
Efficient Sparse-Matrix Multi-Vector Product on GPUs
Changwan Hong1, Aravind Sukumaran-Rajam1, Bortik Bandyopadhyay1, Jinsung Kim1,

Süreyya Emre Kurt1, Israt Nisa1, Shivani Sabhlok1, Ümit V. Çatalyürek2, Srinivasan Parthasarathy1,
P. Sadayappan1,

1 The Ohio State University, USA, { hong.589, sukumaranrajam.1, bandyopadhyay.14,
kim.4232, kurt.29, nisa.1, shivanisabhlok.1, parthasarathy.2, sadayappan.1 }@osu.edu

2 Georgia Institute of Technology, USA, umit@gatech.edu
ABSTRACT
SparseMatrix-Vector (SpMV) and SparseMatrix-Multivector (SpMM)
products are key kernels for computational science and data sci-
ence. While GPUs offer significantly higher peak performance and
memory bandwidth than multicore CPUs, achieving high perfor-
mance on sparse computations on GPUs is very challenging. A
tremendous amount of recent research has focused on various GPU
implementations of the SpMV kernel. But the multi-vector SpMM
kernel has received much less attention. In this paper, we present
an in-depth analysis to contrast SpMV and SpMM, and develop
a new sparse-matrix representation and computation approach
suited to achieving high data-movement efficiency and effective
GPU parallelization of SpMM. Experimental evaluation using the
entire SuiteSparse matrix suite demonstrates significant perfor-
mance improvement over existing SpMM implementations from
vendor libraries.

CCS CONCEPTS
• Computing methodologies → Shared memory algorithms; •
Computer systems organization → Single instruction, multiple
data;

KEYWORDS
Sparse Matrix-Vector Multiplication, Sparse Matrix-Matrix Multi-
plication, Sparse Matrix Multi-Vector Multiplication, GPU

ACM Reference Format:
Changwan Hong1, Aravind Sukumaran-Rajam1, Bortik Bandyopadhyay1,
Jinsung Kim1, Süreyya Emre Kurt1, Israt Nisa1, Shivani Sabhlok1, Ümit
V. Çatalyürek2, Srinivasan Parthasarathy1, P. Sadayappan1, 1 The Ohio
State University, USA, { hong.589, sukumaranrajam.1, bandyopadhyay.14,
kim.4232, kurt.29, nisa.1, shivanisabhlok.1, parthasarathy.2, sadayappan.1
}@osu.edu 2 Georgia Institute of Technology, USA, umit@gatech.edu . 2018.
Efficient Sparse-Matrix Multi-Vector Product on GPUs. In HPDC ’18: The
27th International Symposium on High-Performance Parallel and Distributed
Computing, June 11–15, 2018, Tempe, AZ, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3208040.3208062

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HPDC ’18, June 11–15, 2018, Tempe, AZ, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5785-2/18/06. . . $15.00
https://doi.org/10.1145/3208040.3208062

1 INTRODUCTION
Sparse Matrix Vector (SpMV) multiplication and Sparse Matrix
Multi-vector (SpMM) multiplication (also called SpMDM - Sparse
Matrix Dense Matrix multiplication) are key kernels used in a range
of applications. SpMV computes the product of a sparse matrix and
a (dense) vector. Although SpMM may be viewed as a set of inde-
pendent SpMV operations on different dense vectors, and therefore
be computed by repeatedly using an SpMV kernel, it is very benefi-
cial in terms of achievable performance to implement a separate
SpMM kernel, because of the significantly greater data reuse that
can be exploited by doing so. However, as shown in the next section
using Roofline [35] performance bounds, the achieved performance
with the Nvidia cuSPARSE library SpMM implementation achieves
significantly lower fraction of roofline limits when compared to the
cuSPARSE SpMV implementation.

In this paper, we seek to answer the following question: Is it
feasible to achieve a high fraction of the roofline upper-bound for
SpMM on GPUs, just as has already been accomplished by for SpMV
[22, 25, 31] on GPUs?

We undertake a systematic analysis of the SpMM problem and
develop a new implementation that is demonstrated to be signifi-
cantly faster than other state-of-the-art GPU implementations of
SpMM – in cuSPARSE [1], MAGMA [3], and CUSP [13]. A key
observation that drives the new implementation is that non-zeros
in sparse matrices drawn from a variety of application domains are
not uniformly randomly spread over the row/column index space,
but exhibit non-uniform clustering of elements. We exploit this
property to partition sparse-matrix elements into two groups: one
group containing clustered segments and the other group holding
the remaining scattered elements. Different processing strategies
are used for the two partitions, with much higher data reuse and
lower overheads achieved for the clustered partition.

2 BACKGROUND AND RELATED WORK
Graphics Processing Units (GPUs) are very attractive for sparse
matrix computations due to their high memory bandwidth and
computing power. However, achieving high performance is non-
trivial due to the irregular data access pattern. A number of re-
cent efforts have addressed the development of efficient SpMV for
GPUs [4, 7, 12, 21, 22, 25, 31, 36, 39]. Like SpMV, SpMM is also a
key kernel in sparse computations in computational science and
machine-learning/data-science, but very few studies have so far
focused on it [5, 6, 9, 18, 24, 26, 29, 37, 38]. SpMM is a core kernel
for the Locally Optimal Block Preconditioned Conjugate Gradi-
ent (LOBPCG) method [2, 3, 19], aerodynamic design optimization

66

https://doi.org/10.1145/3208040.3208062
https://doi.org/10.1145/3208040.3208062

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA C. Hong et al.

[30], PageRank algorithm [5], sparse convolutional neural networks
(CNNs) [16, 29], image segmentation in videos [32], atmospheric
modeling [5], etc.

Roofline [35] performance upper-bounds based on global-memory
bandwidth on GPUs can be developed for SpMV and SpMM as fol-
lows. Consider single-precision floating-point computation with a
square N × N sparse matrix with nnz non-zero elements. Each ele-
ment of the sparse matrix in standard CSR representation requires
8×nnz + 4× (N + 1) bytes of storage. Including the storage for the
input and output dense vectors, the total data footprint for SpMV is
8×nnz+12×N +4 bytes. The total floating-point operation count is
2×nnz, i.e., onemultiply-add operation for each non-zero element in
the sparse matrix. The input vector and sparse matrix reside in GPU
global memory before execution of the SpMV kernel and the result
vector is stored in global-memory after execution. Thus, a minimum
volume of 8×nnz+12×N +4 bytes of data must be moved between
global memory and GPU registers across the memory. Dividing this
data volume by the peak global-memory bandwidth BWGM of the
GPU (e.g., 732 Gbytes/sec. for an Nvidia Pascal P100 GPU) gives
the minimum time for the global-memory data transfers, and the
roofline upper bound performance of 2×nnz×BWGM

8×nnz+12×N+4 . Similarly, for
SpMM, the total data footprint is 8×nnz+8×K×N +4×N +4 bytes
and the total floating-point operation count is 2×K ×nnz, giving a
roofline performance upper-bound of 2×K×nnz×BWGM

8×nnz+8×K×N+4×N+4 where
K is the number of vectors (the width of dense matrices).

1

10

100

1000

G
FL

O
P

S
(l

o
g

sc
al

e
)

matrix id

SpMV

SpMV_UB

1

10

100

1000

10000

100000

G
FL

O
P

S
(l

o
g

sc
al

e
)

matrix id

SpMM

SpMM_UB

(a) SpMV

(b) SpMM

0

50

100

150

G
FL

O
P

S
ra

ti
o

(S
p

M
M

/
Sp

M
V

)

matrix id

Ratio

(c) GFLOP_SpMM / GFLOP_SpMV

0

0.5

1

Ef
fi

ci
e

n
cy

matrix id

SpMM

SpMV

(d) Efficiency (SpMM/SpMM_UB, SpMV/SpMV_UB)

Figure 1: cuSPARSE SpMV/SpMM performance and upper-
bound: Nvidia Pascal P100 GPU

Fig. 1 displays achieved SpMV and SpMMperformance inGFLOPs
by Nvidia’s cuSPARSE library on a Pascal GP100 GPU, for the entire
set of 2720 sparse matrices of the SuiteSparse [11, 14] collection (for-
merly known as the University of Florida Sparse Matrix collection).

In these charts, data for the sparse matrices is plotted by sorting the
matrices along the X-axis in increasing order of the number of non-
zeros (nnz), with one point in the scatter-plot for each matrix. In
Fig. 1(a), for each sparse matrix, a blue dot represents the achieved
performance in GFLOPs and a corresponding red dot placed verti-
cally above it marks the roofline performance upper-bound for that
matrix. The performance upper-bound is around 170 GFLOPs (does
not vary too much across matrices). cuSPARSE SpMV performance
approaches the roofline bound for around 670 matrices.

