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Abstract

Causal discovery witnessed significant progress over the past decades. In particular,
many recent causal discovery methods make use of independent, non-Gaussian
noise to achieve identifiability of the causal models. Existence of hidden direct
common causes, or confounders, generally makes causal discovery more difficult;
whenever they are present, the corresponding causal discovery algorithms can
be seen as extensions of overcomplete independent component analysis (OICA).
However, existing OICA algorithms usually make strong parametric assumptions
on the distribution of independent components, which may be violated on real
data, leading to sub-optimal or even wrong solutions. In addition, existing OICA
algorithms rely on the Expectation Maximization (EM) procedure that requires
computationally expensive inference of the posterior distribution of independent
components. To tackle these problems, we present a Likelihood-Free Overcom-
plete ICA algorithm (LFOICA1) that estimates the mixing matrix directly by
back-propagation without any explicit assumptions on the density function of inde-
pendent components. Thanks to its computational efficiency, the proposed method
makes a number of causal discovery procedures much more practically feasible.
For illustrative purposes, we demonstrate the computational efficiency and efficacy
of our method in two causal discovery tasks on both synthetic and real data.

1 Introduction

Discovering causal relations among variables has been an important problem in various fields such
as medical science and social sciences. Because conducting randomized controlled trials is usually
expensive or infeasible, discovering causal relations from observational data, i.e.,causal discovery

1Code for LFOICA can be found here
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[1, 2]) has received much attention in the past decades. Classical causal discovery methods, such
as PC [2] and GES [3], output multiple causal graphs in the Markov equivalence classes. Since
the seminal work [4], there have been various methods that have complete identifiability of the
causal structure by making use of constrained Functional Causal Models (FCMs), such as linear
non-Gaussian models [4], nonlinear additive model [5], and post-nonlinear model [6]. Some recent
researches also consider the heterogeneous case [7, 8, 9, 10, 11].

Whenever there are essentially unobservable direct common causes of two variables (known as
confounders), causal discovery can be viewed as learning with hidden variables. With the linearity
and non-Gaussian noise constraints, it has been shown that the causal model is even identifiable from
data with measurement error [12] or missing common causes [13, 14, 15, 16, 17]. The corresponding
causal discovery algorithms can be seen as extension of overcomplete independent component
analysis (OICA). Unlike regular ICA [18], in which the mixing matrix is invertible, OICA cannot
utilize the change of variables technique to derive the joint probability density function of the data,
which is a product of the densities of the independent components (ICs), divided by some value
depending on the mixing matrix. The joint density immediately gives rise to the likelihood.

To perform maximum likelihood learning, exisiting OICA algorithms typically assume a parametric
distribution for the hidden ICs. For example, if assuming each IC follows a Mixture of Gaussian
(MoG) distribution, we can simply derive the likelihood for the observed data. However, the
number of Gaussian mixtures increases exponentially in the number of ICs, which poses significant
computational challenges. Many of existing OICA algorithms rely on the Expectation-Maximization
(EM) procedure combined with approximate inference techniques, such as Gibbs sampling [19] and
mean-field approximation [20], which usually sacrifice the estimation accuracy. Furthermore, the
extended OICA algorithms for causal discovery are mostly noiseless OICA because they usually
model all the noises as ICs [12, 15]. In order to apply EM, a very low variance Gaussian noise is
usually added to the noiseless OICA model, resulting in very slow convergence [21]. Finally, the
parametric assumptions on the ICs might be restrictive for many real-world applications.

To tackle these problems, we propose a Likelihood-Free OICA (LFOICA) algorithm that makes
no explicit assumptions on the density functions of the ICs. In light of recent work on adversarial
learning [22], LFOICA utilizes neural networks to learn the distribution of independent components
implicitly. By minimizing appropriate distributional distance between the generated data from
LFOICA model and the observed data, all parameters including the mixing matrix and noise learning
network parameters in LFOICA can be estimated very efficiently via stochastic gradient descent
(SGD) [23, 24], without the need to formulate the likelihood function.

