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Abstract—Network tomography is a powerful tool to monitor
the internal state of a closed network that cannot be measured di-
rectly, with broad applications in the Internet, overlay networks,
and all-optical networks. However, existing network tomography
solutions all assume that the measurements are trust-worthy,
leaving open how effective they are in an adversarial environment
with possibly manipulated measurements. To understand the
fundamental limit of network tomography in such a setting,
we formulate and analyze a novel type of attack that aims at
maximally degrading the performance of targeted paths without
being localized by network tomography. By analyzing properties
of the optimal attack, we formulate novel combinatorial opti-
mizations to design the optimal attack strategy, which are then
linked to well-known problems and approximation algorithms.
Our evaluations on real topologies demonstrate the large damage
of such attacks, signaling the need of new defenses.

Index Terms—Network tomography, Denial of Service attack,
combinatorial optimization, approximation algorithm.

I. INTRODUCTION

Timely and accurate knowledge of network internal state
(e.g., link delays/jitters/loss rates/bandwidths) is essential for
many network management functions such as traffic engineer-
ing, load balancing, and service placement, which actively
adapt control parameters such as the routes, the rates, and
even the destinations (e.g., via service placement) according
to the current network state.

Traditionally, network administrators obtain the network
state by directly measuring internal network elements through
local support (e.g., SNMP agents) or special diagnostic tools
(e.g., traceroute). This approach has the limitation that it
requires the support of internal network devices, e.g., to run
SNMP agent or respond to ICMP probes, which has severe
limitations in networks where such support is unreliable [1],
[2], [3] or unavailable [4], [5].

Network tomography [6] provides a powerful approach for
monitoring the internal state of closed networks. Instead of
directly measuring the internal elements, network tomography
infers the states of these elements (e.g., link delays) from
end-to-end measurements (e.g., path delays) between special
nodes participating in monitoring, referred to as monitors.
As network tomography only requires the cooperation from
monitors, it has broad applications in monitoring networks
where only a subset of nodes cooperate, e.g. the Internet [1],
[2], [3], overlay networks [7], and all-optical networks [4], [5].

Despite substantial research on network tomography, most
existing solutions hinge on a fundamental assumption: the
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Fig. 1. (a) network tomography in benign setting; (b) network

tomography in adversarial setting.
measurements correctly reflect the performance of measure-

ment paths. Consider the canonical application of inferring
additive link metrics (e.g., delays, jitters, log-success rates)
from the sum metrics on measurement paths. As illustrated
in Fig. 1 (a), normally the measured path metrics will equal
the sum of link metrics on each path, yielding a linear
observation model: Rx = y, where x = (x;);,¢cr is the
column vector of unknown link metrics (L: set of links),
¥ = (¥i)p;ep is the column vector of measured path metrics
(P: set of measurement paths), and R = (ri;)p,epierL is
the measurement matrix with r;; € {0, 1} indicating whether
path p; traverses link [;. Network tomography infers the link
metrics by “inverting” the observation model, i.e., solving for
X that satisfies RX =y (the solution may not be unique).
However, if some links are controlled by an attacker (re-
ferred to as compromised links) as illustrated in Fig. 1 (b),
then the attacker can manipulate the measurements on paths
traversing these links, e.g., by introducing additional delays,
jitters, or losses. This yields a modified observation model:
Rx +z = y’, where y’ is the vector of observed path
metrics under the attack, and z = (z;),,ep is the vector of
manipulations controlled by the attacker. For example, the
attacker can be a malicious or hacked Internet Service Provider
(ISP) that tries to launch a targeted attack on a certain content
provider, whose paths to clients are modeled by P, from a set
of links it controls in the public Internet. Note that this model
is different from R(x+z) = y’, as the attacker can manipulate
packets on different paths differently at the same link, e.g.,
delaying packets belonging to one path but not delaying
packets belonging to another path. An unsuspecting network
tomography algorithm will try to explain the measurements
according to the original observation model by trying to find
X satisfying RX = y’. This can cause many issues, such as
lack of feasible solutions [8] and incorrect fault diagnosis [9].
In this work, we aim to understand the fundamental limit
of a stealthy attacker in maximally degrading the performance



of end-to-end communications without being localized by net-
work tomography. Such understanding will not only quantify
the limitation of existing network tomography algorithms but
also provide insights for the design of new algorithms that are
suitable for adversarial environments.