Fig. 1(b) displays achieved performance and roofline upper-
bounds for the same matrices with cuSPARSE SpMM. The achieved
absolute performance can be seen to be much higher than SpMV,
but the gap between actually achieved performance and the roofline
upper-bound is also much higher. Fig. 1(c/d) present the same data
as in Fig. 1(a/b), respectively, but expresses achieved performance
as a fraction of the roofline upper-bound (efficiency). It may be
seen that especially for large matrices cuSPARSE SpMM achieves a
much lower fraction of the roofline bound than SpMV.

Algorithm 1: SpMV: Sparse Matrix-Vector Multiplication.
input : CSR S[M][N], float D[N]
output : float O[M]

1 for i = 0 to S.rows-1 do
2 for j = S.rowptr[i] to S.rowptr[i+1]-1 do
3 O[i] += S.values[j] * D[S.colidx[j]]

Algorithm 2: SpMM: Sparse Matrix Multi-Vector Multiplica-
tion.
input : CSR S[M][N], float D[N][K]
output : float O[M][K]

1 for i = 0 to S.rows-1 do
2 for j = S.rowptr[i] to S.rowptr[i+1]-1 do
3 for k = 0 to K-1 do
4 O[i][k] += S.values[j] * D[S.colidx[j]][k]

Pseudocodes for sequential SpMV and SpMM are shown in Alg. 1
and Alg. 2, respectively. The sparse matrix S is stored in the standard
CSR (Compressed Sparse Row) format. The nonzero elements are
compacted and stored in S.values[:], with all non-zeros in a row
being placed contiguously. S.rowptr[i] points to the first nonzero
element from row i in S.values[:]. S.colidx[i] holds the column index
of the corresponding nonzero located in S.values[i]. Fig. 2(b) shows
an example of a sparse matrix stored in the CSR format. The DCSR
(Doubly Compressed Sparse Row) format [8] further compresses
CSR by only storing non-empty rows. As seen in Fig. 2(c), indices
of non-empty rows are placed in S.rowidx[:] and S.rowptr[i] points
to the first nonzero elements for the row S.rowidx[i].

SpMV (Alg. 1) iterates over the rows of S , forming the sparse
dot-product of the ith row of S with the input dense vector D to
produce the ith element of the output dense vector O .

SpMM (Alg. 2) iterates over the rows of S , forming the sparse
dot-product of the ith row of S with the kth dense vector, D[][k],
to produce the ith element of the kth output dense vector, O[i][k].

Aktulga et al. [2] describe an SpMM scheme based on the com-
pressed sparse blocks (CSB) format, optimized for both transposed

67

Efficient Sparse-Matrix Multi-Vector Product on GPUs HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

and non-transposed SpMM (O = SD and O = STD). The ele-
ments of the sparse matrix are partitioned into blocks of size β × β .
Each block is represented in coordinate format (COO). For non-
transposed SpMM (O = SD), threads process row blocks of size
((num_threads×β)×N). For transposed SpMM (O = STD), threads
process column blocks of size (N × (num_threads × β)).

0.3 1.4

5.7 2.4 9.5

3.3 8.1

1.1 2.6 4.5

rowptr: 0 2 5 5 7 7 10

colidx: 0 1 0 2 3 0 4 2 3 5

values: 0.3 1.4 5.7 2.4 9.5 3.3 8.1 1.1 2.6 4.5

0 1 2 3 4 5 6 7 8 9

colidx: 0 1 0 2 3 0 4 2 3 5

values: 0.3 1.4 5.7 2.4 9.5 3.3 8.1 1.1 2.6 4.5

0 1 2 3 4 5 6 7 8 9

rowptr: 0 2 5 7 10

rowidx: 0 1 3 5 indices of active rows

(b) CSR

(c) DCSR

(a) Sparse matrix

Figure 2: CSR and DCSR formats.

Anzt et al. [3] developed an SpMM scheme optimized for GPUs,
based on the SELL-P format. The SELL-P format is built by partition-
ing rows of the sparse matrix into blocks, and then each row block
is converted into ELLPACK format, with the rows being padded
so that the row length of each block is a multiple of the number
of threads. The threads are organized into 3D blocks, where the
x-dimension maps to a row within a SELL-P block, the y-dimension
maps to columns, and the z-dimension maps to multiple vectors.
Since multiple threads are assigned to process the elements of the
same row, reduction operations are required and performed in
shared memory.

FastSpMM [28, 34] uses ELLPACK-R [33] to enhance perfor-
mance by storing the sparse matrix in a regular data structure.
However, this strategy may suffer when processing very irregular
sparse matrices. cuSPARSE [1] from Nvidia also supports SpMM. It
offers two modes i) T: Transposed and ii) NT: Non transposed. In
BidMach [10], SpMM is implemented as one of the many kernels
and it internally uses the cuSPARSE format.

3 RS-SPMM
In this section, we present the proposed GPU SpMM algorithm, la-
beled RS-SpMM for Row-Segmented SpMM. The name derives from
the fact that the sparse matrix is partitioned into two parts, one hold-
ing clustered nonzero row-segments, enabling higher data reuse in
the GPU and thus lower data movement from global-memory than
previously developed SpMM approaches.

XXX	
XXXX	

XX	 	 	 X	
XXXX	
X	 	 	 XXX	

XXX	
XXX	

XXXX	 X	

X	

X	
X	

Original	 Matrix	 Heavy	 part	 (DCSR)	 Light	 part	 (CSR)	

X	

X	

X	

X	

XXX	
XXXX	

XX	 	 	 X	
XXXX	
X	 	 	 XXX	

XXX	
XXX	

XXXX	 X	

X	

X	
X	

X	

X	

X	

X	

Figure 3: Splitting sparse matrix into heavily clustered row-
segments and remainder.

Fig. 3 illustrates the splitting of a sparse matrix into two matrices,
one holding nonzeros in heavily clustered row-segments, and the
other holding the remaining nonzeros that are randomly scattered
over the column-index space in each row. The rationale for this
splitting is elaborated below, and is based on the observation that
large sparse matrices found in practice generally do not exhibit fully
random distribution of their nonzeros in the row/column space. A
sizable fraction of nonzeros tend to be grouped in clusters in the
row/column index space.

In SpMM, a sparse matrix is multiplied with a dense matrix to
produce a dense matrix. SpMV can be seen as a special case of
SpMM where the width of the dense input matrix is one. In the rest
of the section, we refer to the input sparse matrix as S (M ×N), the
input dense matrix as D (N ×K), and the output dense matrix as O
(M × K).

When compared to SpMV, SpMM has the following significant
differences: i) Unlike SpMV, with SpMM, the sparse matrix elements
have a high reuse factor of K; the reuse factor of the input/output
dense matrix elements is similar to that for the input/output vector
with SpMV; ii) Unlike SpMV, it is feasible to achieve coalesced
access of the dense input/output matrices (due to width K).

Vertical Streaming(a) Horizontal Streaming(b)

X X X

X X X

X X X

Output Matrix(O)

M

N

K

N

M

K
Input Sparse

Matrix (S)

X X X

X X X

X X X

Shared memory

Input Dense
MatrixT (DT)

Input Sparse
Matrix (S)

M

N

K

N

M

K
Output Matrix(O)

Input Dense
MatrixT (DT)

Figure 4: Vertical and horizontal streaming.

Here, we discuss two options for SpMM: vertical streaming and
horizontal streaming (Fig. 4). As with dense matrix multiplication,
tiling is also crucial to optimizing performance of SpMM. In general,
tiling of all the three loops {i, j,k } is feasible in Alg. 2. However,
the nature of reuses for the three arrays {D,S ,O } in SpMM is along
distinct loops: the i loop for D, the j loop for O , and the k loop for
S . Since the data footprint of an array is invariant with respect to
iterations of the “reuse" loop index, it means that one of the three
arrays will have an invariant data footprint and therefore achieve
complete reuse as the innermost tile is changed in a 3D tiled exe-
cution. This maximal reuse is independent of the chosen tile size

68

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA C. Hong et al.

and therefore it is best to minimize this tile size, thereby enabling
maximization of the other two tile sizes to achieve as much reuse
as possible for the other two arrays. This observation leads to what
is referred to as streamed execution along that innermost tile di-
mension, which is equivalent to just performing 2D tiling over two
out of the three loops in Alg. 2. Of the three arrays in SpMM, S has
a reuse factor of K , while D and O have reuse factors correspond-
ing to the average number of non-zeros in S along a column/row,
respectively. Typically K is much larger than the average number
of non-zeros in a row/column. Further, achieving reuse along k for
each element is S is much easier since the dense matrix elements in
D and O are contiguously located in global memory. Therefore, it
is best to use i or j as the streaming direction for SpMM. Streaming
along i is referred to as vertical streaming and streaming along j is
called horizontal streaming.