Although both our work and [25] use a GAN style approach to solve ICA, they are largely different
to each other. First, the main purpose of [25] is to recover the ICs instead of how the ICs are mixed
(i.e.,the mixing matrix). It models the mixing and unmixing procedure implicitly with an encoder-
decoder architecture. As a consequence of non-linearity, there is no guarantee for identifiability. In
contrast, we concentrate on the mixing matrix estimation for causal discovery purpose. Second, the
encoder-decoder architecture in [25] cannot be easily extended for OICA because the posterior of
ICs cannot be modeled by a deterministic encoder. Third, the adversarial training target of LFOICA
and [25] are different. While [25] aims at matching the joint distribution and product of marginal
distribution of the recovered ICs (this is also how [25] makes the components independent), LFOICA
is trained to match the distributions of the generated mixtures and true mixtures. And the estimated
ICs by LFOICA are naturally independent because they are generated from independent latent noises
with separate networks.

The proposed LFOICA will make a number of causal discovery procedures much more practically
feasible. For illustrative purposes, we extend our LFOICA method to tackle two causal discovery
tasks, including causal discovery from data with measurement noise [12] and causal discovery from
low-resolution time series [15, 16]. Experimental results on both synthetic and real data demonstrate
the efficacy and efficiency of our proposed method.
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2 Likelihood-Free Over-complete ICA

2.1 General Framework

Linear ICA assumes the following data generation model:

x = As, (1)

where x ∈ Rp, s ∈ Rd,A ∈ Rp×d are known as mixtures, independent components (ICs), and
mixing matrix respectively. The elements in s are supposed to be independent from each other and
each follows a non-Gaussian distribution (or at most one of them is Gaussian). The goal of ICA is to
recover both A and s from observed mixtures x. However, in the context of causal discovery, our
main goal is to recover a constrained A matrix. When d > p, the problem is known as overcomplete
ICA (OICA).

In light of recent advances in Generative Adversarial Nets (GANs) [22], we propose to learn the
mixing matrix in the OICA model by designing a generator that allows us to draw samples easily. We
model the distribution of each source si by a function model fθi that transforms a Gaussian variable
zi to the non-Gaussian source. More specifically, the i-th source can be generated by ŝi = fθi(zi),
where zi ∼ N (0, 1). Thus, the whole generator that generate x can be written as

x̂ = A[ŝ1, . . . , ŝd]
ᵀ = A[fθ1(z1), . . . , fθd(zd)]

ᵀ = GA,θ(z), (2)

where θ = [θ1, . . . , θd]
ᵀ and z = [z1, . . . , zd]

ᵀ. Figure 1 shows the graphical structure of our
LFOICA generator GA,θ with 4 sources and 3 mixtures. We use a multi-layer perceptron (MLP)
to model each fθi . While most of the previous algorithms for both overdetermined [26, 25, 27, 28]
and overcomplete [29] scenarios try to minimized the dependence among the recovered components,
the components ŝi recovered by LFOICA are essentially independent because the noises zi are
independent, according to the generating process.

The LFOICA generator GA,θ can be learned by minimizing the distributional distance between the
data sampled from the generator and the observed x data. Various distributional distances have been
applied in training generative networks, including the Jensen-Shannon divergence [22], Wasserstein
distance [30], and Maximum Mean Discrepancy (MMD) [31, 32]. Here we adopt MMD as the
distributional distance as it does not require an explicit discriminator network, which simplifies the
whole optimization procedure. Specifically, we learn the parameters θ and A in the generator by
solving the following optimization problem:

A∗,θ∗ = argmin
A,θ

M (P(x) ,P(GA,θ(z)))

= argmin
A,θ

∥∥Ex∼p(x)[φ (x)]− Ez∼p(z)[φ (GA,θ(z))]
∥∥2 , (3)

where φ is the feature map of a kernel function k(·, ·). MMD can be calculated by using kernel trick
without the need for an explicit φ. By choosing characteristic kernels, such as Gaussian kernel, MMD
is guaranteed to match the distributions [33]. In practice, we optimize some empirical estimator of (3)
on minibatches by stochastic gradient descent (SGD). The entire procedure is shown in Algorithm 1.

