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Abstract—While coordinated control of a large population of
electric loads can provide important services to the electric grid,
situations have been observed where control of load ensembles
may lead to highly nonlinear behavior such as synchronization,
sustained oscillations and bifurcations. Synchronization of TCLs
is undesirable since it can lead to increased short-cycling of TCLs,
sudden changes in power demand and network voltage issues. In
this paper, we investigate the synchronizing tendency of thermo-
statically controlled loads (TCLs) under control strategies where
updates are broadcast periodically for coordinating TCLs. We
study the problem using a hybrid dynamical systems framework
to model both the continuous and discrete dynamics of load
ensembles. Analysis of eigenmodes of the underlying discrete-
time system provide insights into synchronizing tendencies and
rate of convergence to the synchronized state. Simulations are
provided to illustrate the theory.

Index Terms—Demand response, Modal analysis, Load control,
Synchronization, Thermostatically Controlled Loads.

I. INTRODUCTION

Coordinated control of thermostatically controlled loads
(TCLs), such as air-conditioners, water-heaters and refriger-
ators, can provide many services to power systems, such as
balancing fluctuations from renewables, reducing peak demand
and providing voltage support [1], [2]. Various coordination
techniques have been proposed in the literature including
randomized switching, temperature set-point variation, and
Transactive energy coordination. However, such controls may
sometimes lead to undesirable phenomenon such as synchro-
nization (generally refers to the loss of diversity in tempera-
tures) of TCLs and large fluctuations in aggregate demand of
loads [3]–[6]. Large oscillations in aggregate power may cause
new peaks in system demand and result in voltage violations
in distribution systems. TCL synchronization can additionally
lead to increased short-cycling of TCLs, sudden undesirable
changes in power demand, and poor performance of TCL
controllers [7]–[9]. Hence, synchronizing behaviour of TCLs
under different control schemes must be carefully studied.

A. Literature Review

Temperature synchronization of TCLs a well-known prob-
lem, especially in the context of demand response (DR) events
where applying a prolonged ‘off’ signal to TCLs causes loss
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of natural diversity in TCLs. Consequently at the end of the
DR event, new peaks and oscillations are observed [4], [10].
However, synchronization of TCL temperatures is less studied
and understood under advanced coordination mechanisms,
such as market-based coordination, set-point variation and
randomized switching, where control signals may be updated
regularly with update intervals varying from few seconds
to minutes ranges. A systematic analysis of such cases is
therefore the main focus of our work.

Since the ensemble behavior of hysteresis-based loads is
challenging to model, simulation-based studies are often un-
dertaken to show the possibility of oscillations and charac-
terize the damping due to noise and heterogeneity. In [1],
oscillatory behavior was observed in the aggregate demand
when simulating a large number of price-responsive electric
vehicles. In [5], [8], simulations show that under market-
based coordination of TCLs, a sequence of price signals can
induce synchronization and large oscillations in the aggregate
TCL demand. Synchronization and rapid cycling of TCLs
may also appear under randomized switching schemes, hence
has been studied by authors in [7]. Some recent work [11]–
[13] provide analytical results characterizing the behavior of
TCLs in the presence of noise and heterogeneity. However, the
synchronizing and oscillatory behavior observed in [8], [14]
cannot be explained fully without resorting to modeling both
the continuous-time behavior of loads as well as the discrete
events due to the control actions that occur at slower intervals.
Hence, the reset-based hybrid systems model presented in
this paper can provide intuition into complex system behavior
which is not available under simplifying modeling assumptions
that are common in the existing literature.

B. Contributions

The paper presents an analytical investigation of conditions
under which temperature synchronization of TCLs may appear
and large oscillations in the aggregate demand of a load
ensemble may emerge. For understanding oscillatory behavior
with TCLs, under a given control strategy, it is important to
understand if the control has a tendency to synchronize the
TCLs, and to what degree. We show that eigenmode analysis
can (i) guarantee if synchronization will appear, (ii) the rate at
which it would appear. To accomplish this, the dynamics of a
controlled TCL population, under a given strategy, is expressed
using a reset-based hybrid system. This allows us to study
the problem as a parameter-dependent eigenvalue problem.
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Using the hybrid representation, the aggregate autonomous
dynamics of TCLs is captured using a continuous-time model
while the control updates (e.g. price or set-point updates)
are assumed to occur at slower discrete intervals (minutes
range). Then, the eigenvalues and steady-state distributions of
a discretized system are analyzed to explain the effects of
control input variations, check if synchronization is imminent,
and find bounds on demand fluctuations. A set of indices
to automatically measure synchronization has also been pro-
posed. Then, for both priority- or market-based control and
randomized switching, we show how control update intervals
and levels of control variations can influence periodic behavior,
synchronization, and/or damping of oscillations. For a given
initial condition, modal analysis can also lead to reduced
computational needs.