For vertical streaming (Fig. 4(a)), the input sparse matrix (S) is
partitioned into column panels - sets of contiguous columns of the
sparse input matrix. Each column panel is processed by a thread
block. A thread block collectively brings theD elements correspond-
ing to the column panel into shared-memory. Different warps in a
thread block process different rows within the column panel. The
threads of a warp are mapped across “K”, that is, each thread is
responsible for computing a partial result contribution for a single
output element in the result dense matrix. All threads in a warp
compute the product of the same non-zero element of the sparse
matrix with a distinct input matrix element, and then they move
to the next sparse matrix element in the row. Threads accumulate
partial results in thread local registers, and at the end of processing
of each row-segment in a column-panel, the partial contribution
are moved from registers to global-memory corresponding to the
output dense matrix, using atomic operations. Even though this
scheme achieves coalesced access on input and output (with suffi-
ciently large K), the downside is that it requires atomic operations
for accumulating partial results to global memory. For the rest of
this section, we refer to this scheme as the vertical scheme.

In horizontal streaming (Fig. 4(b)), the input sparse matrix (S)
is partitioned into row panels. Each row panel is processed by
a thread block. Threads cyclically processes elements along the
horizontal dimension of S. Each row is processed by a warp and
different threads in the warp are distributed across “K”. Each thread
accumulates the partial results in thread local registers, and at
the end of each row the threads move the partial contribution
from registers to global-memory corresponding to the output dense
matrix using atomic operations. For the rest of this section, this
scheme is referred to as the horizontal scheme.

In both the vertical and horizontal SPMM schemes, the threads
in a warp are spread across K . This helps in i) avoiding intra-warp
communication that would otherwise be required for reduction
of partial products across the threads in the same warp, and ii)
avoiding the need for shared memory for holding the intermediate
results. If the threads in a warp are distributed across a row of
the sparse matrix, the amount of work for different threads can
vary widely, leading to intra-warp load imbalance. The downside
of distributing the threads in a warp across the columns of the
input matrix is that, if the number of columns of the input matrix
(K) is not a multiple of 32, the last column slice will not be load
balanced. However, in practice, the last scheme works better as the

load imbalance across the non-zero elements in a row-segment of
a column partition is much worse than the load imbalance across
the rows of the input dense matrix.

The vertical scheme is not beneficial if the average number of el-
ements in a row of a column panel is low. With the vertical scheme,
at the end of processing each row in the column panel, there is
an expensive atomic update to global memory. If the number of
elements per row-segment is small, the relative overhead of the
atomic operations is more prominent. However, if the average num-
ber of elements in a row-segment in a column panel is high, then
the vertical scheme is beneficial as it gets full reuse of elements in
D. The disadvantage of the horizontal scheme is that there is no
reuse of elements in D (except possibly from cache).

The above observations motivate a dual scheme: rows with suf-
ficiently high non-zero count in a column panel are processed
using vertical streaming and the rest are processed using horizontal
streaming. In the rest of the section, rows whose non-zero count
within a column-panel is greater than a parametric threshold are
called heavy rows and the others are called light rows.

3.1 Data Structure
We use a CSR representation for the light rows and a DCSR repre-
sentation for the heavy rows. All the heavy row-segments in each
column panel are represented by a DCSR structure. All the light
rows in the entire sparse matrix S are represented by a CSR matrix.
Fig. 5 illustrates the hybrid data representation. For the illustration,
the threshold for a row to be classified as heavy is two; column
partition width is 4. Blocks with yellow background are the heavy
rows in column partition 0. Similarly, blocks with green background
are the heavy rows in column partition 1. The blocks with white
background represent the light rows. Details of the representation
of the heavy and light blocks are shown in Fig. 5 (b-3,b-4) and Fig. 5
(c-2), respectively.

The number of columns in S that are processed by a thread block
(W) is chosen such thatW ×k × sizeo f (data_type) ×no_o f _active
_tb_per_sm is equal to the shared-memory capacity. In our experi-
ments, “k” (k columns of input and output are processed by a thread
block) is chosen as 64 and no_of_active _tb_per_sm is chosen as
2. “k” should be a multiple of 32 for coalesced access (to avoid
thread divergence). Choosing no_of_active _tb_per_sm as 2 helps
in achieving maximum occupancy.

3.2 Algorithm
The pseudocode for the RS-SpMM scheme for heavy rows (vertical)
is shown in Listing 1. Rows of D of size K are divided into data-tiles
or slices of size k . Each column panel is processed by K/k thread
blocks. All threads in a thread block collectively bring a slice of
the input dense matrix corresponding to the column panel (D) to
shared-memory (line 5-7). The columns of D that are brought to
shared-memory depend on the slice id along K .

Eachwarp then processes the rows in the column panel in a cyclic
fashion (line 9-20). Each thread initializes the partial result (which
is held in a thread-local register) to 0 (line 10). All threads in a warp
process the same non-zero element in the sparse matrix. Reading
each sparse element one by one will result in uncoalesed access. In
order to avoid this, the threads read 32 non-zero elements (line 15 to

69

Efficient Sparse-Matrix Multi-Vector Product on GPUs HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

18) and then use warp shuffles to exchange elements (line 19). In the
first iteration, all threads in a warp need index_matrix[start] and
value_matrix[start], and these values are stored in the first lane (tid
% WARP_SIZE == 0). Hence, value and index held by the first lane
are broadcast to other threads. At the second iteration, all threads
in a warp need index_matrix[start+1] and value_matrix[start+1],
which are stored in the second lane, Hence, values of the second
lane are broadcast.

Each thread then computes the partial product in thread-local
register (line 19). Finally, the accumulated partial results are updated
to global memory using atomic operations (line 21 - 23). Atomic op-
erations are required as different thread blocks could concurrently
update the same element.

The RS-SpMM algorithm for light rows (horizontal scheme) is
shown in Listing 2. Each row of the light matrix is processed by a
warp. In order to minimize inter-warp load imbalance, we chose
the smallest thread block size (64 on Pascal) that maintains full
occupancy. For example, on an Nvidia Pascal GPU, since one thread
block has only two warps, row 0 and 1 are processed by the first
block, row 2 and 3 are processed by the second block, and so on.
Each thread initially computes the row and slice along K that it
should process. Each thread initializes the partial result (held in
a thread local register) to 0 (line 6). Similar to the SpMM heavy
scheme, the column indices and values are collectively read by
all threads in the warp (line 10, 11) and broadcast to all threads
in a warp (line 13). The partial products are then computed and
accumulated in the thread local register (line 13). Finally, the partial
result is accumulated to global memory using atomic operations
(line 15). Atomic operations are still needed since the thread blocks
for the heavy scheme and light scheme are launched concurrently.

Listing 1: SPMM Pseudocode (Heavy row segments)
1. row_offset = tb_idx * IN_TILE_ROW_SIZE;

2. slice_offset = tb_idy * IN_TILE_SLICE_SIZE;

3. warp_id = tid/WARP_SIZE;

4. lane_id = tid%WARP_SIZE;

5. for i=warp_id to IN_TILE_ROW_SIZE step tb.size ()/ WARP_SIZE do

6. sm_input_value[i][lane_id] =

input_value[row_offset+i][slice_offset+lane_id];

7. end

8. __syncthreads;

9. for i=seg_start_num[tb_idx] to seg_start_num[tb_idx +1]-1 step

tb.size ()/ WARP_SIZE do

10. val = 0;

11. start = start_seg_position[i];

12. end = start_seg_position[i+1];

13. for j=start to end -1 do

14. mod = (j - start)% WARP_SIZE

15. if mod == 0 then

16. index_buf = seg_index[j + lane_id];

17. value_buf = seg_value[j + lane_id];

18. end

19. val += sm_input_value[__shfl(index_buf , mod)][lane_id]

* __shfl(value_buf , mod);

20. end

21. row_idx = seg_row_position[i];

22. // directly accumulate results in global memory

23. atomicAdd (& dest_value[row_idx][slice_offset+lane_id], val);

24. end

Listing 2: SPMM Pseudocode (Light rows)
1. row_offset = (tb_idx*tb.size() + tid) / WARP_SIZE;

2. slice_offset = tb_idy * IN_TILE_COL_SIZE;

3. lane_id = tid%WARP_SIZE;

4. start = csr_row_pointer[row_offset];

col

row 0 1 2 3

0 a b c

3 i j k l

5 s t u

6 w x y

row 0 1 2 3 4 5 6 7

0 d

1 e f

2 g h

3

4 p q r

5 v

6 z α

7 β γ

col

row 0 1 2 3 4 5 6 7

0 a b c d

1 e f

2 g h

3 i j k l m n o

4 p q r

5 s t u v

6 w x y z α

7 β γ δ ε ζ

(a)

