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Abstract

State-of-the-art approaches to causal discovery usually assume a fixed underly-
ing causal model. However, it is often the case that causal models vary across
domains or subjects, due to possibly omitted factors that affect the quantitative
causal effects. As a typical example, causal connectivity in the brain network
has been reported to vary across individuals, with significant differences across
groups of people, such as autistics and typical controls. In this paper, we develop
a unified framework for causal discovery and mechanism-based group identifica-
tion. In particular, we propose a specific and shared causal model (SSCM), which
takes into account the variabilities of causal relations across individuals/groups
and leverages their commonalities to achieve statistically reliable estimation. The
learned SSCM gives the specific causal knowledge for each individual as well as
the general trend over the population. In addition, the estimated model directly
provides the group information of each individual. Experimental results on syn-
thetic and real-world data demonstrate the efficacy of the proposed method.

1 Introduction

Learning causal relations from observational data automatically, known as causal discovery, has
shown its increasing importance and efficacy. State-of-the-art approaches to causal discovery usu-
ally assume a fixed causal model [33, 2, 13, 31, 14, 39, 16]; that is, causal mechanisms are invariant
across instances in the data set. Under this assumption, causal relations can be identified by lever-
aging the conditional independence between observed variables [33] or the asymmetrical indepen-
dence between estimated noise term and hypothetical causes, implied by suitable functional causal
models [31, 37, 14, 39].

In real-world scenarios, it is often the case that causal relations over the considered set of variables
may vary across individuals or individual groups, and meanwhile they also share many commonal-
ities. For example, in healthcare, individuals may show different responses to the same treatment.
The varying responses may be due to some (unmeasured) factors, such as nutrition and health status.
At the same time, although the effect may be different for different individuals, a large proportion
may still show a similar trend, while others may show very distinct effects. This suggests that to
understand causal effects, it is helpful to properly divide these subjects into different groups: within
groups, the variation of the treatment effect should be small, while it may be large across groups.
When examining whether a treatment is effective and should be adopted as standard practice, one
should not only care about its effect in the general population, but also account for the response to
the treatment of each individual or each properly divided group. The brain network is another ex-
ample. There is ample evidence that heterogeneity in brain processes exists across individuals [34].
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More specifically, there exist significant differences of brain information flows in different groups
of people. For example, it has been shown that cases of autism are associated with atypical brain
connectivities [5, 17], and that the differences provide a good criterion for autism diagnosis and help
to localize neuropathology biomarkers.

To find the difference across individuals, a typical solution is to analyze data from each subject
separately and then make a comparison. However, this approach may suffer from low statistical
reliability, because the size of samples from one subject may be small while the data dimension
may be high. For example, in healthcare data, each patient may have only a few records due to
resource and time constraints, while many clinical variables are measured. Fortunately, although
individuals may not have the same causal model, they usually share many commonalities, which
can be leveraged to achieve more reliable estimation results. This reasoning is motivated by multi-
task learning [1], where multiple learning tasks are solved jointly in a principled way, thus exploiting
their commonalities while at the same time preserving useful information for each individual task.
On the other hand, if we ignore the differences and concatenate the data to estimate a causal graph,
spurious edge or incorrect causal directions may be introduced [38].

Recently, some approaches have been developed for causal discovery in the case where causal rela-
tions over the observed variables change across domains. For example, causal discovery from het-
erogeneous/nonstationary data (CD-NOD) [38, 19] concatenates data from different domains and
considers the domain index as a surrogate to characterize the variability of causal mechanisms, and
finally recovers fixed as well as varying causal relations. In the linear case, invariant causal rela-
tions are found based on invariant predictions [25], and some other methods can directly estimate
varying causal relations [18, 20, 11, 36, 15]. Despite their success on the considered problem, these
approaches do not explicitly provide the group-level information regarding which ones are similar
to each other and can be grouped together. In addition, they do not allow opposite causal directions
in different domains. The Group Iterative Multiple Model Estimation (GIMME) approach [22, 9]
tries to recover causal structure at both group and individual levels in a heuristic way. It first learns a
group model by selecting adjacencies which will improve the majority of individuals’ maps in an it-
erative forward selection procedure, and then selects individual-level adjacencies that will optimally
improve that model. As a heuristic method, GIMME does not have theoretical guarantees of the
identifiability of the learned causal structure.