The remainder of the paper is organized as follows. Sec-
tion II describes the modeling and control framework. Sec-
tion III presents modal analysis to characterize the systems.
Section IV proposed a set of indices to automatically measure
synchronization. Section V provides numerical examples. Fi-
nally, section VI concludes by summarizing our findings and
discussing their implications.

II. MODELING TCL DYNAMICS AS A RESET-BASED
HYBRID SYSTEM

A. Individual TCL model

The temperature, θ(t) (in ◦C) dynamics of TCLs can be
modeled using a first-order differential equation [3], [10], [15],

θ̇(t) =
1

CR

(
θamb − θ(t)−m(t)PR

)
(1)

where C is the thermal capacitance (kWh/◦C), R is the thermal
resistance (◦C/kW), P is the energy transfer rate which is
positive for cooling TCLs (e.g. air-conditioners), θamb (◦C) is
the ambient temperature external to the conditioned space. The
on/off state m(t) is governed by the thermostatic switching law
with a dead-band, δdb (◦C), around a user-specified set-point,
θset (◦C). Then, θmin = θset − δdb/2, θmax = θset + δdb/2, and

m(t) =


0, if θ(t) ≤ θmin

1, if θ(t) ≥ θmax

m(t−), otherwise,
(2)

where t− represents the limit from below, since m(t) is
discontinuous at the switching times [16].

B. TCL Population Model

Following the work of [17]–[20], the autonomous dynamics
of a TCL population can be described using an LTI sys-
tem representation. The temperature range [θmin, θmin] is first
discretized using N bins, where the bin width is given by
∆bw = δdb

N . To capture both ON and OFF states, let bins
i = 1, ..., N represent the OFF states and i = N+1, ..., 2N the
ON states, as shown in Fig. 1. Let xi(t) represent the fraction
of the total population of TCLs lying in bin i at time t. This
implies xi(t) ≥ 0 and

∑2N
i=1 xi(t) = 1 for all time t ≥ 0. For

Fig. 1: Bin-based aggregate model for a TCL population. The
influence of market-based strategies can be captured using bclr,
and the influence of randomized switchings can be captured
using f on or f off.

convenience, we will use
∑2N
i=1 xi(t) = 1ᵀ

2Nx(t) where 12N

is the 2N -length vector of all ones.
The evolution of x(t) can be described by,

ẋ(t) = Ax(t), (3)

where the elements of matrix A can be obtained by consid-
ering the portion of the population of TCLs that is entering
and leaving each bin [17]–[19]. Consider α0 and α1 to be
the average OFF and ON rates of cooling TCLs, respectively.
From (1), these rates can be approximated by [17], [19],

α0 =
1

CR

(
θamb − θset), (4)

α1 =
1

CR

(
θamb − θset − PR

)
. (5)

Then, for bins 2 ≤ i ≤ N and N + 2 ≤ i ≤ 2N we obtain,

ẋi(t) =
α0

∆bw

(
xi−1(t)− xi(t)

)
, 2 ≤ i ≤ N, (6a)

ẋi(t) =
α1

∆bw

(
− xi−1(t) + xi(t)

)
, N + 2 ≤ i ≤ 2N, (6b)

and for the bins, i = 1 and i = N + 1, at the θmin and θmax

boundaries, respectively, we obtain,

ẋ1(t) = − α0

∆bwx1(t)− α1

∆bwx2N (t); (7a)

ẋN+1(t) = − α0

∆bwxN (t) +
α1

∆bwxN+1(t). (7b)

The coefficients in (6),(7) give the elements of A.
Because (3) is a linear time-invariant (LTI) system, its

solution can be written explicitly as,

x(t+ τ) = exp(Aτ)x(t).

For subsequent development of a discrete-time equivalent of
(3), it is convenient to define,

A = exp(A). (8)

By construction, the matrix A is the transpose of a Markov
transition matrix [21].