(b-1)

(c-1)

(b-2)

Val a b c i j k l s t u w x y
Col_ind 0 1 3 0 1 2 3 1 2 3 1 2 3

row_ptr 0 3 7 10 13

Val m n o δ ε ζ
Col_ind 0 1 3 0 1 2

row_ptr 0 3 6

col

row 0 1 2 3

3 m n o

7 δ ε ζ

(b-3). DCSR for block 0

(b-4). DCSR for block 1

active_row 0 3 5 6

active_row 3 7

Val d e f g h p q r v z α β γ
Col_ind 7 2 5 3 6 0 6 7 4 4 5 2 3

row_ptr 0 1 3 5 5 8 9 11 13

(c-2). CSR for light rows

Block 0 Block 1

Blocks 2 ~ 5

Figure 5: SpMM overview

5. end = csr_row_pointer[row_offset +1];

6. val = 0;

7. for i=start to end -1 do

8. mod = (i - start)% WARP_SIZE

9. if mod == 0 then

10. index_buf = csr_column_idx[i + lane_id];

11. value_buf = csr_column_val[i + lane_id];

12. end

13. val += input_value[__shfl(index_buf , mod)][lane_id]

* __shfl(value_buf , mod);

14. end

// directly accumulate results in global memory

15. atomicAdd (& dest_value[row_offset][slice_offset+lane_id], val);

70

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA C. Hong et al.

Thread coarsening is used for both the vertical and horizontal
schemes to improve performance. Coarsening is done along “K”
and i) enhances ILP (instruction level parallelism) to achieve better
overlap to mask global memory latency, and ii) reduces the number
of warp shuffle operation needed. A thread coarsening factor of
two causes each thread to process an element from two adjacent
slices.

In the rest of the paper, we refer to the thread coarsening factor
for the vertical and horizontal schemes as CFV and CFH , respec-
tively. Listing 3 shows pseudocode corresponding to thread coars-
ening factor CFV of 2. As seen in line 6, 7 in Listing 3, since there
is no dependence between two global-memory load instructions,
they can be loaded concurrently, which helps in tolerating mem-
ory access latency. The number of warp-shuffle operations (line
20, 21) processed by a thread block remains the same and thread
coarsening reduces the number of thread block launched. Hence,
the warp-shuffle operations are halved.

Listing 3: SPMM Pseudocode (Heavy rows, CFV = 2)
1. row_offset = tb_idx * IN_TILE_ROW_SIZE;

2. slice_offset = tb_idy * IN_TILE_SLICE_SIZE * 2;

3. warp_id = tid/WARP_SIZE;

4. lane_id = tid%WARP_SIZE;

5. for i=warp_id to IN_TILE_ROW_SIZE step tb.size ()/ WARP_SIZE do

6. sm_input_value[i][lane_id] =

input_value[row_offset+i][slice_offset+lane_id];

7. sm_input_value[i][lane_id+WARP_SIZE] =

input_value[row_offset+i][slice_offset+lane_id+WARP_SIZE];

7. end

8. __syncthreads;

9. for i=seg_start_num[tb_idx] to seg_start_num[tb_idx +1]-1 step

tb.size ()/ WARP_SIZE do

10. val1 = 0;

11. val2 = 0;

12. start = start_seg_position[i];

13. end = start_seg_position[i+1];

14. for j=start to end -1 do

15. mod = (j - start)% WARP_SIZE

16. if mod == 0 then

17. index_buf = seg_index[j + lane_id];

18. value_buf = seg_value[j + lane_id];

19. end

20. shfl_index = __shfl(index_buf , mod);

21. shfl_value = __shfl(value_buf , mod);

22. val1 += sm_input_value[shfl_index][lane_id] * shfl_value;

23. val2 += sm_input_value[shfl_index][lane_id+WARP_SIZE] *

shfl_value;

24. end

25. row_idx = seg_row_position[i];

26. // directly accumulate results in global memory

27. atomicAdd (& dest_value[row_idx][slice_offset+lane_id], val);

28. atomicAdd (& dest_value[row_idx][slice_offset+lane_id+WARP_SIZE],

val2);

29. end

4 MODELING IMPACT OF SLICE-SIZE
CHOICE

In this section, we describe how we determine the threshold for
classifying a row as light or heavy and choosingCFV andCFH . The
process we describe below for choice of parameters need only be
done once for a target platform, at library installation time. The
factors were chosen based on a subset of matrices (training set) from
SparseSuite [11]. All matrices having fewer than 100,000 non-zeros
were removed. The remaining matrices were sorted in increasing
order of number of non-zeros and every 20th matrix was included
in the training set. In total, 43 matrices (5%) were selected.

Figure 6 presents an overview of the approach.

Start

Train-
Set

Vary <CFH, CFV, threshold>
Run train-matrices

Best configuration
for each train-matrix

Select the most frequent CFV

for parameters
<best CFH, CFV, threshold>

as temp CFV

Find the most frequent
threshold for parameters

<best CFH, temp CFV, threshold>
as best threshold

Train decision-tree with
target = (best threshold)

features = (bin info, num acc.)

best CFH

temp CFV

Coarsening Factor for
horizontal scheme (CFH)

Model execution time of dense part
using linear regression for various
coarsening factors with num. accu.

and nng
as parameters on synthetic matrix.
Let c1_v and c2_v be the co-efficient

of linear regression.

End

CFH (best c_l),
threshold (decision tree)

CFV (c1_v, c2_v)

Select the most frequent CFH

as best CFH

threshold

c1_v, c2_v

Coarsening Factor for
vertical scheme (CFV)

Best threshold
per train matrix

Compute bin info,
num. accu. & nng

bin info, nng
& num. accu.

Figure 6: Modeling overview.

4.1 Coarsening factor for horizontal scheme
(CFH)

For the horizontal scheme, the coarsening factor along K was deter-
mined empirically, based on the training set. We ran each training
matrix with various CFH and CFV and thresholds to identify the
best performing configuration per matrix. From the best perform-
ing configuration per matrix, the most frequent CFH was chosen
as the CFH (c_l). We observed that using a coarsening factor of 1
(no coarsening) achieves the best performance for most matrices
for double precision. Hence, no thread-coarsening was chosen for
double precision. For single precision, we observed that a coarsen-
ing factor of 2 achieves the best performance in most cases. Based
on NVPROF performance metrics, the difference between the best
coarsening factor for single and double precision is due to the fact
that the relative warp shuffle cost for single precision is higher than
that for double precision.

4.2 Threshold for classifying row as light or
heavy

The threshold used to classify a row as light or heavy was computed
using a decision tree. To train the decision tree, we chose clustering
information and number of accumulations as the input features
and the best threshold as the target. In order to model clustering,
for each matrix, we calculated the distance between every two
adjacent elements and we assigned it to a bin based on the distance.
The bins were organized as powers of 4 (1, 1-3, 4-15, 16-63, . . .,
262,144-1,048,576).

The best threshold was found in two phases. In the first phase, we
fixedCFH and variedCFV (1, 2, 4) and threshold (1, 2, 3, . . ., 16). We

71

Efficient Sparse-Matrix Multi-Vector Product on GPUs HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

evaluated the training set over these configurations to determine
the best parameters for each matrix. The most frequent vertical
coarsening factor among the best parameters was then identified.
In the second phase, CFV and CFH are fixed on the basis of the
previous experiments and the corresponding best threshold per
matrix was identified.

The decision tree (Weka 3.8 [15] “J48 -C 0.25 -M 2” without any
filtering) was then trained with the bin counts (distance between
adjacent elements and number of accumulations as input feature
and the best threshold computed in phase 2 as the output feature.
In order to determine the threshold of test set we used this trained
decision tree.

4.3 Coarsening factor for vertical scheme (CFV)
Increasing the coarsening factor along K for the vertical scheme
helps to hide memory latency and reduce shuffle overhead. How-
ever, increasing the coarsening factor increases the amount of
shared memory required for storing the dense matrix elements,
and this decreases the column panel size. When the size of col-
umn panel is decreased, the number of rows which are classified as
heavy rows decrease, and this can adversely affect performance. In
order to determine the coarsening factor, for the vertical scheme,
we estimated the execution time for each coarsening factor and
then selected the coarsening factor that minimized execution time.
The execution time is estimated as:

exec_time = C1,v × accdense + nnzd × C2,v + exec_time_sparse

where C,v is the cost when CFV is v, and accdense is the num-
ber of accumulations in the dense part. Since all the elements are
processed by the heavy scheme, the execution time of light scheme
(exec_time_sparse) is zero. C1,v and C2,v are constants which de-
pend on v .