MLP θ1 MLP θ2 MLP θ4MLP θ3

z1 independent Gaussian noise

4 different multiple layer perceptrons

ŝ1 ŝ2 ŝ3 ŝ4

x̂1 x̂2 x̂3

independent non-Gaussian components

generated mixtures

z2 z3 z4

Figure 1: generator architecture of LFOICA. z1, z2, z3, z4 are i.i.d Gaussian noise variables.

The identifiability of the mixing matrix A in our model (x = GA,θ(z) = A[fθ1(z1), . . . , fθd(zd)]
ᵀ)

follows the identifiability results for OICA [34], which is summarized in the following theorem.
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Algorithm 1 Likelihood-Free Overcomplete ICA (LFOICA) Algorithm
1: Get a minibatch of i.i.d samples z from Gaussian noise distribution.
2: Generate mixtures using (2).
3: Get a minibatch of samples from the distribution of observed mixtures p(x).
4: Update A and θ by minimizing the empirical estimate of (3) on the minibatch.
5: Repeat step 1 to step 4 until max iterations reached.

Theorem 1 Given two OICA models x = GA,θ(z) and x′ = GA′,θ′(z
′) that specify distributions

P(x) and P(x′), respectively. Under the non-Gaussian assumption of fi(zi) (please refer to Theorem
1 & 3 in [34] for precise definitions), if MMD(P(x),P(x′)) = 0, then A′ = APpSp, where Pp is
a p× p column permutation matrix and Sp is a p× p scaling matrix.

The proof is almost the same as that of Theorem 3 in [34], except that in order to guarantee
P(x) = P(x′), we use MMD = 0 while [34] uses maximum likelihood (KL divergence). Given the
identifiability results, the estimated mixing matrix converges to the scaled and permuted version of
the true mixing matrix and so do the source distributions. The parameters in our MLPs (i.e.,θ) are
not identifiable (θ 6= θ′), but we do not need the identifiability of θ to perform certain tasks, such as
the two causal discovery tasks studied in this paper.

2.2 Practical Considerations

We consider two important issues when applying LFOICA to real applications.

Sparsity Based on the fact that the mixing matrix is sparse in many real systems, we add a LASSO
regularizer [35] to (3), resulting in the loss function M (P(x) ,P(GA,θ(z))) + λ

∑
i

∑
j |Aij |. We

use the stochastic proximal gradient method [36] to train our model. The proximal mapping for
LASSO regularizer corresponds to the soft-thresholding operator:

proxγ(A) = Sλγ(A) =

{
A− λγ if A > λγ
0 if − λγ ≤ A ≤ λγ
A+ λγ if A < −λγ

,

where λ, γ are the regularization weight and the learning rate, respectively. The soft-thresholding
operator is applied after each gradient descent step:

A(t) = proxλγt

(
A(t−1) − γt∇MA(t−1) (·)

)
, t = 1, 2, 3, . . . .

Insufficient data When we have rather small datasets, it is beneficial to have certain “parametric"
assumptions on the source distributions. Here we use Mixture of Gaussian (MoG) distribution to
model the non-Gaussian distribution of independent components. Specifically, the distribution for the
i-th IC is

pŝi =
m∑
j=1

P (zi = j)P (ŝi|zi = j) =
m∑
j=1

wi,jN
(
ŝi|µi,j , σ2

i,j

)
, i = 1, 2, . . . , d,

where m is the number of Gaussian components in MoG and wij is the mixture proportions satisfying∑m
j=1 wij = 1. If we do not wish to learn wij , we can first sample zi from the categorical distribution

P (zi = j) = wij , and then use the reparameterization trick in [37] to sample from P (ŝi|zi) by
an encoder network ŝi = µi,zi + εσi,zi , where ε ∼ N (0, 1). In this way, the gradients can be
backpropagated to µij and σij . Learning wij is relatively hard because zi is discrete and thus does
not allow for backpropagation to wij . To address this problem, we adopt the Gumbel-softmax trick
[38, 39] to sample zi. Specifically, we use the following softmax function to generate one-hot z̃i:

z̃ij =
exp ((log (wij) + gj) /τ)∑m
k=1 exp ((log (wik) + gk) /τ)