A. Related Work

Since introduced by Vardi [10], network tomography has
expanded to a rich family of network monitoring techniques
that infer network internal characteristics from external mea-
surements [6], [11]. Early works focused on best-effort so-
lutions, which tried to find the most likely network state
from given measurements, obtained by unicast [12], [13], [14],
[15], multicast [16], [17], [18], [19], [20], [21], and their
variations (e.g., bicast [22], flexicast [23], and back-to-back
unicast [24], [25], [21]). After observing that an arbitrary set
of measurements is frequently insufficient for identifying all
the link metrics [26], [13], [27], [7], [28], later works aimed
at either reducing ambiguity by imposing a tie breaker (e.g.,
[14], [15], [29]) or relaxing the objective (e.g., [7], [30], [31]),
or ensuring identifiability by carefully designing the monitor
locations and the paths to measure [32], [33], [34], [35], [36],
[51, [371, [38], [39], [40]. All these works assume a benign
setting, where the links behave consistently.

In contrast, very few works have considered network to-
mography in an adversarial setting, where links can behave
inconsistently for different paths. In [8], the problem is tackled
in the context of a non-neutral network, where some links can
discriminate packets sent on different paths. In [9], the problem
is tackled in the context of an attacker that can manipulate
the measurements traversing malicious nodes, with a primary
goal of scapegoating certain benign links as the cause of poor
performance. While our problem setting is similar to [9], our
results differ significantly as explained in Section II-C.

B. Summary of Contributions
The main contributions of this work are:

1) We formulate a novel attack, called stealthy DeGrading of
Service (DGoS) attack, that aims at maximally degrading the
performances of end-to-end communications by manipulating
the performances of compromised links, without letting these
links localized by network tomography.

2) To understand the fundamental limit of this attack, we
develop algorithms to explicitly design which links to compro-
mise and how to manipulate the performances of these links.
We show that selecting which links to compromise is a novel
combinatorial optimization problem that is NP-hard. By link-
ing this problem to several well-known problems, we leverage
existing algorithms to achieve guaranteed approximation.

3) We further consider a constrained number of compromised
links. We show that the constrained link selection problem
is another novel combinatorial optimization problem which
reduces to the previous problem as the constraint relaxes.

4) Our evaluations on real topologies show that the proposed
attack can significantly degrade communication performance
(injecting 4-30 seconds of delay per path) without exposing
the compromised links to network tomography.

Roadmap. Section II formulates our problem. Section III
designs the attack in the unconstrained case, which is evaluated
in Section IV. Section V addresses the constrained case.
Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION
A. Network Model

We model the network monitored by network tomography
as an undirected graph G = (N, L), where N is the set of
nodes and L the set of links. Each link /; € L is associated
with an unknown metric z; that describes its performance
(e.g., average link delay). We assume that these link metrics
are additive, i.e., the metric of a path equals the sum of
its link metrics, which is a canonical model representing
important performance metrics including delays, jitters, log-
success rates, and many other statistics.

B. Network Tomography Model

Suppose that a set of users of the above network (or their ad-
ministrator) send traffic through G along a set of paths P, and
use network tomography to monitor the received performances
at individual links. For example, a content provider delivering
content to its customers through the public Internet can use
network tomography to monitor the received performances at
links in different ISPs to detect violations of network neutrality
[8]. Let R = (74j)p,ep,,cr be the matrix representation of P,
called the measurement matrix, where r;; € {0, 1} indicates
if path p; traverses link I;. Let r; = (7;;);,e be the i-th row
in R. Given the measured path metrics y = (y;)p,cp, network
tomography seeks to find a solution X to the link metrics that
can explain the measurements, i.e., RX = y.