Motivated by the above real-world scenarios in healthcare and neuroscience, we propose a Specific
and Shared Causal Model (SSCM), to achieve the following goals: (1) Discover a general trend
of causal relations over the population. (2) Identify specific causal relations for each individual or
each automatically determined group. (3) Exploit variations and commonalities of causal relations
to cluster individuals into different groups. In particular, for each individual, the causal model is
formalized with a linear non-Gaussian model. The learned specific and shared causal model gives
the information of the specific causal knowledge for each individual, as well as the general trend
over the population. Each individual can be grouped by directly using the learned causal model.
Moreover, the proposed causal model is theoretically identifiable under mild conditions.

2 Specific and Shared Causal Models
Suppose there are n individuals, which can be divided into q groups; we do not know which group
each individual belongs to. All individuals have the same m observed variables under investigation,
but their causal relations may be different. For the s-th individual (s = 1, · · · , n), we observe ls data
points for the m variables; the ls data points can be either independent and identically distributed
(i.i.d.) or from a stationary time series. Consider the brain connectivity problem. We have n
subjects, which are expected to be from q groups; for the s-th subject we record ls fMRI data points
over m variables. We aim to learn a shared causal model over the m variables, which is shared
across the population, and also a specific causal model for each individual. Moreover, we cluster
these n individuals into q groups by leveraging the learned causal model.

Suppose the m observed variables from the s-th individual, Xs(t) = (xs1(t), · · · , xsm(t))T, satisfy
the following generating process

xsi (t) =
∑
j∈Ps

i

bsijx
s
j(t)︸ ︷︷ ︸

instantaneous

+

pl∑
p=1

∑
j∈Ls

i

asij,px
s
j(t− p)︸ ︷︷ ︸

time-lagged

+esi (t), (1)
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for i = 1, · · · ,m, where bsij represents instantaneous causal influences from variable j to i in the
s-th subject, asij,p p-lagged causal influences, Psi the set of indices of instantaneous direct causes
of xsi , and Lsi the set of indices of lagged direct causes of xsi . Each individual has fixed causal
coefficients bsij and asij,p, while they may change across individuals. The noise term esi (t) is non-
Gaussian, representing some unmeasured factors. It is independent of xsj(t) and xsj(t − p), for all
j, p ∈ N+. Note that for i.i.d. samples, we only consider instantaneous causal relations, while for
stationary time series, we allow both instantaneous and time-lagged causal relations. Eq. (1) can be
represented in the matrix form:

Xs(t) = BsXs(t) +

pl∑
p=1

AspX
s(t− p) + Es(t), (2)

whereBs is them×m instantaneous causal adjacency matrix with entries bsij ,A
s
p them×m lagged

causal adjacency matrix with entries asij,p, and Es(t) = (es1(t), · · · , esm(t))T.

We allow that both instantaneous causal relations bsij and lagged relations asij,p change across groups
or individuals. More specifically, they vary across different groups, while there are also slight dif-
ferences across individuals within the group. Intuitively, one may estimate corresponding causal
relationships for each individual separately. However, the limited sample size from each individual
limits statistical efficiency or even makes causal discovery impossible, especially when the data di-
mension is high and the causal graph is dense. Although individuals may not have the same causal
model, they usually share many commonalities, which can be leveraged to achieve more reliable
estimation results.

x1 x2

b12

Z

ZE

e2e1

Figure 1: Graphical repre-
sentation of a two-variable
case: x1 and x2 are two
observed variables, b12 is
the instantaneous causal
strength from x1 to x2, e1

and e2 denote the noise
terms w.r.t x1 and x2, re-
spectively, Z is the group
indicator, and ZE is the in-
dicator of the MoG of e1

and e2.