In order to determineC1,v andC2,v we used two synthetic matri-
ces i) 4K X 4K fully dense matrix and ii) 4K X 4K sparse matrix. Both
matrices were processed only by the vertical scheme. The sparse
matrix was designed such that for every row in a column panel
of size 256, the number of non-zero elements equals the threshold.
The exact column id is chosen at random.

Assuming that Num_Col_Panel = 4K / 256, the execution time
for the two synthetic matrices, for a coarsening factor of 1, can be
represented as

T1,1 =C1,1 × 4K × Num_Col_Panel +C2,1 × 4K × 4K
T2,1 =C1,1 × 4K × Num_Col_Panel+

C2,1 × 4K × Num_Col_Panel ×THRESHOLD

The execution time ofT1,1 andT2,1 was determined by executing
these synthetic matrices using the vertical scheme (with coarsening
factor of 1) and the above equations were solved to find C1,1 and
C2,1. Similarly, the other C∗,∗ values were computed.

In order to find CFV for a given matrix, the execution time was
estimated by applying the above equations using the C∗,∗ values.
The coarsening factor was then selected as the one with the lowest
predicted execution time.

4.4 Effectiveness of Model
Fig. 7 presents performance of RS-SpMM for all SparseSuite matri-
ces, for single precision with K = 128. We present the performance
of RS-SpMM without any modeling, with the best parameters (sep-
arately selected for each individual case), and with our modeling.
As seen in the figure, the modeling matches or closely follows the
performance of the best parameter case.

0

200

400

600

800

G
FL
O
P
S

nnz

RS-SpMM Perf. (w/ the best parameter)

R-SpMM Pref. (w/o model)

RS-SpMM Perf. (w/ model)

Figure 7: Modeling effect (WIDTH=128, single precision).

5 EXPERIMENTAL EVALUATION
This section details the experimental evaluation of the RS-SpMM
scheme. The experiments were performed on an Nvidia Pascal
P100 GPU. In all experiments, ECC was turned off and we used
the NVCC compiler optimization flag -O3 with NVCC 8.0 and GCC
4.9.2. For all the schemes, we only include the kernel execution
time; preprocessing time and data transfer time from CPU to GPU
are not included (we document preprocessing time separately). All
tests were run 5 times and average numbers are reported.

5.1 Performance of RS-SPMM
Fig. 8 (a) shows measured performance of RS-SpMM for single-
precision computation, with four values of K (the width of the
dense matrices O and D): 8, 32, 128, 512. Use-cases for SpMM vary
depending on application. For applications in computational sci-
ence, such as LOBPCG, widths in the tens, and below 100 are typical.
For machine learning applications, the width K often corresponds
to the number of latent features in models, and values of K around
100 are common, with interest in going higher to several hundreds
or thousand. Hence, we evaluate RS-SpMM using four values in
the range from 8 to 512. The performance of RS-SpMM improves
as we increase dense matrix width from 8 to 32 and 128, tending
to saturate at that point - the performance curves for K=128 and
K=512 are nearly indistinguishable. For large matrices, performance
is around 200 GFLOPs for K=8, approximately doubling to around
400 GFLOPs for K=32, and further increasing to almost 800 GFLOPs
for several matrices for K=128/512.

Fig. 8 (b-e) show relative performance improvement over Nvidia’s
cuSPARSE library implementation of SpMM. RS-SpMM uses the
standard C row-major representation for the input/output dense
matrices, while cuSPARSE uses the FORTRAN column-major con-
vention for the dense matrices. cuSPARSE also provides two vari-
ants: O = SD (denoted cuSPARSE(NT)) and O = SDT (denoted
cusPARSE(T)). As can be seen below, performance of cuSPARSE for
O = SDT (transposed product) is often much higher than perfor-
mance for O = SD (non-transposed product). A few applications
require SpMM products with both transposed and non-transposed

72

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA C. Hong et al.

forms of one of the input matrices, while most applications only
require one of them. For applications not requiring both transposed
and non-transposed products, an application user has the choice
of using the higher performing variant through storing the dense
matrix in normal or transposed form. Hence, in this section we
compare RS-SpMM performance with both the non-transposed
(O = SD) and transposed (O = SDT) variants of cuSPARSE SpMM.

The speedup of RS-SPMM(NT) vs. cuSPARSE(NT and T) is shown
for different values of K; Since cuSPARSE(NT) tends to achieve
much lower performance than cuSPARSE(T), higher speedup is
achieved over it. RS-SpMM speedup is generally in the range be-
tween 1 and 2 over cuSPARSE(T), and around 4x over cuSPARSE(NT).
The speedup over cuSPARSE tends to be higher for larger K.

0.5

1

2

4

8

16

0

50

100

150

200

250

300

sp
e

e
d

u
p

 (
lo

g
sc

al
e

)VS cuSPARSE(NT)

VS cuSPARSE(T)

0.5

1

2

4

8

16

0

100

200

300

400

500

600

sp
e

e
d

u
p

 (
lo

g
sc

al
e

)VS cuSPARSE(NT)

VS cuSPARSE(T)

0.5

1

2

4

8

16

0

200

400

600

800

sp
e

e
d

u
p

 (
lo

g
sc

al
e

)VS cuSPARSE(NT)

VS cuSPARSE(T)

0.5

1

2

4

8

16

0

200

400

600

800

sp
e

e
d

u
p

 (
lo

g
sc

al
e

)

nnz

VS cuSPARSE(NT)

VS cuSPARSE(T)

0

200

400

600

800

G
FL

O
P

S

K=32

K=128

K=8 K=512

(e) Speed up (K = 512)

(d) Speed up (K = 128)

(c) Speedup (K = 32)

(b) Speedup (K = 8)

(a) RS-SpMV performance (single precision)

Figure 8: Performance comparison: RS-SpMM (NT) vs CuS-
PARSE (NT and T); Single Precision

Fig. 9 (a-e) present performance of RS-SpMM for double-precision.
Overall performance in GFLOPs for double-precision is slightly
lower than for for single-precision, but well over 0.5x, compared
to single-precision. RS-SpMM is quite consistently faster than cuS-
PARSE(T and NT).

In contrast to single precision, the cuSPARSE(T) version is not
consistently faster – quite often the speedup over cuSPARSE(T)
is higher than the speedup over cuSPARSE(NT). For sparse matri-
ces exhibiting high variance in row lengths, performance of cuS-
PARSE(NT) and cuSPARSE(T) degrades considerably because of
load imbalance. On the other hand, performance of RS-SpMM is
less degraded since rows having large nnz are normally classified
as heavy rows and processed by multiple thread blocks. Hence,
there is a fluctuation of achieved speedup with different sparse
matrices in Fig. 8 and 9. We note that in Fig. 8 and 9, only the kernel
execution time is reported; the pre-processing overhead to create
the needed representation for RS-SpMM is discussed later.

0

100

200

300

400

500

600

G
FL

O
P

S

K=32

K=128

K=8 K=512

0.5

1

2

4

8

16

0

50

100

150

200

250

300

sp
e

e
d

u
p

 (
lo

g
sc

al
e

)VS cuSPARSE(NT)

VS cuSPARSE(T)

0.5

1

2

4

8

16

0

100

200

300

400

sp
e

e
d

u
p

 (
lo

g
sc

al
e

)VS cuSPARSE(NT)

VS cuSPARSE(T)

0.5

1

2

4

8

16

0

100

200

300

400

500

600

sp
e

e
d

u
p

 (
lo

g
sc

al
e

)VS cuSPARSE(NT)

VS cuSPARSE(T)

0.5

1

2

4

8

16

0

100

200

300

400

500

600

sp
e

e
d

u
p

 (
lo

g
sc

al
e

)

nnz

VS cuSPARSE(NT)

VS cuSPARSE(T)

(e) Speedup (K=512)

(d) Speed up (K=128)

(c) Speed up (K=32)

(b) Speed up (K=8)

(a) RS-SpMV performance (double precision)

Figure 9: Performance comparison: RS-SpMM (NT) vs CuS-
PARSE (NT and T); Double Precision

In Fig. 10, we present a performance profile comparing RS-SpMM
with cuSPARSE SpMM (both (T) and (NT) variants). In each row, the
different charts are for varying K (8,32,128,512). For each matrix, the
best performing version among RS-SpMM and cuSPARSE SpMM
variants is used as a normalizer to compute performance loss of the

73

Efficient Sparse-Matrix Multi-Vector Product on GPUs HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

other instances. For each SpMM implementation, the cumulative
curve shows the fraction of cases for which the slowdown with
respect to the best performer is less than the X-axis value. Thus,
a point (x,y) implies that a fraction y of all matrices achieved a
slowdown less than x relative to the fastest implementation. Better
performing variants have curves that rise rapidly to hit y=1.0, while
relatively poor performance results in a shallow curve that may not
get to y=1.0 even for the largest slowdown value in the range of the
plot. The top (red) curve shows that RS-SpMM quite significantly
outperforms the cuSPARSE variants. We note that for K = 8 and
K = 32, we also compared RS-SpMM with CUSP [13] SpMM. The
Nvidia CUSP library is an open-source library for linear algebra
and graph computations on GPUs. CUSP implements SpMM but we
find its results are only correct for dense matrix widths of 2,4,8,16,
and 32 and incorrect for other widths; further even for the few
correct cases, CUSP-SpMM performance is consistently lower than
cuSPARSE(T) performance, as seen in Fig. 10 (a,b,e,f).