The discrete-time A-matrix can also be obtained from
Monte Carlo simulation of (1)-(2) [21]. Techniques to incor-
porate noise and heterogeneity are presented in [12], [22].
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C. Controlled Dynamics as a Reset-based Hybrid System
In earlier work on TCL control design, state space models

have assumed control action is applied at every time-step.
However, the control updates typically occur at relatively slow
discrete intervals, whereas the aggregate dynamics of TCLs are
more accurately captured using continuous-time models. This
time-scale separation of the continuous/discrete dynamics of
TCLs coordinated by switching signals can be expressed as:

ẋ(t) = Ax(t), (continuous dynamics) (9a)
x(t) = B(t)x(t−), t = τ, 2τ, ... (discrete switching) (9b)
y(t) = Cx(t). (output) (9c)

In (9b), it is assumed that discrete switching occurs only at
t = τ, 2τ, ..., where τ is the switching interval. The effect of
control action is captured by the reset matrix B(t), with the
entries of B(t) dependent on the particular control strategy.
Sections II-D and II-E develop B-matrices for randomized
switching, and for market- and priority-based strategies.

With A time-invariant and A its discrete-time equivalent,
the evolution of x(t) from one reset event to the next is given
by,

x(t+ τ) = B(t)Aτx(t), t = 0, τ, 2τ, .... (10)

This can be expressed in discrete-time as,

x+
(
(k + 1)τ

)
= xk+1 = BkA

τxk, k = 0, 1, 2, ..., (11)

where k indexes the discrete intervals and x+ represents the
TCL distribution immediately after a reset.

The hybrid model (9a)-(9c) is sufficiently general to support
a variety of control strategies, such as randomized switching,
market-based coordination and set-point variation. The reset
map and switching interval depends on the particular strategy.

D. Randomized Switching
Sending probabilistic switching signals to increase/decrease

power consumption has frequently been considered in TCL
literature [9], [16], [20], [21]. Consider control logic where
bins receive a command signal to switch the status of a fixed
fraction of the bin’s TCLs (during dispatch each TCL can
generate a random number and turn on/off to meet this signal
[9], [21]). For a power increase, where the fraction f on of the
bin’s TCLs are switched from off to on, the reset equations
can be written,

x+i = (1− f on)x−i , 1 ≤ i ≤ N, (12a)

x+i = x−i + f onx−2N−i+1, (N + 1) ≤ i ≤ 2N, (12b)

where the superscripts − and + refer to the value taken by the
state just prior to and just after the reset event, respectively.
For a power decrease, where the fraction f off of TCLs within
a bin are switched from on to off, the reset equations are,

x+i = x−i + f offx−2N−i+1, 1 ≤ i ≤ N, (13a)

x+i = (1− f off)x−i , (N + 1) ≤ i ≤ 2N. (13b)

The reset matrices Bon associated f on and Boff associated f off

can be readily obtained from the above. The column sums for
Bon and Boff equal 1 to ensure probability conservation.

E. Market- or Priority-based Scheme
As detailed in [6], market-based or transactive techniques

for coordinating TCLs can be incorporated in the aggregate
model using reset equations. Assume TCLs that reach higher
temperatures are willing to pay increasingly higher prices to
turn on than those already at cooler temperatures [6], [23].
Upon broadcast of a price signal, TCLs with offers above the
market price will clear. In the bin model, this means (i) TCL
price offers increase from lower temperature bins to higher
bins, and (ii) on/off bins at the same temperature have the same
offer price, hence are cleared simultaneously. A clearing price
πclr(t) thus determines which bins are cleared (i.e. allowed to
turn ON to consume power). Note that the above coordination
mechanism is conceptually similar to the ‘priority-stacking’
scheme [2], [21] where bins near the edges get progressively
higher priority to switch on/off depending on whether they are
near the upper/lower limit of the dead-band range.