To exploit both variations and commonalities across groups, as well
as across individuals, and meanwhile perform mechanism-based clus-
tering in a principled way, we propose specific and shared causal re-
lation modeling. Specifically, we take the instantaneous causal influ-
ence as a random variable bij , where bsij can be seen as an instance of
bij . To encode the variation across groups, as well as that within each
group, we assume that in each group, bij follows a Gaussian distribu-
tion, while in different groups the Gaussian distributions are different.
Therefore, we impose a mixture of Gaussians (MoG) prior on bij . Let
a q-dimensional binary vectorZ denote the index of the Gaussian com-
ponent in the MoG for bij (i.e., which group the individual belongs to)
where a particular element zk = 1 and all other elements are zero.
Then the distribution of bij can be represented as

P (bij) =

q∑
k=1

P (zk = 1)P (bij |µk,ij , σk,ij), (3)

where P (bij |µk,ij , σk,ij) = N (bij |µk,ij , σ2
k,ij) and N (·) denotes a

Gaussian distribution, P (zk = 1) = πk, and
∑q
k=1 πk = 1. Similarly,

for lagged causal influences, we have

P (aij,p) =

q∑
k=1

P (zk = 1)P (aij,p|νk,ij,p, ωk,ij,p), (4)

where P (aij,p|νk,ij,p, ωk,ij,p) = N (aij,p|νk,ij,p, ω2
k,ij,p). Different causal coefficients (aij,p and

bij , for all i, j, p) in the same group share the same P (Z).

We also allow the noise distribution varies across groups but remains the same within the group.
More specifically, we model the non-Gaussian noise in each group with an MoG, and in different
groups, the noise may have different MoG distributions. Denote by ZE the indicator of the MoG of
E, with ZE = (zE1 , · · · , zEq′), and thus in group k with zk = 1, the distribution of E is:

P (E|zk = 1) =

q′∑
k′=1

P (zEk′ = 1|zk = 1)P (E|zEk′ = 1, zk = 1), (5)

where P (E|zEk′ = 1, zk = 1) = N (E|~µEk,k′ ,ΣEk,k′), P (zEk′ = 1|zk = 1) = πEk,k′ , and∑q′

k′=1 πk,k′ = 1. Thus, P (E) =
∑q
k=1 P (E|zk = 1)P (zk = 1).
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Figure 1 shows the graphical representation of the entire model in a two-variable case, with only
instantaneous causal relations. Because in our model we consider bij as a random variable, there is
a causal edge from b12 to x2. Therefore, the specific and shared causal model is represented as

X(t) = BX(t) +

pl∑
p=1

ApX(t− p) + E(t), (6)

with
P (bij) =

∑q
k=1 πkN (bij |µk,ij , σ2

k,ij),

P (aij,p) =
∑q
k=1 πkN (aij,p|νk,ij,p, ω2

k,ij,p),

p(E) =
∑q
k=1 πk

∑q′

k′=1 π
E
k,k′N (E|~µEk,k′ ,ΣEk,k′).

(7)

In the next section, we will discuss its identifiability; the identifiability applies to both the causal
structure and model parameters.

3 Model Identifiability

Theorem 1 shows the identifiability in a specific case, where there are different groups, and causal
relations are different across groups but identical within each group.