The first two rows of charts document performance over all
SuiteSparse matrices with more than 100K nonzeros, for single and
double precision. The third and fourth rows show performance for
an iterative execution scenario that is common with applications
like block Krylov solvers like GMRES. Here, the output dense matrix
O from a previous iteration is modified by scaling or other simple
point-wise operations and then becomes the input matrix D for
the following iteration. With the cuSPARSE(T) form, an explicit
transpose will be required. The time for cuBLAS [27] dense matrix
transpose is added to cuSPARSE(T) for this scenario. Experimental
results are only presented for square matrices from SuiteSparse,
since this is only applicable to square matrices. Finally, the last row
shows profile for the STD computation and the case where both
SD and STD are required. In this case, performance of RS-SpMM is
considerably higher than cuSPARSE.

Figure 11: Performance of RS-SpMM compared with
MAGMA and cuSPARSE; K=128, single precision

The MAGMA library [3] has high-performance implementations
for dense and sparse linear algebra functions for GPUs. We at-
tempted a performance comparison of RS-SpMM with MAGMA, in
addition to cuSPARSE. However, we were unable to successfully

process all the matrices from SuiteSparse with MAGMA; several ma-
trices resulted in MAGMA error messages. However, we were able
to run a significant subset of matrices successfully with MAGMA’s
SpMM. In Fig. 11, we present a profile comparison on just the suc-
cessful subset with MAGMA, for single-precision and K=128. It may
be seen from this profile that cuSPARSE(T) is faster than MAGMA
and RS-SpMM is faster than cuSPARSE(T).

bhSPARSE [23] and Merge-based CSR [25] provide very high-
performance GPU implementations of SpMV, but do not provide
an SpMM implementation. SpMM can be implemented as a “loop
over SpMV”, with an outer loop over the width of the dense matrix.
Fig. 12 (a-d) show measured performance using such a loop-over-
SpMV approach, with bhSPARSE, Merge-based CSR and cuSPARSE-
SpMV for single-precision computation, with four values of K: 8, 32,
128, 512. For K values beyond 8, RS-SpMM is significantly faster than
loop-over-SpMV (bhSPARSE, Merge-based CSR and CuSPARSE-
SpMV) because of significantly higher data reuse achieved by SpMM
primitives (the maximum value of X-axis in Fig. 12 is 16). Similar
trends can be seen for double precision as shown in Fig. 12 (e-h).

5.2 Pre-processing overhead

0

2

4

6

n
o

rm
al

iz
ed

 p
re

-
p

ro
ce

ss
in

g
o

ve
rh

ea
d

nnz

single precision double precision

Figure 13: Preprocessing overhead

Constructing the data structures required for RS-SPMM scheme
incurs an additional overhead. Fig. 13 shows the preprocessing
overhead normalized to one iteration of RS-SpMM. Note that typ-
ical applications involving SpMM can execute a large number of
iterations such as [6, 29]. For example, with sparse convolutional
neural networks in inference mode, even though the input dense
matrix changes (holding the new data to be processed), the struc-
ture of the sparse coefficient matrix remains unchanged. Hence,
the preprocessing overhead is relatively insignificant.

Pre-processing is done on the GPU - converting from standard
CSR structure (column indices within each row assumed sorted)
to the structure which splits out heavy row-segments (in DCSR)
and the remainder (standard CSR format). For threshold T, heavy
row-segments are extracted by scanning over rows and checking
if col_ptr[i] and col_ptr[i+T] belong to the same partition in the
same row; if so the elements between index i to i+T get included in
a heavy row. Fig. 13 shows our Pre-processing cost normalized to
one SpMM iteration with K=128.

6 SPMM FOR O = STD
Some applications require both original and transposed sparse ma-
trices to be multiplied with the dense matrix (O = S × D and
O = ST ×D) [2, 3]. Explicitly transposing the sparse matrix just for

74

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA C. Hong et al.

(a) ALL, single, K = 8 (b) ALL, single, K = 32 (c) ALL, single, K = 128 (d) ALL, single, K = 512

(e) ALL, double, K = 8 (f) ALL, double, K = 32 (g) ALL, double, K = 128 (h) ALL, double, K = 512

(i) SYM, single, K = 8 (j) SYM, single K = 32 (k) SYM, single, K = 128 (l) SYM, single, K = 512

(m) SYM, double, K = 8 (n) SYM, double, K = 32 (o) SYM, double, K = 128 (p) SYM, double, K = 512

(q) O = ST × D , single (r) O = STD & O = SD , single (s) O = STD , double (t) O = STD & O = SD , double

Figure 10: Performance Profiles. (a)-(h) all matrices (ALL) for single and double precision with varying K , (i)-(p) symmetric
(SYM) matrices for single and double precision with varying K , (q)-(t) O = STD & O = SD for single and double precision.

75

Efficient Sparse-Matrix Multi-Vector Product on GPUs HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

(a) Single, K = 8 (b) Single, K = 32 (c) Single, K = 128 (d) Single, K = 512

(e) Double, K = 8 (f) Double, K = 32 (g) Double, K = 128 (h) Double, K = 512

Figure 12: Performance Profiles: RS-SpMM and Loop-over-SpMV; Single and Double; K=8,32,128,512.

SpMM can be expensive. The RS-SpMM scheme has been adapted
to perform O = ST × D without explicit transpose and is called
RS-SpMMT. RS-SpMM and RS-SpMMT use the same data structure.
Thus the row-segments of non-transposed version corresponds to
the column segments of transposed version.

Pseudocodes for heavy row segments and light row segments
are shown in Listing 4 and 5 respectively. In order to perform
O = ST × D, we use shared memory corresponding to the columns
of column panel to store the output. The shared memory is initial-
ized to zero (line 5-7 in Listing 4). Each row in a column panel is
processed by a warp. The input dense matrix and sparse matrix
elements are read from the global memory and the partial products
are computed (line 17-22). Each such partial product is accumulated
in shared memory using atomic operations (line 23). At the end
of each column panel, accumulated results in shared memory are
updated to global memory using atomic operations (line 28).

In order to process the light rows, each thread loads the corre-
sponding element of the input matrix to a thread local register (line
6 in Listing 5) and computes partial products (line 9-14). Each par-
tial product is updated to global memory using atomic operations
(line 15).

Listing 4: SPMMT Pseudocode (Heavy row segments)
1. row_offset = tb_idx * IN_TILE_ROW_SIZE;

2. slice_offset = tb_idy * IN_TILE_SLICE_SIZE;

3. warp_id = tid/WARP_SIZE;

4. lane_id = tid%WARP_SIZE;

5. for i=warp_id to IN_TILE_ROW_SIZE step tb.size ()/ WARP_SIZE do

6. sm_output_value[i][lane_id] = 0;

7. end

8. __syncthreads;

9. for i=seg_start_num[tb_idx] to seg_start_num[tb_idx +1]-1 step

tb.size ()/ WARP_SIZE do

10. val = 0;

11. start = start_seg_position[i];

12. end = start_seg_position[i+1];

13. column_idx = seg_row_position[i];

14. column_value = input_value[column_idx][lane_id];

15. for j=start to end -1 do

16. mod = (j - start)% WARP_SIZE

17. if mod == 0 then

18. index_buf = seg_index[j + lane_id];

19. value_buf = seg_value[j + lane_id];

20. end

21. row_offset = __shfl(index_buf , mod);

22. val = column_value * __shfl(value_buf , mod);

23. atomicAdd (& sm_output_value[row_offset][slice_offset+lane_id], val);

24. end

25. __syncthreads;

26. row_idx = seg_row_position[i];

27. for i=warp_id to IN_TILE_ROW_SIZE step tb.size ()/ WARP_SIZE do

28. atomicAdd (& output_value[row_offset+i][lane_id],

sm_out_value[i][lane_id]);

29. end

Listing 5: SPMMT Pseudocode (Light row segments)
1. column_offset = (tb_idx*tb.size() + tid) / WARP_SIZE;

2. slice_offset = tb_idy * IN_TILE_COL_SIZE;

3. lane_id = tid%WARP_SIZE;

4. start = csr_row_pointer[column_offset];

5. end = csr_row_pointer[column_offset +1];

6. column_value = input_value[column_offset][slice_offset+lane_id];

7. for i=start to end -1 do

8. mod = (i - start)% WARP_SIZE

9. if mod == 0 then

10. index_buf = csr_column_idx[i + lane_id];

11. value_buf = csr_column_val[i + lane_id];

12. end

13. row_offset = __shfl(index_buf , mod);

76

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA C. Hong et al.

