) proposed a method, termed
CD-NOD, for causal discovery from heterogeneous,
multiple-domain data or non-stationary data, which al-
lows for general non-linearities. Their method thus
solves a problem similar to ours, although with a very
different approach. Their method accounts for non-
stationarity, which manifests itself via changes in the
causal modules, via the introduction of an surrogate
variable representing the domain or time index into the
causal DAG. Conditional independence testing is em-
ployed to recover the skeleton over the augmented DAG,
and their method does not produce an estimate of the
SEM to represent the causal mechanism.

4 EXPERIMENTAL RESULTS

In order to demonstrate the capabilities of the proposed
method we consider a series of experiments on synthetic
data as well as real neuroimaging data.

4.1 SIMULATIONS ON ARTIFICIAL DATA

In the implementation of the proposed method we em-
ployed deep neural networks of varying depths as feature
extractors. All networks were trained on cross-entropy
loss using stochastic gradient descent. In the final linear
unmixing required by TCL, we employ the linear ICA
model described in Section 3.2. For independence test-
ing, we employ HSIC with a Gaussian kernel. All tests
are run at the α = 5% level and Bonferroni corrected.

We benchmark the performance of the NonSENS al-
gorithm against several state-of-the-art methods. As a
measure of performance against linear methods we com-
pare against LiNGAM. In particular, we compare perfor-
mance to DirectLiNGAM (Shimizu et al., 2011). In or-
der to highlight the need for non-linear ICA methods, we
also consider the performance of the proposed method
where linear ICA is employed to estimate latent distur-
bances; we refer to this baseline as Linear-ICA Non-
SENS. We further compare against the RESIT method of
Peters et al. (2014). Here we employ Gaussian process
regression to estimate non-linear effects and HSIC as a
measure of statistical dependence. Finally, we also com-
pare against the CD-NOD method of Zhang et al. (2017)
as well as the RECI method presented in Blöbaum et al.
(2018). For the latter, we employ Gaussian process re-
gression and note that this method assumes the presence
of a causal effect, and is therefore only included in some
experiments. We provide a description of each of the

methods in the Supplementary material F.

We generate synthetic data from the non-linear ICA
model detailed in Section 2.2. Non-stationary dis-
turbances, N, were randomly generated by simulating
Laplace random variables with distinct variances in each
segment. For the non-linear mixing function we employ
a deep neural network (“mixing-DNN”) with randomly
generated weights such that:

X(1) = A(1)N, (9)

X(l) = A(l)f
(

X(l−1)
)
, (10)

where we write X(l) to denote the activations at the lth
layer and f corresponds to the leaky-ReLU activation
function which is applied element-wise. We restrict ma-
trices A(l) to be lower-triangular in order to introduce
acyclic causal relations. In the special case of multivari-
ate causal discovery, we follow Peters et al. (2014) and
include edges with a probability of 2

d−1 , implying that
the expected number of edges is d. We present exper-
iments for d = 6 dimensions. Note that equation (9)
follows the LiNGAM. For depths l ≥ 2, equation (10)
generates data with non-linear causal structure.

Throughout experiments we vary the following factors:
the number of distinct experimental conditions (i.e., dis-
tinct segments), the number of observations per segment,
ne, as well as the depth, l, of the mixing-DNN. In the
context of bivariate causal discovery we measure how
frequently each method is able to correctly identify the
cause variable. For multivariate causal discovery we con-
sider the F1 score, which serves to quantify the agree-
ment between estimated and true DAGs.

Figure 2 shows the results for bivariate causal discovery
as the number of distinct experimental conditions, |E|,
increases and the number of observations within each
condition was fixed at ne = 512. Each horizontal panel
shows the results as the depth of the mixing-DNN in-
creased from l = 1 to l = 5. The top panels show
the proportion of times the correct cause variable was
identified across 100 independent simulations. In partic-
ular, the first top panel corresponds to linear causal de-
pendencies. As such, all methods are able to accurately
recover the true cause variable. However, as the depth of
the mixing-DNN increases, the causal dependencies be-
come increasingly non-linear and the performance of all
methods deteriorates. While we attribute this drop in per-
formance to the increasingly non-linear nature of causal
structure, we note that the NonSENS algorithm is able to
out-perform all alternative methods.