Theorem 1. The proposed causal model in (6) and (7), including the causal structure and model
parameters, is identifiable, as n→∞, under the following conditions:

1. The parameters σk,ij = 0 and ωk,ij,p = 0, for all i, j, k, p ∈ N+.

2. The sample size of each individual ls > 2q − 1, where q is the number of groups.

3. The instantaneous causal structure for each individual is acyclic.

Note that although the instantaneous causal structure for each individual is acyclic, we allow that
across different groups, some causal directions are reversed. For instance, in the brain network,
different directions may be activated across subjects or states, which is hard to handle with traditional
methods. In addition, if there are cycles in the instantaneous causal structure, the identifiability
requires two more conditions [23]: (1) the cycles are disjoint, and (2) the causal model is stable, i.e.,
lim
k→∞

Bk = 0. As an unsupervised method, the order of the group index is not identifiable; i.e., it can

be arbitrarily permuted. We are aware that in the above result it is assumed that there is no variation
within groups. For the general case, the proof of the identifiability results does not seem immediate,
but our empirical results suggest that the causal model is also identifiable. In the following, we give
a proof sketch of Theorem 1; for detailed proofs, please refer to the supplementary material.

Proof Sketch. Condition 1 means that bij and aij,p take a degenerate Gaussian distribution in each
group; their distributions can be represented as follows:

P (bij) =
∑q
k=1 πkδµk,ij

(bij), P (aij,p) =
∑q
k=1 πkδνk,ij,p

(aij,p),

where δµk,ij
(bij) = 1, if bij = µk,ij , and 0 if otherwise; δνk,ij,p

(aij,p) = 1, if aij = νk,ij,p,
and 0 if otherwise. With condition 1, the identifiability of the proposed causal model can be seen
from the view of finite mixture models with grouped samples. The “grouped samples” means that
for each individual there are several samples, and it is known in advance that they are identically
distributed samples from the same component. Note that the identifiability of finite mixture models
with grouped samples is easier to achieve (see [35]), compared to the case where the observations
are drawn i.i.d. from a mixture model. Imagine an extreme case: if there are enough samples for
each individual, then the corresponding components can be identified from each individual directly.

We first show that under condition 1 and 2, where ls > 2q − 1 [35], the cumulative distribu-
tion function of each mixture component, as well as the mixture proportion, is identifiable; that is,
P (X|zk = 1) is identifiable, for k = 1, · · · , q, and P (Z) is identifiable. Next, thanks to the identi-
fiability of independent component analysis-based models [7, 31], we can show that in each group,
instantaneous causal relations bij and lagged causal relations aij,p are identifiable [21].
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4 Model Identification

The specific and shared causal model defined above can be regarded as a latent variable
model, with U =

{
{bij}mi,j=1, {aij,p}

}
as latent variables that we are interested in, and θ ={

{πk}, {µk,ij}, {σk,ij}, {νk,ij,p}, {ωk,ij,p}, {πEk,k′}, {~µEk,k′}, {ΣEk,k′}
}

as free parameters that need
to be estimated. In particular, we exploit a stochastic approximation expectation maximization
(SAEM) algorithm [4], combined with Gibbs sampling in the E step and EM algorithm in the M
step, for model estimation.

4.1 Parameter Estimation with SAEM

For a traditional EM algorithm, the procedure is initialized at some θ0 ∈ Θ and then iterates between
two steps, expectation (E) and maximization (M):

(E) Compute Pθr−1(U|X) and the lower bound of the log-likelihood, Q(θ, θr−1), with

Q(θ, θr−1) =

∫
Pθr−1(U|X) logPθ(X,U) dU.

(M) Compute θr = arg maxθ∈ΘQ(θ, θr−1).

In the E step, we need to compute the expectation under the posterior Pθr−1(U|X), which is in-
tractable in our case, since P (X,U) is not Gaussian. To address this issue, SAEM computes the E
step by Monte Carlo integration and uses a stochastic approximation update of the quantityQ at the
r-th iteration:

Q̃r(θ) = (1− λr)Q̃r−1(θ) + λr

M∑
j=1

1

M
logPθ(X

1:n, Ů (1:n,r,j)), (8)

where Ů indicates sampled particles of U,M is the generated number of particles, X1:n = {Xs}ns=1

and Xs = (Xs(1), · · · , Xs(ls)), Ů (1:n,r,j) = {Ů (s,r,j)}ns=1, and {λr}r≥1 is a decreasing sequence
of positive step size, with