14. val = column_value * __shfl(value_buf , mod);

// directly accumulate results in global memory

15. atomicAdd (& dest_value[row_offset][slice_offset+lane_id], val);

16. end

Fig. 14 and 15 compare RS-SpMM with cuSPARSE for O = STD,
for single and double precision, respectively. Two scenarios are
evaluated: i) only O = STD is required, and ii) both O1 = STD
as well as O2 = SD required. The performance of RS-SPMM is
significantly higher than that of cuSPARSE for both scenarios, for
both precisions.

When non-zeros are clustered, performance of cuSPARSE can
be higher than 200 GFLOPs. However, when non-zeros are scat-
tered (which results in low cache utilization) the performance of
cuSPARSE drops to 10 GFLOPs. On the other hand, performance
of RS-SpMM is consistently higher than 80 GFLOPs when concur-
rency is not very low. Hence, as shown in Fig. 10 (q) and (s), the
performance of cuSPARSE is over 16x times slower than ours for
more than 20% of matrices.

0

50

100

150

200

250

300

G
FL

O
P

S

O=STD & O=SD (single)

O=STD (single)

0.5

1

2

4

8

16

32

64

0

50

100

150

200

250

300

sp
e

e
d

u
p

 (
lo

g
sc

al
e

)

VS cuSPARSE

0.5

1

2

4

8

16

32

0

100

200

300

400

sp
e

e
d

u
p

 (
lo

g
sc

al
e

)

nnz

VS cuSPARSE

(a) Rs-SpMM performance (Transposition)

(b) Speed up (O=STD, single precision)

(c) Speed up (O=STD & O=SD, single precision)

Figure 14: O = STD performance (K = 128, single precision)

7 DISCUSSION
Although performance of RS-SpMM is often significantly higher
than cuSPARSE SpMM, it is still considerably below the upper-
bound discussed in Sec. 1. In this section, we analyze the SpMM
bottlenecks and possible improvements. The peak bandwidth of
shared memory and unified L1 cache of the P100 GPU has been
reported to be 1977.25 Gwords / sec and 594.75 Gwords / sec, re-
spectively [17, 20]. For the vertical streaming scheme, one shared
memory load is needed for every 2 floating point operations, as
can be seen in line 19 in Listing 1. Therefore, an upper-bound on
performance of RS-SpMM with vertical streaming is 2 × 1977.25 =

0

50

100

150

200

250

300

G
FL

O
P

S

O=STD (double)

O=STD & O=SD (double)

0.5

1

2

4

8

16

32

64

0

50

100

150

200

sp
e

e
d

u
p

 (
lo

g
sc

al
e

)

VS cuSPARSE

0.5

1

2

4

8

16

32

64

0

50

100

150

200

250

300

sp
e

e
d

u
p

 (
lo

g
sc

al
e

)

nnz

VS cuSPARSE

(c) Speed up (O=STD & O=SD, double precision)

(b) Speed up (O=STD, double precision)

(a) Rs-SpMM performance (Transposition)

Figure 15: O = STD performance (K = 128, double precision)

3954.50 GFLOPs. We tested RS-SpMMwith an 8K X 8K dense matrix
(stored in DCSR format) to determine the achievable performance.
The achieved performance of RS-SpMMwith that dense matrix was
2495.81 GFLOPs (when K = 65536 and CFV = 4), which is 63.1% of
the upper-bound GFLOPs.

For the horizontal scheme, to process the sparse non-clustered
non-zeros, one load/store operation is associated with two floating
point operations, as seen in line 13 in Listing 2. If all elements of
the input dense matrix are brought in from the L1 unified cache,
an upper-bound on performance with the horizontal streaming of
RS-SpMM is 2 × 594.75 = 1189.5 GFLOPs.

Let the sparsematrix for SpMMhaveM rows andN columns, and
let K be the width of the input/output dense matrices. Assume that
the vertical scheme is used to process SpMM. The minimum volume
of data transfer through the LD/ST units can be computed as follows.
In this scheme, each element of the output matrix O is accessed at
least once. Hence, the minimum number of transactions (in words)
for O is M × K . Each D element is multiplied by all the elements
in the corresponding column of S. Assuming that each D element
gets an average reuse of R from registers, the minimum number
of transactions (in words) for D is nnz×K

R . Each S element has a
K-way reuse. Assuming that the coarsening factor is C , and each S
access gets full reuse across a full warp (of 32 threads) the minimum
number transactions for S is nnz×K

C×32 . Thus the minimum number of
load/store transactions for this scheme is nnz×K

R +M ×K + nnz×K
C×32

words. When M × R < nnz and R < C × 32, the dominant term
would be nnz×K

R .
Based on this analysis, we make the following remarks:

1) Any SpMM implementations that do not use shared memory
for accessing the input dense matrix will therefore be limited to a

77

Efficient Sparse-Matrix Multi-Vector Product on GPUs HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

performance lower than 1189.5 GFLOPs.
2) If a sparse matrix is also loaded from shared memory / cache
/ global memory, performance is limited to 3954.50 / 2 = 1977.25
GFLOPs, since 2 load operations are required per 2 floating point
operations.
3) When warp shuffling is used, thread coarsening along the K
dimension is not very helpful, since it does not much reduce the
number of accesses for LD/ST units.
4) Register reuse is a key to achieve better performance, and thread
coarsening along the M dimension can be beneficial, since it can
reduce LD/ST transactions.

0%

20%

40%

60%

80%

100%

0

500

1000

1500

2000

Fr
ac

ti
o

n
 o

f
n

n
z

in
 d

en
se

 r
o

w
s

G
FL

O
P

matrix id

small (100k < nnz < 1M) large (nnz > 1M) heavy percent

Figure 16: RS-SpMM performance: impact of row-segment
density

Fig. 16 presents RS-SpMM performance data for the matrices
ordered along the X-axis by the fraction of the non-zeros in the
heavy row-segments. Matrices on the left side of graph have higher
non-zeros in the heavy row-segments and the matrices on the right
have lower non-zeros in heavy row-segments. It can be seen that
there is a clear trend showing that matrices with a larger fraction
in the heavy part tend to perform better. This suggest that column
reordering schemes that increase row-segment density might be a
promising direction to further improve performance.

8 CONCLUSION
This paper has presented the development of RS-SpMM, an effi-
cient GPU implementation of the sparse matrix multi-vector multi-
plication algorithm that exploits the non-uniform distribution of
nonzeros in sparse matrices. RS-SpMM was designed to attain good
reuse of the elements from the input and output dense matrices,
as well as the sparse matrix. The extensive experimental evalua-
tion demonstrates the superior performance of RS-SpMM when
compared to other GPU SpMM implementations.

ACKNOWLEDGMENTS
We thank the reviewers for the valuable feedback and the Ohio
Supercomputer Center for use of their GPU resources. This work
was supported in part by the Defense Advanced Research Projects
Agency (DARPA) under Contract D16PC00183, and the National Sci-
ence Foundation (NSF) through awards 1404995, 1513120, 1629548,
1645599, and 1747447.

REFERENCES
[1] The API reference guide for cuSPARSE, the CUDA sparse matrixlibrary.(v8.0 ed.).

http://docs.nvidia.com/cuda/cusparse/index.html. (2018).
[2] Hasan Metin Aktulga, Aydin Buluç, Samuel Williams, and Chao Yang. 2014. Op-

timizing sparse matrix-multiple vectors multiplication for nuclear configuration

interaction calculations. In Parallel and Distributed Processing Symposium, 2014
IEEE 28th International. IEEE, 1213–1222.

[3] Hartwig Anzt, Stanimire Tomov, and Jack Dongarra. 2015. Accelerating the
LOBPCG method on GPUs using a blocked Sparse Matrix Vector Product. In Pro-
ceedings of the Symposium on High Performance Computing. Society for Computer
Simulation International, 75–82.

[4] Arash Ashari, Naser Sedaghati, John Eisenlohr, Srinivasan Parthasarathy, and P.
Sadayappan. 2014. Fast Sparse Matrix-vector Multiplication on GPUs for Graph
Applications. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Press, 781–792.

[5] Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst.
2000. Templates for the solution of algebraic eigenvalue problems: a practical guide.
SIAM.