We note that the solution is generally non-unique as R may
not be full-column-rank. This issue, known as the lack of
identifiability, has been widely recognized [26], [13], [27],
[7], [28]. Instead of making a limiting assumption that R
must be full-column-rank as in [9], we allow an arbitrary R,
and consider a generic network tomography solver that can
compute the set of all feasible solutions.

C. Attack Model

Suppose that an attacker attempts to degrade the perfor-
mance of P by manipulating the performances of certain com-
promised links. Let L,, C L denote the set of compromised
links and L, = L\ L,, the set of uncompromised links. Ac-
cordingly, the paths P,, C P traversing at least one compro-
mised link are called compromised paths, and the remaining
paths P, = P\ P, are called uncompromised paths. The at-
tacker can only control the performance at compromised links.

Let z = (2;)p,cp denote the vector of manipulations,
where z; is the increment in the metric of path p, € P
caused by the attacker. It is easy to see that z must satisfy
the following constraints [9]:

1) Only the metrics of compromised paths can be manipu-
lated, i.e., z; = 0 for any p; € P,.

2) Path performances can only be degraded (not improved)
due to manipulation, i.e., z; > 0 for any p; € P,,.



Moreover, to stay stealthy, the attacker must preserve feasi-
bility of the network tomography problem to hide the presence
of artificial manipulations, i.e., after the manipulations, there
must exist at least one solution X that satisfies RX = Rx + z.
In addition, he must protect the compromised links from
detection, i.e., among all the feasible solutions to X, there
must be at least one solution that does not flag any of the
compromised links as bad links. We define “bad links” as
those whose metrics are above a given threshold 7. In practice,
there may also be an upper bound on link metrics, denoted by
Tmax (Which can be c0), e.g., the maximum delay implied by
the limited buffer size at a network interface. To avoid trivial
cases, we assume that ; < 7 < T,y forall [; € L.

We formulate the attacker’s goal as the following optimiza-
tion, called the stealthy DeGrading of Service (DGoS) attack:

max Z r;(X — x) (la)
Pi€Pm,

s.t. (X — x) =0, Vp; € Py, (1b)
r;(x —x) >0, Vpi € Py, (I¢)
Tomax > & > 0, Vi € Lo, (1d)
r>F >0, W€ L, (lo)
L, CL. (1)

This is an optimization of L,, and X, where L,, specifies
the links to compromise, and X, denoting (one of the feasible
solutions to) the inferred link metrics, is used to compute the
actual manipulations z to inject onto the paths by

z = R(X — x). (2)

Computing the manipulations by (2) automatically ensures
feasibility of the network tomography problem. Note that this
does not require the compromised links to behave consistently
across paths, as illustrated in Fig. 2. The objective (la) is
to maximize the total performance degradation on paths
in P, measured by the increase in the sum path metric.
Constraints (1b,1c) ensure that manipulations are feasible,
i.e., only performed on compromised paths to degrade the
performance. Constraint (le) ensures that the attack cannot
be localized by network tomography, as all the compromised
links perform normally according to the inferred link metrics.