∑
r λr = ∞ and

∑
r λ

2
r < ∞. More specifically, given the learned

parameters in the current iteration, the values of latent variables are first sampled under the posteriori
density. Then these sampled data are used to update the value of the conditional expectation of the
complete log-likelihood with stochastic approximation. The E-step is thus replaced by the following:

(E′) At each iteration, generateM particles of Ů (1:n,r,j) from Pθr−1(U|X) and compute Q̃r(θ)
according to (8). A method for sampling from Pθr−1(U|X) is introduced in the following.

Gibbs Sampling in E-step Since the dimension of latent variables U may be high, especially
when m is large, we use Gibbs sampling to sample particles Ů from the posterior distribution,
and within Gibbs sampling, we use independent doubly adaptive rejection metropolis sampling
(IA2RMS) [24].

The idea in Gibbs sampling is to generate posterior samples by sweeping through each variable to
sample from its conditional distribution with the remaining variables fixed to their current values.
At each iteration, perform

bij ∼ P (bij |X1:n,U\bij), aij,p ∼ P (aij,p|X1:n,U\aij,p), (9)

for all i, j, p ∈ N+, where U\bij and U\aij,p denote all variables in U except bij and aij,p, respec-
tively. In each sampling, we use IA2RMS. It differs from adaptive rejection metropolis sampling,
with an additional adaptive step to improve the proposal probability density function.

EM Algorithm in M-step In the M step, we compute θr = arg maxθ∈ΘQ(θ, θr−1). It is achieved
by an inner EM algorithm. See supplementary materials for detailed derivations.

The computational complexity of SAEM in each iteration is O(m2nMT0), where m is the number
of variables, n the number of subjects, M the number of sampled particles (we used M = 30),
and T0 the number of iterations needed in the Gibbs sampling for each variable, depending on the
number of rejection times and the number of supporting points that need to be calculated in the
adaptive rejection sampling.

5



4.2 Specific and Shared Causal Relation Determination

After estimating the parameters, we can derive the posterior distribution of {Ap}plp=1 and B, with

P ({Ap}, B|X1:n) ∝ P (X1:n|{Ap}, B)
∏
i,j,p P (aij,p)P (bij), (10)

where

P (X1:n|{Ap}, B) = |det(I −B)|
∑n

s=1 ls · PE((I −B)X̌0 −
∑
pApX̌p),

P (bij) =
∑q
k=1 πkN (bij |µk,ij , σ2

k,ij), P (aij,p) =
∑q
k=1 πkN (aij,p|νk,ij,p, ωk,ij,p),

PE((I −B)X̌0 −
∑
pApX̌p) =

∑q
k=1 πk

∑q′

k′=1 π
E
k,k′N

(
(I −B)X̌0 −

∑
pApX̌p|µEk,k′ ,ΣEk,k′

)
,

X̌0 = (X1
p+1:l1

, · · · ,Xn
p+1:ln

), and X̌p = (X1
1:l1−p, · · · ,X

n
1:ln−p).

Then the estimated specific causal relationships are implied by the posterior distribution of Ap and
B given the data from the s-th individual. More specifically, one may take the maximum a posterior
(MAP) as a point estimator of Ap and B:

{{Âsp}, B̂s} = arg max
{Ap},B

P ({Ap}, B|Xs). (11)

The estimated shared causal relationships are implied by the posterior distribution of Ap and B
given the data from all individuals, and its point estimator is

{{Âp}, B̂} = arg max
{Ap},B

P ({Ap}, B|X1:n). (12)

Recall that the linear non-Gaussian acyclic model (LiNGAM [31]) first estimates W = (I − B)−1

and then recovers the underlying adjacency matrix B by performing extra permutation and rescal-
ing, since W is only identified up to permutation and scale. In our model, we directly model the
causal process B, with the following advantages: (1) It is easy to add prior knowledge of causal
connections. In practice, experts may have domain knowledge about some causal edges. (2) One
can directly enforce sparsity constraints on causal adjacencies. (3) The estimation procedure directly
outputs the causal adjacency matrix, without additional steps of permutation and rescaling, which
are usually expensive.