, (4)

where g1, . . . , gm are i.i.d samples drawn from Gumbel (0,1), and τ is the temperature parameter that
controls the approximation accuracy of softmax to argmax. By leveraging the two tricks, we can
sample ŝi from the generator ŝi = uz̃i + εvz̃i, where u = [µi1, . . . , µim] and v = [σi1, . . . , σim],
which enables learning of all the parameters in the MoG model.
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3 Applications in Causal Discovery

3.1 Causal Discovery under Measurement Error

Measurement error (e.g., noise caused by sensors) in the observed data can lead to wrong result of
various causal discovery methods. Recently, it was proven that the causal structure is identifiable from
data with measurement error, under the assumption of linear relations and non-Gaussian noise [12].
Based on the identifiability theory in [12], we propose a causal discovery algorithm by extending
LFOICA with additional constraints.

Following [12], we use the LiNGAM model [4] to represent the causal relations on the data without
measurement error. More specifically, the causal model is X̃ = BX̃+ Ẽ, where X̃ is the vector of
the variables without measurement error, Ẽ is the vector of independent non-Gaussian noise terms,
and B is the corresponding causal adjacency matrix in which Bij is the coefficient of the direct causal
influence from X̃j to X̃i and Bii = 0 (no self-influence). In fact, X̃ is a linear transformation of the
noise term Ẽ because the linear model can be rewritten as X̃ = (I−B)−1Ẽ. Then, the model with
measurement error E can be written as

X = X̃+E = (I−B)−1Ẽ+E =
[
(I−B)−1 I

] [ Ẽ
E

]
, (5)

where X is the vector of observable variables, and E the vector of measurement error terms. Obvi-
ously, (5) is a special OCIA model with

[
(I−B)−1 I

]
as the mixing matrix. Therefore, we can

readily extend our LFOICA algorithm to estimate the causal adjacency matrix B.

3.2 Causal Discovery from Subsampled Time Series

Granger causal analysis has been shown to be sensitive to temporal frequency/resolution of time
series. If the temporal frequency is lower than the underlying causal frequency, it is generally difficult
to discover the high-frequency causal relations. Recently, it has been shown that the high-frequency
causal relations are identifiable from subsampled low-frequency time series under the linearity and
non-Gaussianity assumptions [15]. The corresponding model can also be viewed as extensions
of OICA and the model parameters are estimated in the (variational) Expectation Maximization
framework [15]. However, with the non-Gaussian ICs, e.g., MoG is used in [15], the EM algorithm is
generally intractable while the variational EM algorithm loses accuracy. To make causal discovery
from subsampled time series practically feasible, we further extend our LFOICA to discover causal
relations from such data.

Following [15], we assume that data at the original causal frequency follow a first-order vector
autoregressive process (VAR(1)):

xt = Cxt−1 + et, (6)

where xt ∈ Rn is the high frequency data and et ∈ Rn represents independent non-Gaussian noise
in the causal system. C ∈ Rn×n is the causal transition matrix at true causal frequency with Cij
representing the temporal causal influence from variable j to variable i. As done in [15], we consider
the following subsampling scheme under which the low frequency data can be obtained: for every k
consecutive data points, one is kept and the others being dropped. Then the observed subsampled
data with subsampling factor k admits the following representation [15]:

x̃t+1 = Ckx̃t + Lẽt+1, (7)

where x̃t ∈ Rn is the observed data subsampled from xt, L = [I,C,C2, ...,Ck−1], and ẽt =
(eᵀ1+tk−0, e

ᵀ
1+tk−1, ..., e

ᵀ
1+tk−(k−1))

ᵀ ∈ Rnk is a vector containing nk independent noise terms.
We are interested in estimating the transition matrix C from the subsampled data. A graphical
representation of the subsampled data is given in Figure 2(a). Apparently, (7) extends the OICA
model by considering temporal relations between observed x̃t.