Assume each bin i has a corresponding price level πi.
Assume a market-clearing price πclr, with bclr ∈ {1, .., N}
being the clearing bin index associated with πclr. Then, for
i ∈ {bclr + 1, .., N}, the price πi ≥ πclr, so all such bins get
cleared (see Fig. 1). On the other hand, bins i ∈ {1, .., bclr}
do not get cleared. The ON bins corresponding to each OFF
bin behave similarly because πi = π2N−i+1 for i = 1, .., N .
Hence, the reset equations can be written,

x+i = x−i + x−2N−i+1, 1 ≤ i ≤ bclr, (14a)

x+i = 0, (bclr + 1) ≤ i ≤ N, (14b)

x+i = x−i + x−2N−i+1, N + 1 ≤ i ≤ (2N − bclr), (14c)

x+i = 0, (2N − bclr + 1) ≤ i ≤ 2N. (14d)

Equations (14) form the B-matrix for this control scheme.
The column sum of B is always equal to 1 to ensure probabil-
ity conservation. In a market-based coordination framework,
the clearing prices πclr(t) can vary with time t. Different
clearing prices πclr(t) result in different clearing bins bclr(t)
The corresponding B(t) follows from (14).

In the following section, we develop an eigenvalue-based
approach to analyze how system behavior changes as TCL
parameters change and under different control strategies.

III. ANALYSIS USING EIGENMODES

A. Modal Decomposition
Modal analysis of A = BAτ can be used to explore the

evolution of TCLs under periodic control. Assume matrix A
is diagonalizable, with eigenvalues λ1, λ2, ..., λ2N and corre-
sponding right eigenvectors v1, v2, ..., v2N , i.e. Avi = λivi.
Let V = [v1 v2 ... v2N ].

Matrix A is the transpose of a Markov transition matrix
and B is structured to ensure 1ᵀ

2Nx = 1. Therefore, A is
also the transpose of a transition matrix. Accordingly, it has
one eigenvalue at 1 (its largest) [24]. The eigenvalues can be
ordered 1 = λ1 ≥ |λ2| ≥ .... ≥ |λ2N |.

Let c = V −1x0. Then it is straightforward to show that the
initial condition x0 can be expressed as,

x0 = c1v1 + ...+ c2Nv2N . (15)
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Fig. 2: Mode shapes for four modes.

Therefore,

xk = Akx0 =
2N∑
i=1

ciλ
k
i vi. (16)

Hence, xk can be decomposed into the weighted sum of
the temporal evolution of each eigenmode. The eigenmodes
may involve complex ci, λi, vi depending on the structure
of A. Such complex valued eigenmodes contribute to xk in
conjunction with their complex conjugate, which must also
be an eigenmode because A is a real-valued matrix. The
contribution to xk from this pair of complex conjugate modes
can be expressed as,

xk = 2|ci||λi|k|vi| cos
(
k × ∠λi + ∠ci + ∠vi

)
, (17)

where |vi| and ∠vi refer to the vector that satisfy vi = |vi|∠vi
on an element-by-element basis.

Because λ1 = 1, the first mode c1v1 describes the steady-
state distribution of TCLs across the bins, with c11

ᵀ
2Nv1 = 1.

Furthermore, due to the structure of A, all other modes i =
2, ..., 2N satisfy 1ᵀ

2Nvi = 0. For modes with |λi| < 1, it can be
seen from (16) and (17) that the modal contribution will decay
to zero. It is possible for λ2 = −1, or more generally |λi| = 1
for i ≥ 2 (though this is rare beyond i = 2). Such modes
will not decay, but rather introduce an undamped oscillation
that adds to the steady-state mode c1v1. It is also interesting
to note that if x0 − c1v1 lies on a real eigenvector vi then
the deviation from steady-state c1v1 will always lie on vi. For
complex eigenvectors, if x0−c1v1 lies on the plane spanned by
the vectors Re(vi) and Im(vi) then the deviation from steady-
state will always lie on that plane.

Mode shapes (eigenvectors) of the first four mode for
a typical TCL-derived A-matrix are shown in Fig. 2. As
mentioned previously, the first mode describes the steady-
state distribution while the other modes influence the transient
behavior. For the two complex modes, 2 and 4, the real portion
has been plotted.

B. Convergence Rate Analysis

Synchronization of TCLs is dependent upon particular co-
ordination strategies. The steady-state distribution of TCLs is

2 4 6 8 10 12 14 16 18 20

Time period, k
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|
2
| increasing from 0.1 to 1

Fig. 3: Eigenvalue convergence, considering λ2 from 0.1 to 1
and plotting λk2 , k = 1, ..., 20.

described by the eigenvector v1, the first mode of A, so it
determines whether or not synchronization will occur. The
convergence rate to a synchronized state is directly related
to the eigenvalues of A.