Remark: A similar problem of scapegoating attack has
been studied in [9], which tries to fool network tomography
while degrading path performances. Despite the similarity, [9]
substantially differs from our work in that: (i) the scapegoating
attack is required to mislead network tomography to detect
certain uncompromised links as bad links, while we do not
impose such constraints; (ii) [9] assumes the measurement
matrix to be full-column-rank, which is frequently violated in
practice [26], [13], [27], [7], [28], while we do not make such
assumption; (iii) [9] assumes that the set L,, of compromised
links is given, while we treat it as a decision variable, which
allows us to model a more intelligent attacker that strategically
places attacks. In fact, the selection of L,, significantly im-
pacts the capability of an attack and is the focus of this work.

terminal ® node —— uncompromised link == compromised link
1 1 1
I3 I2 | l2 I l2
Is | Is

la |4 4
p1=A{l,15, 14 71 = 150ms =z = 420ms T =150ms 21 =2270ms
p2=1{l1,13,15 Ty = 150ms 22 = 420ms Ty = 150ms 22 = 4120ms
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Fig. 2. Example: (a) input, (b) optimal manipulations under one L,
(c) optimal manipulations under another L,.

D. Example

Consider the example in Fig. 2 (a). Suppose that before
the attack, each link has a delay of 10 ms, 7 = 150 ms, and
Tmax = 2000 ms. Fig. 2 (b) shows the optimal manipulations
under an intuitive selection of L,,—compromising all the
links. In this case, the attack can cause 2240 ms of extra
delay in total, by injecting a delay of z; onto path p; at some
of the compromised links traversed by p;. Fig. 2 (c) shows
the optimal manipulations under another selection of L,,,
which, although having fewer compromised links, is able to
cause 15190 ms of extra delay, as the uncompromised links
I3 and l5 can be used to explain the large delays of paths
P1, P2, D4, Ps, P to network tomography without exposing the
compromised links. Note that the inferred link metrics can
differ from the actual metrics, and the compromised links can
behave inconsistently across paths, e.g., in Fig. 2 (c), link /4
injects no more than 280 ms of delay onto ps but 4120 ms
of delay onto p». This example shows that DGoS attack can
cause large damage without being localized, and the amount
of damage critically depends on the selection of L,,.

III. OPTIMAL ATTACK STRATEGY

Although (1) is a joint optimization of both L,, and X, we
will show that the main challenge is in optimizing L,,, which
can be reduced to a novel “minimum cut” problem.

A. Optimizing X under Given L,

Given the set of compromised links L., (1) is a linear
program (LP) in X that can be solved in polynomial time
by standard LP solvers, and the result gives the optimal
manipulation vector (under the given L,,) by (2). Nevertheless,
there are several simplifications that can be used to speed up
the solution for large networks.

First, we observe that constraint (1c) has no effect on the
optimal solution, as it only imposes a lower bound on X, while
the objective (la) tries to increase X. We can thus drop this
constraint without changing the optimal solution to X.

Furthermore, we observe that the dimension of the solution
space can be reduced. To this end, we rewrite (1) after
dropping constraint (1c) in a vector form:

max 1jp, Ry (X — %) (3a)
st Ry% = Ryx, (3b)
¢>x>0, (3¢)



where 1)p, | is the 1x|P,,| vector of 1’s, R,;, = (r;)p,ecp,, and

R, = (ri)p,ep, are the sub-measurement matrices represent-
ing all the compromised/uncompromised paths, respectively,

and ¢ := (¢;);,er is the vector of upper bounds on 7; in
(1d,1e), i.e.,
[T il €L,
05 = { Twax 11 € Ly, @

The “>” in (3c) means element-wise >.

To reduce the dimension for optimization (3), we perform
a change of variable as follows. Since z; < 7 (Vl; € L), it
is easy to see that X = x is a feasible solution to (3). Let B
be a matrix whose columns form a basis of null(R,,), the null
space of R,,. Let nullity(R,,) denote the nullity of R, i.e., the
dimension of null(R,,). Then X = Bc + x will always satisfy
R,X = R,x for any (nullity(R,) X 1)-vector c. Substituting
X by Bc + x, (3) is transformed into:

max 1p, | RmBc
s.t. ¢ —x > Be > —x,

(52)
(5b)

which is an optimization in c.