To apply our LFOICA to this problem, we propose to model the conditional distribution P(x̃t+1|x̃t)
using the following model:

ˆ̃xt+1 = GC,θ(x̃t, zt+1) = Ckx̃t + L[fθ1(zt+1,1), . . . , fθnk
(zt+1,nk)]

ᵀ, (8)

5



which belongs to the broad class of conditional Generative Adversarial Nets (cGANs) [40]. We call
this extension of LFOICA as LFOICA-conditional. A graphical representation of (8) is shown in
Figure 2(b). To learn the parameters in (8), we minimize the MMD between the joint distributions of
true and generated data:

C∗,θ∗ = argmin
C,θ

M (P(x̃t, x̃t+1) ,P(GC,θ(x̃t, zt+1), x̃t+1))

= argmin
C,θ

∥∥E(x̃t,x̃t+1)∼p(x̃t,x̃t+1)[φ (x̃t)⊗ φ (x̃t+1)]

− Ex̃t∼p(x̃t),zt+1∼p(zt+1)[φ(x̃t)⊗ φ (GC,θ(zt+1))]
∥∥2, (9)

where⊗ denotes tensor product. The empirical estimate of (9) can be obtained by randomly sampling
(x̃t, x̃t+1) pairs from true data and sampling from P(zt+1). Again, we can use the mini-batch SGD
algorithm to learn the model parameters efficiently.

ẽt+1ẽt ẽt+2 ẽt+3

Ck Ck Ck

x̃t x̃t+1 x̃t+2 x̃t+3

L L L L

(a)

ẽt+1

Ck

x̃t

x̃t+1

L

Ck

L

ẽt+3

x̃t+3

x̃t+2

condition condition condition

Ck

L

ẽt+2

x̃t+2

x̃t+1

(b)

Figure 2: (a) Subsampled data with subsampling factor k. (b) LFOICA-conditional model for
subsampled data.

4 Experiment

In this section, we conduct empirical studies on both synthetic and real data to show the effectiveness
of our LFOICA algorithm and its extensions to solve causal discovery problems. We first compare the
results obtained by LFOICA and several OICA algorithms on synthetic over-complete mixtures data.
Then we apply the extensions of LFOICA mentioned in Section 3.1 and 3.2 in two causal discovery
problems using both synthetic and real data.

4.1 Recovering Mixing Matrix from Synthetic OICA Data

We compare LFOICA with several well-known OICA algorithms on synthetic OICA data.

According to [34], the mixing matrix in OICA can be estimated up to the permutation and scaling
indeterminacies (including the sign indeterminacy) of the columns. However, these indeterminacies
stop us from comparing the estimated mixing matrices by different OICA algorithms. In order
to make the comparison achievable, we need to eliminate these indetermincies. To eliminate the
permutation indetermincy, we make the non-Gaussian distribution for each synthetic IC not only
independent, but also different. With different distributions for each IC, it is convenient to permute
the columns to the same order for all the algorithms according to the recovered distribution of each
IC. We use Laplace distributions with different variance for each IC. In order to eliminate the scaling
indeterminacy, both ground-truth and estimated mixing matrix are normalized to make the L2 norm
of the first column equal to 1. With the permutation and scaling indeterminacy eliminated, we can
conveniently compare the mixing matrices obtained by different algorithms. To further avoid local
optimum, the mixing matrix is initialized by it’s true value added with noise.

Table 1 compares the mean square error (MSE) between the ground-truth mixing matrix used to
generate the data and the estimated mixing matrices by different OICA algorithms. In the table, RICA
represents reconstruction ICA [29], MFICA_Gauss and MFICA_MoG represent mean-field ICA [20]
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Table 1: MSE of the recovered mixing matrix by different methods on synthetic OICA data.

Methods p=2, d=4 p=3, d=6 p=4, d=8 p=5, d=10

RICA 2.26e-2 1.54e-2 9.03e-3 7.54e-3
MFICA_Gauss 4.54e-2 2.45e-2 4.21e-2 3.18e-2
MFICA_MoG 2.38e-2 9.17e-3 2.43e-2 1.04e-2

NG-EM 1.82e-2 6.56e-3 1.21e-2 6.34e-3
LFOICA 4.61e-3 5.95e-3 6.96e-3 5.92e-3

Table 2: MSE of the recovered causal adjacency matrix by LFOICA and NG-EM.