5 Mechanism-based Clustering with Specific and Shared Causal Model

After estimating the specific and shared causal model, we can immediately cluster individuals into
q groups, by estimating P (zk = 1|Xs), for k = 1, · · · , q, where

P (zk = 1|Xs) ∝ P (Xs|zk = 1)P (zk = 1), (13)

and
P (Xs|zk = 1) =

∫ ∫
P (Xs|{Ap}, B, zk = 1)P ({Ap}, B|zk = 1) d{Ap} dB. (14)

The above integration does not have a closed form, and thus we use Monte Carlo integration. We
sample M values of {Ap} and B from P ({Ap}, B|zk = 1), and thus

P (Xs|zk = 1)

= 1
M

∑M
i=1 | det(I −B(i))|ls ·

∑q′

k′=1 πk,k′N
(
(I −B(i))Xs

p+1:ls −
∑

pApX
s
1:ls−p; ~µE

k,k′ ,Σ
E
k,k′
)
,

where A(i)
p and B(i) denote the sampled i-th value from P ({Ap}, B|zk = 1). Therefore,

P (zk = 1|Xs) ∝ πk

M

M∑
i=1

| det(I−B(i))|ls ·
q′∑

k′=1

πk,k′N
(
(I−B(i))Xs

p+1:ls−
∑
p

ApX
s
1:ls−p|µE

k,k′ ,Σ
E
k,k′
)
.

Denote by cs the group that individual s belongs to. The estimated group index for individual s is
finally given by:

ĉs = arg max
k

P (zk = 1|Xs). (15)
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6 Experimental Results

To show the efficacy of the proposed approach to specific and shared causal relation discovery and
its performance in mechanism-based clustering, we apply it to both synthetic and real-world data.

Synthetic Data We randomly generated acyclic causal structures according to the Erdos-Renyi
model [6] with parameter 0.3. We denote by G the graph structure. Each generated graph has 5
variables. To show the generality of the proposed method, we varied the number of groups with
q = 2, 3, the number of samples for each individual with ls = 20, 40, 60, and the number of
individuals with n = 60, 80, 100. Motivated from the real-world scenario that brain connectivities
may be enhanced or inhibited in individuals with mental disorders, such as autism and schizophrenia,
compared to typical controls, the parameters were set in the following way:

• In the 2-group case (q = 2), when the group index k = 1 (e.g., typical control group), we set
µk,ij ∼ U(0.8, 1) for all i, j where Gij = 1; when k = 2 (e.g., autism group), we randomly
sampled pairs of i′, j′ where Gi′j′ = 1, and set µk,i′j′ ∼ U(0, 0.2) to model the situation that
some causal edges are inhibited, and for the remaining i, j where Gij = 1, µk,ij ∼ U(0.8, 1).

• In the 3-group case (q = 3), when k = 1 or k = 2, µk,ij was the same as above; when k = 3
(e.g., schizophrenia group), we randomly sampled pairs of i′, j′ whereGi′j′ = 1, and set µ1,i′j′ ∼
U(1.8, 2) to model the situation that some causal edges are enhanced.

Other parameters were set as follows: σ2
k,ij ∼ U(0.01, 0.1), ω2

k,ij,p ∼ U(0.01, 0.1), each entry of
~µEk,k′ ∼ U(−0.6,−0.4)∪U(0.4, 0.6), each entry of ΣEk,k′ ∼ U(0.2, 0.5), πk ∼ U(0.3, 0.6), πEk,k′ ∼
U(0.3, 0.6), and

∑q
k=1 πk = 1,

∑q′

k′=1 π
E
k,k′ = 1, where U(l, u) denotes a uniform distribution

between l and u. For each setting (a particular group size q, a particular sample size for each
individual ls, and the number of individuals n), we generated 30 realizations.