[6] Allison H Baker, John M Dennis, and Elizabeth R Jessup. 2006. On improving
linear solver performance: A block variant of GMRES. SIAM Journal on Scientific
Computing 27, 5 (2006), 1608–1626.

[7] A. Benatia, W. Ji, Y. Wang, and F. Shi. 2016. Sparse Matrix Format Selection
with Multiclass SVM for SpMV on GPU. In 2016 45th International Conference on
Parallel Processing (ICPP). 496–505. https://doi.org/10.1109/ICPP.2016.64

[8] Aydin Buluc and John R Gilbert. 2008. On the representation and multiplication
of hypersparse matrices. In Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium on. IEEE, 1–11.

[9] Carmen Campos and Jose E Roman. 2012. Strategies for spectrum slicing based
on restarted Lanczos methods. Numerical Algorithms 60, 2 (2012), 279–295.

[10] John Canny and Huasha Zhao. 2013. Bidmach: Large-scale learning with zero
memory allocation. In BigLearn workshop, NIPS.

[11] SuiteSparse Matrix Collection. 2011. https://sparse.tamu.edu. (2011).
[12] M. Daga and J. L. Greathouse. 2015. Structural Agnostic SpMV: Adapting CSR-

Adaptive for Irregular Matrices. In 2015 IEEE 22nd International Conference on
High Performance Computing (HiPC). 64–74.

[13] Steven Dalton, Nathan Bell, Luke Olson, and Michael Garland. 2014. Cusp:
Generic parallel algorithms for sparse matrix and graph computations. URL:
http://cusplibrary. github. io/(accessed: 01.02. 2016) (2014).

[14] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011), 1.

[15] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. 2009. The WEKA data mining software: an update. ACM
SIGKDD explorations newsletter 11, 1 (2009), 10–18.

[16] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[17] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza. 2018. Dis-
secting the NVIDIA Volta GPU Architecture via Microbenchmarking. arXiv
preprint arXiv:1804.06826 (2018).

[18] Wei Jiang and Gang Wu. 2010. A thick-restarted block Arnoldi algorithm with
modified Ritz vectors for large eigenproblems. Computers & Mathematics with
Applications 60, 3 (2010), 873–889.

[19] AndrewVKnyazev. 2001. Toward the optimal preconditioned eigensolver: Locally
optimal block preconditioned conjugate gradient method. SIAM journal on
scientific computing 23, 2 (2001), 517–541.

[20] Elias Konstantinidis and Yiannis Cotronis. 2016. A quantitative performance
evaluation of fast on-chipmemories of GPUs. In Parallel, Distributed, and Network-
Based Processing (PDP), 2016 24th Euromicro International Conference on. IEEE,
448–455.

[21] Kornilios Kourtis, Vasileios Karakasis, Georgios Goumas, and Nectarios Koziris.
2011. CSX: An Extended Compression Format for Spmv on Shared Memory
Systems. SIGPLAN Not. 46, 8 (Feb. 2011), 247–256. https://doi.org/10.1145/
2038037.1941587

[22] Weifeng Liu and Brian Vinter. 2015. CSR5: an efficient storage format for cross-
platform sparse matrix-vector multiplication. CoRR abs/1503.05032 (2015). http:
//arxiv.org/abs/1503.05032

[23] Weifeng Liu and Brian Vinter. 2015. A framework for general sparse matrix–
matrix multiplication on GPUs and heterogeneous processors. J. Parallel and
Distrib. Comput. 85 (2015), 47–61.

[24] Karl Meerbergen and Raf Vandebril. 2012. A reflection on the implicitly restarted
Arnoldi method for computing eigenvalues near a vertical line. Linear Algebra
Appl. 436, 8 (2012), 2828–2844.

[25] Duane Merrill and Michael Garland. 2016. Merge-based sparse matrix-vector
multiplication (SpMV) using the CSR storage format. In Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’16). ACM, New York, NY, USA, Article 43, 2 pages. https://doi.org/10.
1145/2851141.2851190

[26] Ronald B Morgan and Dywayne A Nicely. 2011. Restarting the nonsymmetric
Lanczos algorithm for eigenvalues and linear equations including multiple right-
hand sides. SIAM Journal on Scientific Computing 33, 5 (2011), 3037–3056.

[27] CUDA Nvidia. 2008. Cublas library. NVIDIA Corporation, Santa Clara, California
15, 27 (2008), 31.

78

http://docs.nvidia.com/cuda/cusparse/index.html
https://doi.org/10.1109/ICPP.2016.64
https://sparse.tamu.edu
https://doi.org/10.1145/2038037.1941587
https://doi.org/10.1145/2038037.1941587
http://arxiv.org/abs/1503.05032
http://arxiv.org/abs/1503.05032
https://doi.org/10.1145/2851141.2851190
https://doi.org/10.1145/2851141.2851190

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA C. Hong et al.

[28] Gloria Ortega, Francisco Vázquez, Inmaculada García, and Ester M Garzón. 2013.
Fastspmm: An efficient library for sparsematrix matrix product on GPUs. Comput.
J. 57, 7 (2013), 968–979.

[29] Jongsoo Park, Sheng Li, Wei Wen, Ping Tak Peter Tang, Hai Li, Yiran Chen,
and Pradeep Dubey. Faster CNNs with Direct Sparse Convolutions and Guided
Pruning. (2016). arXiv:1608.01409 arXiv:1608.01409v5.

[30] Xavier Pinel and Marc Montagnac. 2013. Block Krylov methods to solve adjoint
problems in aerodynamic design optimization. AIAA journal (2013).

[31] Markus Steinberger, Rhaleb Zayer, and Hans-Peter Seidel. 2017. Globally Homo-
geneous, Locally Adaptive Sparse Matrix-vector Multiplication on the GPU. In
Proceedings of the International Conference on Supercomputing (ICS ’17). ACM, New
York, NY, USA, Article 13, 11 pages. https://doi.org/10.1145/3079079.3079086

[32] Narayanan Sundaram and Kurt Keutzer. 2011. Long term video segmentation
through pixel level spectral clustering on gpus. In Computer Vision Workshops
(ICCV Workshops), 2011 IEEE International Conference on. IEEE, 475–482.

[33] Francisco Vazquez, G Ortega, José-Jesús Fernández, and Ester M Garzón. 2010.
Improving the performance of the sparse matrix vector product with GPUs. In
Computer and Information Technology (CIT), 2010 IEEE 10th International Confer-
ence on. IEEE, 1146–1151.

[34] F V’zquez, G Ortega, JJ Fern’ndez, Inmaculada García, and Ester M Garzón. 2012.
Fast sparsematrixmatrix product based on ELLR-T and gpu computing. In Parallel
and Distributed Processing with Applications (ISPA), 2012 IEEE 10th International
Symposium on. IEEE, 669–674.

[35] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an
insightful visual performance model for multicore architectures. Commun. ACM
52, 4 (2009), 65–76.

[36] T. Wu, B. Wang, Y. Shan, F. Yan, Y. Wang, and N. Xu. 2010. Efficient PageRank
and SpMV Computation on AMD GPUs. In 2010 39th International Conference on
Parallel Processing. 81–89. https://doi.org/10.1109/ICPP.2010.17

[37] Ichitaro Yamazaki, Tingxing Dong, Raffaele Solcà, Stanimire Tomov, Jack Don-
garra, and Thomas Schulthess. 2014. Tridiagonalization of a dense symmetric
matrix on multiple GPUs and its application to symmetric eigenvalue problems.
Concurrency and computation: Practice and Experience 26, 16 (2014), 2652–2666.

[38] Ichitaro Yamazaki, Hiroto Tadano, Tetsuya Sakurai, and Tsutomu Ikegami. 2013.
Performance comparison of parallel eigensolvers based on a contour integral
method and a Lanczos method. Parallel Comput. 39, 6 (2013), 280–290.

[39] Shengen Yan, Chao Li, Yunquan Zhang, and Huiyang Zhou. 2014. yaspmv: Yet
another spmv framework on gpus. InAcm Sigplan Notices, Vol. 49. ACM, 107–118.

79

http://arxiv.org/abs/1608.01409
https://doi.org/10.1145/3079079.3079086
https://doi.org/10.1109/ICPP.2010.17

	Abstract
	1 Introduction
	2 Background and Related Work
	3 RS-SPMM
	3.1 Data Structure
	3.2 Algorithm

	4 Modeling impact of slice-size choice
	4.1 Coarsening factor for horizontal scheme (CFH)
	4.2 Threshold for classifying row as light or heavy
	4.3 Coarsening factor for vertical scheme (CFV)
	4.4 Effectiveness of Model

	5 Experimental Evaluation
	5.1 Performance of RS-SPMM
	5.2 Pre-processing overhead

	6 SpMM for O=STD
	7 Discussion
	8 Conclusion
	References