Methods MSE Time (seconds)

n=5 n=7 n=50 n=5 n=7 n=50

LFOICA 1.04e-3 5.79e-3 1.81e-2 75.01 76.44 1219.34
NG-EM 6.98e-3 9.85e-3 - 1826.60 4032.54 -

with the prior distribution of ICs set to the Gaussian and the mixture of Gaussians respectively. NG-
EM denotes the EM-based ICA [15]. p is the number of mixtures, and d is the number of ICs. For each
algorithm, we conduct experiments in 4 cases (with [p = 2, d = 4], [p = 3, d = 6], [p = 4, d = 8],
and [p = 5, d = 10]). Each experiment is repeated 10 times with randomly generated data and the
results are averaged. As we can see, our LFOICA achieves best result (smallest error) compared
with the others. We also compare the distribution of the recovered components by LFOICA with the
ground-truth, the result can be found in Section 2.2 of Supplementary Material.

4.2 Recovering Causal Relation from Causal Model with Measurement Error

Synthetic Data We generate data with measurement error, and the details about the generating
process can be found in section 3.1 of Supplementary Material. NG-EM [15] is a causal discovery
algorithm as an extension of EM-based OICA method. Table 2 compares the MSE between the
ground-truth causal adjacency matrix and those estimated by NG-EM and our LFOICA. The synthetic
data we used contains 5000 data points. We test 3 cases where the number of variables n is 5, 10, and
50 respectively. Each experiment is repeated 10 times with random generated data and the results
are averaged. As we can see from the table, LFOICA performs better than NG-EM, with smaller
estimation error. We also compare the time taken by the two methods with the same number of
iterations. As can be seen, NG-EM is much more time consuming than LFOICA (because EM needs
to calculate the posterior). We found that when n > 7, NG-EM fails to obtain any results because
it runs out of memory, while LFOICA can still obtain reasonable result. So no results of NG-EM
is given in the table for n = 50. These experiments show that besides the efficacy, LFOICA is
computationally much more efficient and uses less space than NG-EM as well.

Real Data We apply LFOICA to Sachs’s data [41] with 11 variables. Sachs’s data is a record of
various cellular protein concentrations under a variety of exogenous chemical inputs and, inevitably,
one can imagine that there is much measurement error in the data because of the measureing
process. Here we visualize the causal diagram estimated by LFOICA and the ground-truth in Figure
3(a) and 3(d). The estimated causal adjacency matrix by LFOICA can be found in section 3.2
of Supplementary Material. For comparison, we also visualize the causal diagrams estimated by
NG-EM and the corresponding ground-truth in Figure 3(b) and 3(e). To demonstrate the fact that
regular causal discovery algorithm cannot properly estimate the underlying causal relations under
measurement error , we further compare the result by a regular causal discovery algorithm called
Linear, Non-Gaussian Model (LiNG) [42] in Figure 3(c). Unlike LiNGAM, LiNG allows feedback
in the causal model. We calculate the precision and recall for the output of the three algorithms.
The precision are 51.22%, 48.94% and 50.00% for LFOICA, NG-EM and LiNG, and the recall
are 55.26%, 60.53% and 23.68% respectively. As we can see, LiNG fails to recover most of the
causal directions while LFOICA and NG-EM perform clearly better. This makes an important point
that measurement error can lead to misleading results by regular causal discovery algorithms, while
OICA-based algorithms such as LFOICA and NG-EM are able to produce better results. Although
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the performances of LFOICA and NG-EM are very close, it takes about 48 hours for NG-EM to
obtain the result while LFOICA takes only 142.19s, which further demonstrates the remarkable
computational efficiency of LFOICA.
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x5

x6x7

x8
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x1

(a) LFOICA
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x6x7
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(b) NG-EM
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(c) LiNG
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(d) ground-truth for LFOICA
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(e) ground-truth for NG-EM
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x11
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(f) ground-truth for LiNG

Figure 3: (a)-(c) Causal diagrams by LFOICA, NG-EM and LiNG. (d)-(f) Three ground-truth causal
diagrams which are actually the same with the red arrows representing the missing causal directions
in the output of the corresponding algorithm. The red arrows in (a)-(c) are falsely discovered causal
directions compared with ground-truth. The blue arrows in (a)-(c) are edges with converse causal
directions compared with ground-truth.