For causal discovery, we identified specific causal relations by the proposed approach. We compared
it with other well-known approaches in causal discovery, including LiNGAM [31], the minimal
change method (MC) [11], the identical boundaries method (IB) [11], and GIMME [22, 9]. In
particular, we applied LiNGAM on each individual separately because it assumes a fixed causal
model. Both MC and IB leverage the minimal change principle to identify the causal structure.
GIMME is a heuristic method, which is designed to learn both specific and averaged causal relations.
Since the state-of-the-art baselines, such as LiNGAM, MC, and IB, only consider instantaneous
causal relations, we report the identification results of instantaneous causal relations. For time-
lagged causal relations, the causal direction is fixed (from past to future), and thus, it reduces to a
parameter identification problem.

In our method, we initialized the parameters in the following way: we first estimated the correlation
matrix for each individual and clustered the estimated correlation matrices with K-means clustering,
and then we used the estimated centroids of each group as the initial value of µk,ij . Other parameters
were initialized randomly. In our experiments, the number of groups was given. If there is a large
number of groups, one may use some information criteria, such as the Minimal Message Length
[8] to determine it. We denote by Ĝs the estimated causal graph for the s-th individual. It was
determined as follows: Ĝsij = 1 if |b̂sij | > 0.1, and Ĝsij = 0 if otherwise. Alternatively, one may use
Wald test to examine significance of edges, as in [31]. The simulation was conducted on a 2.9GHZ
Intel Core i5, and each trial costs about 5 minutes.

In Figure 2(Upper), we reported the F1 score to measure the accuracy of learned causal graphs.
Specifically, sub-figure (a) shows the F1 score (y-axis) for the number of groups q = 2, the sample
size of each individual ls = 20, and the number of individuals n = 60, 80, 100 (x-axis), (b) for
q = 2, n = 100, and ls = 20, 40, 60 (x-axis), (c) for q = 3, ls = 20, and n = 60, 80, 100 (x-axis),
and (d) for q = 3, n = 100, and ls = 20, 40, 60 (x-axis). We can see that our proposed method
SSCM has the best performance (the highest F1) in all cases, and the accuracy slightly increases
along with the number of individuals or the sample size per individual. MC, IB, and LiNGAM show
similar performance and are less accurate than SSCM. MC and IB perform less well because they
only take into account the first two orders of noise distributions. The performance of LiNGAM may
be affected by the small sample size. GIMME does not perform well, possibly because it uses a
greedy, heuristic strategy without theoretical guarantees.
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Figure 2: (Upper) F1 score of the recovered causal structure; (Lower) L2 distance of the estimated
causal strength.

Besides the causal structure, which only takes into account the existence of an edge, we also com-
pared the accuracy of the estimated causal strength quantitatively. It is important to compare the
estimated causal strength, because in different groups the causal strength may be enhanced or inhib-
ited while the causal structure remains the same. In particular, we compared theL2 distance between
the true causal strength and the estimation for each individual, i.e., ‖Bs − B̂s‖2. Figure 2(Lower)
reports the estimated L2 distance with the proposed method in different settings, compared to that
with LiNGAM, IB, MC, and GIMME. Our SSCM gives the most accurate estimation of the causal
strength (the smallest L2 distance). MC and IB have the second-best accuracy, while LiNGAM and
GIMME perform less well. LiNGAM fails to estimate the quantitative causal strength accurately,
although the estimated qualitative causal graph has a similar accuracy with MC and IB.
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Figure 3: Adjusted Rand Index.