From (16),(17), if |λ2| < 1, Akx0 → c1v1 since λk2 → 0 as
k → ∞. Thus, xk converges to a multiple of eigenvector v1
such that the elements of c1v1 sum to 1. The convergence is
geometric with ratio |λ2|

|λ1| = |λ2|. This is illustrated in Fig. 3
for a range of |λ2| values and evolution in k. In certain cases,
λ2 = −1 (as will be shown in Section V). Then, xk will
oscillate as noted earlier.

After k time steps, let |λ2|k = ε, where ε is small. Taking
logs of both sides gives,

k(ε) =
⌈ log(ε)

log(|λ2|)

⌉
. (18)

For example, with ε = 10−5 and λ2 = 0.5, we obtain k = 17.
With λ2 = 0.2 we obtain k = 8. Thus, the contribution of λ2
vanishes in a limited number of time-steps.

More generally, since A can be shown to be the transpose
of a Markov transition matrix, the convergence behavior can
also be studied using the spectral gap γ∗ of matrix A, where
γ∗ = 1− |λ2|. Large gaps indicate faster convergence [24].

C. Bounds on Variations in Aggregate Power

Eigenmode analysis can also be used to obtain bounds on
aggregate power variations for controlled TCL ensembles.

1) Fixed Reset Conditions: Assume B is fixed and dy-
namics are governed by A = BAτ . The steady-state when
observed just after the reset, denoted x+ss, is given by v1 of A.
The steady-state observed just prior to the reset x−ss is related
through x+ss = Bx−ss. Thus, at resets (when the control update
is applied), the absolute change in power consumed by TCLs
can be obtained using,

|y+ − y−| = |C(x+ss − x−ss)| (19a)
= |C(B − I)x−ss|. (19b)

2) Variable Reset Conditions: Variable reset conditions can
also be considered. For example, it is straightforward to extend
to the case of periodic reset signals where two reset maps B1
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and B2 are applied alternatively during reset events. In this
case, the dynamics can be written in either of the two forms,

xk+1 = B1A
τB2A

τxk, k = 0, 1, 2, ..., (20a)
xk+1 = B2A

τB1A
τxk, k = 0, 1, 2, .... (20b)

The steady-state distribution corresponding to x+ss is given
by the eigenvector v1 of B1A

τB2A
τ or B2A

τB1A
τ . Know-

ing x−ss and x+ss, the change in aggregate power consumed
can be computed without resorting to simulation. The above
technique can also be extended to study other combinations
of control sequences.

IV. SYNCHRONIZATION INDEX

While it is intuitive to detect full or partial synchronization
of TCL temperature distributions by visual inspection, it can
be time-consuming and does not provide a quantifiable result.
Availability of standard and easy to interpret indices would
allow systematic measurement of the level of synchronization
in a given TCL distribution, and indicate if mitigating actions
should to be taken. For example, it may be appropriate to
implement feedback or penalty terms to suppress synchro-
nization. In order to propose such measures, recall that a bin
represents a temperature range and its associated on/off state.
The temperature distribution xθ over the bin space can be
reconstructed using,

xθi = xi + x2N−i+1, i = 1, ..., N, (21)

because i and 2N − i + 1, i = 1, ..., N represent the same
temperature range. Using xθ, the following synchronization
indices are proposed:

1) Maximum Fraction of TCLs in a Bin: Given a distribu-
tion xθ over N bins, S1 ∈ [0 1] is given by,

S1 = max{xθi , i = 1, ..., N}. (22)

2) Bin Spread: Define Xε as a set of indices of bins
containing TCL fractions above a specified threshold ε. Hence,

Xε = {i : xθi ≥ ε, i = 1, ..., N}. (23)

Then, a measure for bin spread is given by the cardinality of
Xε, i.e. |Xε|. Normalizing gives,

S2 = 1− |Xε|
N

, (24)

with S2 ∈ [0 1]. Small values of S2 indicates the distribution is
widely spread over the temperature bins, whereas larger values
indicate synchronization.

3) Bin Range: Note however that S2 as a measure of the
bin spread is still not indicative of whether fractions of TCLs
are lying in adjacent bins or are spread apart. Hence, range
the of Xε should also be considered,

S3 = 1− maxXε −minXε
N

, (25)

giving S3 ∈ [0 1] Smaller values of S3 imply TCL distribu-
tions are more widely spread over bins, whereas larger values
indicate synchronization.