The bottom panels of Figure 2 shows the results when
no directed acyclic causal structure is present. Here data
was generated such that A(l) was not lower-triangular. In



Figure 2: Experimental results indicating performance as we increase the number of experimental conditions, |E|,
whilst keeping the number of observation per condition fixed at ne = 512. Each horizontal panel plots results for
varying depths of the mixing-DNN, ranging from l = 1, . . . 5. The top panels show the proportion of times the
correct cause variable is identified when a causal effect exists. The bottom panels considers data where no acyclic
causal structure exists (A(l) are not lower-triangular) and reports the proportion of times no causal effect is correctly
reported. The dashed, horizontal red line indicates the theoretical (1− α)% true negative rate. For clarity we omit the
standard errors, but we note that they were small in magnitude (approximately 2− 5%).
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Figure 3: Experimental results visualizing performance under the assumption that a causal effect exists. This reduces
the bivariate causal discovery problem to recovering the causal ordering over X1 and X2. The top panel considers
an increasing number of experimental conditions whilst the bottom panel shows results when we vary the number
of observations within a fixed number of experimental conditions, |E| = 10. Each horizontal plane plots results for
varying depths of the mixing-DNN, ranging from l = 1, . . . , 5.
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Figure 4: F1 score for multivariate causal discovery over

6-dimensional data. For each algorithm, we plot the F1

scores as we vary the depth of the mixing-DNN from l =
1, . . . , 5. Higher F1 scores indicate better performance.

particular, we set the off-diagonal entries of A(l) to be

identical and non-zero, resulting in cyclic causal struc-

ture. In the context of such data, we would expect all

methods to report that the causal structure is inconclusive

95% of the time, as all tests are Bonferroni corrected at

the α = 5% level. The bottom panel of Figure 2 shows

the proportion of times the causal structure is correctly

reported as inconclusive. The results indicate that all

methods are overly conservative in their testing, and be-

come increasingly conservative as the depth, l, increases.

We also consider the performance of all algorithms in

the context of a fixed number of experimental conditions,

|E| = 10, and an increasing number of observations per

condition, ne, in Supplementary H.

Furthermore, we also consider the scenario where a

causal effect is assumed to exist. In such a scenario, we

consider both the likelihood ratio approach described in

Section 3.4, termed NonSENS LR, and a heuristic ap-

proach of comparing the p-values of independence tests,

termed NonSENS p-val. In the case of algorithms such

as RESIT we compare p-values in order to determine di-

rection. The results for these experiments are shown in

Figure 3. The top panels show results as the number of

experimental conditions, |E|, increases. As before, we fix

the number of observations per condition to ne = 512.

The bottom panels show results for a fixed number of

experimental conditions |E| = 10, as we increase the

number of observations per condition. We note that the

proposed measure of causal direction is shown to out-

perform alternative algorithms. Performance in Figure

3 appears significantly higher than that shown in Figure

2 due to that the fact that a causal effect is known to ex-

ist; this reduces the bivariate causal discovery problem to

recovering the causal ordering over X1 and X2. The CD-

NOD algorithm cannot easily be extended to assume the

existence of a causal effect and is therefore not included

in these experiments.

Finally, the results for multivariate causal discovery are
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Figure 5: Estimated causal DAG on fMRI Hippocampal

data by the proposed method. Blue edges are feasible

given anatomical connectivity; red edges are not.

presented in Figure 4, where we plot the F1 score be-

tween the true and inferred DAGs as the depth of the

mixing-DNN increases. The proposed method is com-

petitive across all depths. In particular, the proposed

method outperforms the PC algorithm, indicating that its

use to resolve undirected edges is beneficial.

4.2 HIPPOCAMPAL FMRI DATA

As a real-data application, the proposed method was ap-

plied to resting state fMRI data collected from six dis-

tinct brain regions as part of the MyConnectome project

(Poldrack et al., 2015). Data was collected from a single

subject over 84 successive days. Further details are pro-

vided in Supplementary Material I. We treated each day

as a distinct experimental condition and employed the

multivariate extension of the proposed method. For each

unresolved edge, we employed NonSENS as described

in Section 3.3 with a 5-layer network. The results are

shown in Figure 5. While there is no ground truth avail-

able, we highlight in blue all estimated edges which are

feasible due to anatomical connectivity between the re-

gions and in red estimated edges which are not feasible

(Bird and Burgess, 2008). We note that the proposed

method recovers feasible directed connectivity structures

for the entorhinal cortex (ERc), which is known to play

an prominent role within the hippocampus.

5 CONCLUSION
We present a method to perform causal discovery in the

context of general non-linear SEMs in the presence of

non-stationarities or different conditions. This is in con-

trast to alternative methods which often require restric-

tions on the functional form of the SEMs. The proposed

method exploits the correspondence between non-linear

ICA and non-linear SEMs, as originally considered in

the linear setting by Shimizu et al. (2006). Notably, we

established the identifiability of causal direction from

a completely different angle, by making use of non-

stationarity instead of constraining functional classes.

Developing computationally more efficient methods for

the multivariate case is one line of our future work.
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