4.3 Recovering Causal Relation from Low-Resolution Time Series Data

We then consider discovery of time-delayed causal relations at the original high frequency (represented
by the VAR model) from their subsampled time series. We conduct experiments on both synthetic
and real data.

Synthetic Data Following [15], we generate synthetic time series data at the original causal
frequency using VAR(1) model described by (6). Details about how the data is generated can be
found in section 4.1 of Supplementary Material. NG-EM and NG-MF were first proposed in [15] as
extensions of OICA algorithms to discover causal relation from low-resolution data. Table 3 shows
the MSE between the ground-truth transition matrix and those estimated by LFOICA-conditional, NG-
EM, and NG-MF when number of variables n = 2. We conduct experiments when the subsampling
factor is set to k = 2, 3, 4, 5 and size of dataset T = 100 and 300. Each experiment is repeated 10
random replications and the results are averaged. As one can see from Table 3, LFOICA-conditional
achieves comparable result as NG-EM and NG-MF [15]. NG-EM has better performance when the
number of data points is small (T = 100), probably because the MMD distance measure used in
LFOICA-conditional may be inaccurate with small number of samples. When the number of data
points is larger (T = 300), LFOICA-conditional obtains the best results. We also conduct experiment
when n is larger (n = 5). The result can be found in Section 4.2 of Supplementary Material; again,
LFOICA-conditional gives more accurate results and it is computationally much more efficient.

Real Data Here we use Temperature Ozone Data [43], which corresponds to the 49th, 50th, and
51st causal-effect pairs in the database. These three temperature ozone pairs are taken at three
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Table 3: MSE of the recovered transition matrix by different methods on synthetic subsampled data.

Methods
n=2

T=100 T=300

k=2 k=3 k=4 k=5 k=2 k=3 k=4 k=5

LFOICA-conditional 7.25e-3 7.88e-3 8.45e-3 9.00e-3 1.12e-3 3.87e-3 4.07e-3 6.23e-3
NG-EM 6.50e-3 7.32e-3 1.02e-2 1.04e-2 7.24e-3 9.11e-3 9.54e-3 9.98e-3

NG-MF 9.09e-3 9.89e-3 1.24e-2 2.19e-2 8.46e-3 8.76e-3 1.01e-2 2.20e-2

different places in 2009. Each pair of data contains two variables, ozone and temperature, with
the ground-truth causal direction temperature −→ ozone. To demonstrate the result when n = 2,
we use the 50th pair as in [15]. The optimal subsampling factor k can be determined using the
method of cross-validation on the log-likelihood of the models. Here we use k = 2 according to [15].
The estimated transition matrix C =

[
0.9310 0.1295
−0.0017 0.9996

]
(the first variable is ozone and the second is

temperature in the matrix). from which we can clearly find the causal direction from temperature
to ozone. We also conduct experiments when n = 6. The result can be found in section 4.3 in
Supplementary Material.

5 Conclusion

In this paper, we proposed a Likelihood-Free Ovecomplete ICA model (LFOICA), which does not
require parametric assumptions on the distributions of the independent sources. By generating the
sources using neural networks and directly matching the generated data and real data with some
distance measure other than Kullback-Leibler divergence, LFOICA can efficiently learn the mixing
matrix via backpropagation. We further demonstrated how LFOICA can be extended to sovle a
number causal discovery problems that essentially involve confounders, such as causal discovery
from measurement error-contaminated data and low-resolution time series data. Experimental results
show that our LFOICA and its extensions enjoy accurate and efficient learning. Compared to previous
ones, the resulting causal discovery methods scale much better to rather high-dimensional problems
and open the gate to a large number of real applications.
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