4) Combined Metric: Each of the indices 0 ≤ S1, S2, S3 ≤
1 can be measured and reported separately. However, since all
are normalized quantities, consider the combined indices,

Ŝ = S1S2S3. (26)

or alternatively,

St =
ω1S1 + ω2S2 + ω3S3

ω1 + ω2 + ω3
, (27)

where the ωi are user-defined weights. While more sophisti-
cated measures can also be considered, this paper will consider
the listed three.

These proposed indices, together with convergence rates
from eigenvalues and spectral gaps, provide detailed insights
into whether a given control strategy will induce synchroniza-
tion, to what degree and at what rate.

V. SIMULATIONS

A. Influence of Parameters on System Behavior

Consider N = 200. To obtain the A-matrix, the average
heating and cooling rates in (4) and (5) are computed using
P = 14 kW, R = 2◦C/kW, C = 10 kWh/◦C, θset = 20◦C and
θamb = 32◦C [3] (unless specified otherwise). A 2◦C dead-
band is assumed. Then, A matrix is obtained from A using
(8). Matrix B for market-based switching is calculated using
bclr and for randomized switching (RS) using f on and f off.

To study how system behaviour changes under market-based
switching with changes in TCL parameters, three cases are
considered,
(a) τ = 30 mins and bclr = 0.8N ,
(b) τ = 10 mins and bclr = 0.8N ,
(c) τ = 30 mins and bclr = 0.5N .

For case (a)-(c), we vary θamb from 21 to 40◦C. For each
θamb, we compute α0 and α1, construct the A-matrix, and
apply B to obtain A (see (11)). For case (a), the changes in
real and imaginary parts of the eigenvalues are shown in Fig. 4
and Fig. 7, as a function of |α0/α1| (which changes due to
changing θamb). Similarly, for case (b), the changes in real
and imaginary parts of the eigenvalues are shown in Fig. 5
and Fig. 9, and for case (c), in Fig. 6 and Fig. 9.

In case (a), we observe that as |α0/α1| increases, an
eigenvalue of value −1 emerges. For these parameter values,
if this second mode is excited by the initial conditions x0,
it will introduce sustained oscillations about the steady-state
distribution c1v1 described by the first mode. Only when the
initial conditions x0 do not have a component in the direction
of the eigenvector v2 of the second mode, i.e. c2 = 0 in
(15), will the bins converge to the steady-state distribution.
From Figs. 7-9, we also notice how the imaginary parts of the
eigenvalues disappear when |α0/α1| approaches 1, indicating
structural changes in the system behavior.

Fig. 13 shows the values of the synchronization index Ŝ
(given by (26)) for cases (a)-(c). Additionally, for case (a),
Fig. 14 shows the individual indices (S1, S2, S3). In case (a),
with τ = 30 mins, we observe that Ŝ generally increased with
increasing |α0/α1|. While S1, which indicates the maximum

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020



0 0.5 1 1.5 2 2.5

|
0
/

1
|

-1

-0.5

0

0.5

1

1.5
re

a
l(

)

2
 -1

Fig. 4: Real parts of eigenvalues as a
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Fig. 5: Real parts of eigenvalues as a
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Fig. 10: Steady-state distribution as a
function of |α0/α1| in case (a).

Fig. 11: Steady-state distribution as a
function of |α0/α1| in case (b).

Fig. 12: Steady-state distribution as a
function of |α0/α1| in case (c).
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Fig. 13: Comparing the synchronization index values for cases
(a)-(c) under market-based coordination.

TCL concentration in a single bin, did not vary considerably,
the values of S2 and S3, indicating the bin spread and bin
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Fig. 14: Individual synchronization index values (S1, S2, S3)
for case (a) under market-based coordination.

ranges, showed some increase as |α0/α1| increased. From
Figs. 13 and 14, it is confirmed that Ŝ effectively captures
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Fig. 15: Comparing the synchronization index values for cases
(i)-(iii) under randomized switching signals.

the behaviour of the individual indices without being overly
sensitive to changes in any single index. These indices thus
enable us to rapidly quantify synchronizing behaviour in
TCL ensembles without resorting to visual inspections of the
steady-state distributions (Figs. 10-12).