Next, we performed mechanism-based clustering by directly leveraging the estimated specific and
shared causal model. Figure 3 gives the clustering performance in different settings, measured by
Adjusted Rand Index (ARI [27]). It measures the similarity between the estimated groups and the
ground truth (the higher, the more accurate). We compared our method with GIMME, LiNGAM-K-
Means, MC-K-Means, and IB-K-Means. In particular, GIMME originally estimates the group index
for each individual. LiNGAM-K-Means, MC-K-Means, and IB-K-Means use K-means to cluster
the causal relations estimated by LiNGAM, MC, and IB, respectively. We also performed paired,
one-sided Wilcoxon signed rank test on the estimated ARI between our method and each of the
remaining ones [12], across different settings. Our method significantly outperforms LiNGAM and
GIMME, with p-values less than 0.002, and achieves performance that is comparable to MC and IB.
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fMRI Hippocampus We applied our methods to the fMRI hippocampus data [26], which contains
signals from six separate brain regions: perirhinal cortex (PRC), parahippocampal cortex (PHC),
entorhinal cortex (EC), subiculum (Sub), CA1, and CA3/Dentate Gyrus (CA3) in resting states on
the same person on 84 successive days. We used anatomical connections [3, 38] as a reference. Some
biological evidence has shown that in resting-states, the effective pathways in the hippocampus may
change, depending on unmeasured intrinsic states [10]. We assume that the causal relations are fixed
on the same day, but may change across different days. With the proposed method, we found that
the causal relations between these six regions can be divided into two groups: in one group, the edge
Sub→ EC is inhibited; in the other group, EC→ CA3 and CA1→ Sub are inhibited. This result is
consistent with the finding that EC→ CA3 and CA1→ Sub are usually involved in consolidation
of a long-term memory [28], while Sub→ EC is usually implicated in working memory [29]. The
edge CA3 → CA1 is robust, existing in both groups, which coincides with the current findings in
neuroscience [32].

Table 1: Clustering performance on flow cytometry data
Methods SSCM LiNGAM IB MC GIMME Plain K-Means
ARI 0.92 0.21 0.78 0.25 0.10 0.87

Cellular Signaling Networks We applied the proposed method to multivariate flow cytometry
data, which were measured from 11 phosphorylated proteins and phospholipids [30]. A series of
stimulatory cues and inhibitory interventions were performed, leading to different conditions. With
different interventions in different conditions, the causal relations over the 11 variables may change
across them. The data from each condition mimic a group, and in each condition, we segmented
the data into subsets, with 30 samples in each subset, mimicking an individual. Table 1 reports
the clustering performance, measured by ARI, on the data from condition phorbol myristate
acetate and condition anti-CD3 + anti-CD28 + LY294002. Besides those comparisons in the
simulation, we also compared the clustering performance with plain K-means, that is, directly ap-
plying K-means to the original data. Our method achieves the best performance, with ARI 0.92.
Compared to the former condition, the causal strength of the following edges in the latter condition
are inhibited: PIP2 → PIP3, Erk → Pka, Jnk → Pkc, and the following edges are enhanced: Raf
→Mek, Mek→ Raf, Akt→ Pka, Pkc→ P38. For the estimated cellular signaling networks under
each condition, please see the supplementary material.

7 Conclusions and Future Work

In this paper, we proposed a unified framework for causal relations discovery and mechanism-based
clustering. In particular, we developed a specific and shared causal model, which takes into ac-
count the variabilities of causal relations across individuals/groups and leverages commonalities to
achieve statistically reliable estimation. Experimental results on synthetic and real-world data show
that the learned SSCM gives the specific causal knowledge for each individual as well as the gen-
eral trend over the population, and the estimated model directly provides the group information of
each individual. Our current implementation relies on maximum likelihood estimation with SAEM,
which does not generally scale well: currently we can handle 10 variables with 200 subjects within
1 hour. For the purpose of improving scalability, one line of our future work is to use likelihood-free
frameworks for parameter estimation with, e.g., adversarial learning. Moreover, we will extend our
methods to cover nonlinear causal relationships, to partially observable processes, and to data with
selection bias [40].
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