In cases (b) and (c), |λi| < 1 for ∀i > 1. Hence, unlike in
case (a), xk will always converge to the stead-state given by
c1λ1. From Fig. 13, observe that Ŝ remains relatively constant.
This is because with τ = 10 mins, the TCL distributions
remain synchronized around bclr (also see Fig. 11). In case
(c), however, with τ = 30 mins and bclr = 0.5N , TCLs
can propagate further away from bclr, hence the value of Ŝ
remained low (see Fig. 12). While in case (a), τ was also
30 mins, bclr was close to the temperature boundary, hence
temperatures did not propagate further away from bclr since
TCLs reaching the boundary within τ switched their on/off
states. Finally, it was observed that for case (b), the peak
value of the spectral radius (1 − |λ2|) was at 0.35 (when
|α0/α1| = 1), much higher than 0.13 observed for cases
(a) and (c), suggesting faster convergence to the synchronized
state for case (b).

Comparing cases (a)-(c), it can be summarized that when bclr

lay near the temperature boundaries and when τ was relatively
small, the tendency to synchronize remained relatively higher.
These simulations thus show how the synchronizing behaviour
of TCL ensembles under market-clearing can be efficiently
captured by analyzing the impact of varying bclr, τ and |α0/α1|
using the proposed eigenmode based techniques.

Next, we performed a similar analysis for randomized
switching (RS) based coordination. A fraction of TCLs in
each bin are asked to periodically increase and subsequently
decrease power consumption, where each increase or decrease
phase lasts for T minutes. Three cases are considered,

(i) f on = 0.001, f off = 0.001, T = 5 mins,

(ii) f on = 0.001, f off = 0.001, T = 10 mins,

(iii) f on = 0.0001, f off = 0.0001, T = 5 mins.

First, Bon is constructed using f on and Boff using
f off. Then, the evolution of xk is captured by A =
(BonAτ )60T (BoffAτ )60T and A = (BoffAτ )60T (BonAτ )60T ,
where τ is set to 1 sec. The resulting synchronization indices
are shown in Fig. 15. The indices were much higher for
small values of |α0/α1|. This suggests, when θamb is low, α0
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Fig. 16: At time period k = 5, actual TCL distribution
(dashed line) vs. approximate distributions obtained using only
2 modes (solid line), only 1 mode (dotted line).
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Fig. 17: Evolution in modal weights at discrete time intervals.

is much smaller than α1 (cooling rate is much faster since
heating is slow due to low ambient temperature). Thus, under
a symmetric and fixed up-down power request signal, the
TCL temperatures may become highly synchronized, under
which TCLs would undergo fast cycling. In case (ii), with
longer time duration of T = 10 mins, this was even more
severe. The synchronization level was slightly lower in case
(iii) due to f on and f off being smaller. Finally, given the same
|α0/α1| values, the value of the spectral radius was highest
(around 0.33) in case (ii), suggesting faster convergence to the
synchronized state than in cases (i) or (iii). While we showed
the effectiveness of the eigenmode analysis technique for a
simplistic case of RS-strategy, the approach can be extended
to study and identify critical cases pertaining to more advanced
controllers [7], [21].

B. Dominant Modes and Convergence

In (16), with eigenvalues ordered according to their mag-
nitude, the first few modes are often referred to as the
dominant modes. We chose x0 to be uniformly distributed
over 2N = 100 bins. Then, we simulated to obtain xk at
k = 0, 1, ..., 5. In Figure 16, we compared the actual xk against
different number of modes summed to give approximations
at k = 5. In this case, just the first and second modes were
sufficient to obtain almost the exact distribution, whereas using
just the first mode resulted in some error. The evolution in the
i-th mode’s weights, i.e. wi = ciλ

k
i is shown in Fig. 17 for the

first 6 modes, with λ1 = 1 and λ2 = −0.87. We see that the
evolution in the 2nd mode’s weight is oscillatory and does not
die out rapidly, hence is important to consider. Additionally,
since many of the eigenvalues have negligible values, their
contributions are also negligible. Therefore, modal analysis
and modal coordinates may provide significant computational
advantages compared to simulating TCL dynamics using
2N × 2N matrices. This is a topic of future research.
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C. Bounds on Aggregate Power Consumed

For a variety of control signals, the variations in output
power can also be found using the eigenmodes. Assume TCLs
are coordinated based on price signals in a double-auction
market [6]. We applied periodic step changes in price signals,
by varying bclr, and observed different forms of oscillations in
aggregate demand. Fig. 18 shows how a periodic price signal
with small step changes induced large amplitude oscillations
in the aggregate demand. The variations at resets matched the
predicted value of 0.83 obtained via the method described
in section III-C. Similarly, more complex signals can be
constructed and variations in aggregate TCL power (at resets)
can be obtained.
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Fig. 18: Large fluctuations in demand induced by a periodic
price signal (mapped to bclr).

VI. CONCLUSIONS

This paper presents an analytical framework to explore
conditions under which temperature synchronization of TCLs
may appear and large oscillations in aggregate demand of
load ensembles may emerge. We show that eigen-structure
analysis can (i) identify if synchronization will appear, and (ii)
determine the rate at which it would appear. To accomplish
this, the dynamics of a controlled TCL population, under
a given strategy, is expressed using a reset-based hybrid
system. This allows us to study behavior as a parameter-
dependent eigenvalue problem. The eigenvalues and steady-
state distributions of the discretized system explain whether the
control will induce synchronization. Under priority- or market-
based control and randomized switching, we showed that
control parameters and update intervals can influence periodic
behavior, synchronization, and/or damping of oscillations. The
spectral gap of the transition matrix was used to estimate the
convergence rate. The insights developed here can be used to
quickly assess benefits and limitations of control techniques.
Future work can involve comparing other control techniques
and considering additional operational constraints such as
lockouts.
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Analysis of Heterogeneous Thermostatically Controlled Load Popula-
tions Using Partial Differential Equations,” Journal of Dynamic Systems,
Measurement, and Control, vol. 137, no. 10, 07 2015.

[13] D. Docimo and H. Fathy, “Demand response using heterogeneous
thermostatically controlled loads: Characterization of aggregate power
dynamics,” Journal of Dynamic Systems, Measurement and Control, vol.
139, no. 10, pp. 1–9, 2017.

[14] S. Kundu and I. A. Hiskens, “Nonlinear dynamics of hysteresis-based
load controls,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 5419 –
5425, 2014, 19th IFAC World Congress.

[15] S. Ihara and F. C. Schweppe, “Physically based modeling of cold load
pickup,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-
100, no. 9, pp. 4142–4150, 1981.

[16] L. C. Totu, R. Wisniewski, and J. Leth, “Demand response of a
tcl population using switching-rate actuation,” IEEE Transactions on
Control Systems Technology, vol. 25, no. 5, pp. 1537–1551, 9 2017.

[17] S. Bashash and H. K. Fathy, “Modeling and control insights into
demand-side energy management through setpoint control of thermo-
static loads,” in 2011 American Control Conference, 2011.

[18] ——, “Modeling and control of aggregate air conditioning loads for
robust renewable power management,” IEEE Transactions on Control
Systems Technology, vol. 21, no. 4, pp. 1318–1327, 2013.

[19] S. Kundu, N. Sinitsyn, S. Backhaus, and I. Hiskens, “Modeling and
Control of Thermostatically Controlled Loads,” in 17th Power Systems
Computation Conference, 2011.

[20] S. Koch, J. L. Mathieu, and D. S. Callaway, “Modeling and Control of
Aggregated Heterogeneous Thermostatically Controlled Loads for An-
cillary Services,” in Proceedings of the 17th Power Systems Computation
Conference, 2011.

[21] J. L. Mathieu, S. Koch, and D. S. Callaway, “State estimation and
control of electric loads to manage real-time energy imbalance,” IEEE
Transactions on Power Systems, vol. 28, no. 1, pp. 430–440, 2013.

[22] M. S. Nazir and I. A. Hiskens, “Noise and Parameter Heterogeneity in
Aggregate Models of Thermostatically Controlled Loads,” in Proceed-
ings of the 20th IFAC World Congress, Toulouse, 2017.

[23] J. C. Fuller, K. P. Schneider, and D. Chassin, “Analysis of residential
demand response and double-auction markets,” in IEEE Power and
Energy Society General Meeting, 2011, pp. 1–7.

[24] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov Chains and Mixing
Times. Providence, RI: American Mathematical Society, 2009.

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020