Compared to (3), the number of decision variables in (5)
is reduced from the number of links to the nullity of R,,. By
the rank-nullity theorem, rank(R,,) + nullity(R,,) = |L|, and
hence the reduction will be significant when rank(R,,) is large,
i.e., the number of linearly independent uncompromised paths
is large.

B. Property of the Optimal L.,

To facilitate the optimization of L,,,, we first investigate the
property of the optimal solution. As is shown in Section II-D,
simply compromising all the links is generally suboptimal,
as the attacker will have to make all the link metrics appear
normal (i.e., fj < 7 for all [; € L), which limits the amount
of performance degradation he can inject on each path.

Generally, compromising a link /; can have two contradict-
ing effects:

1) previously uncompromised paths that traverse [; can
now be controlled by the attacker, which removes some
constraints of the type (1b) and hence may increase the
objective value;

2) instead of constraint (1d), [; will be subject to a tighter
constraint (le), which may decrease the objective value.

Due to these contradicting effects, it is not obvious what is
the optimal set of links to compromise.

Our main result is a closed-form characterization of the
optimal set of compromised links. To present this result, we
introduce the following definitions.

Definition 1. Given a set of paths P, we define:

1) the traversal number of link [, denoted by wy;, as the
number of paths in P that traverse link /;

2) a cut C' of P as a subset of links such that every p € P
traverses at least one link in C;

3) the minimum-traversal cut C* of P as the cut of P with
the minimum total traversal number, i.e., >, w; <
> icc w; for any cut C.

Theorem III.1. The optimal set of compromised links L7,
(i.e., the optimal solution to L,, in (1)) is the minimum-
traversal cut of P.

We will prove this theorem in two steps. Step 1 is to show
that L7 must be a cut of P, as otherwise the attacker will
be able to improve his objective value by compromising one

more link.

Lemma III.2. Suppose that for the initial set of compromised
links Lg,?), there is at least one uncompromised path p;«. Then
there must exist an uncompromised link [;« € p;«, such that
compromising [;« increases the total performance degradation,
ie, T(LY U {1;-}) > T(LY), where I'(L') is the optimal
objective value of (1) when L,,, = L'.

Proof. Let L£2) (L%O)) be the initial set of compromised
(uncompromised) links, RSS ) (P,(LO)) be the initial set of
compromised (uncompromised) paths, and X(°) be the optimal
solution to X when L,,, = qug). By assumption, p;« € REO).

First, we observe that there must exist a link I« € p;« for
which 3??3) < 7, as otherwise (i.e., fgo) > 7 for all I; € p;+),
we will have r;»x(©) > |pix|T > ri+x, where |p;«| is the hop
count on p;-. This contradicts with r;+XY) = r;«x according
to constraint (1b).

Next, for the above link [;-, adding a constraint :?j* <
7 to (1) will not change the optimal solution when L,, =
Lg,?). That is, X(©) remains an optimal solution to the following
optimization in X

max Z r;(X — x) (6a)
piePy)

s.t. (X —x) =0, Vp; € PO, (6b)

Tmax > Tj > 0, vi; € LN {1;-1, (6¢)

T>7; >0, Vi, € LOU{l;-}.  (6d)

Note that we can omit constraint (1c) as explained in Sec-
tion III-A.

Moreover, after compromising link /-, i.e., for L,, = L,(g) U
{l;~}, the optimization (1) becomes

max Z ri(X —x)+ Z

piePy pi€ PR\

r; (X — x) (7a)
Vp; € PV (7b)
vi; € LY, (Tc)

vi; € LY, (7d)

S.t. ri(ﬁ—x) =0,
Tmax Z EE_] Z Oa
T > /l‘\j > 0,

where Lg) (Lg)) is the new set of compromised (uncompro-
mised) links, and P,(,L1 ) (P,gl)) is the new set of compromised
(uncompromised) paths.

Finally, since P\" C P\, LV = L{O\ {1;-}, and L)) =
LYu {l;~}, any feasible solution to (6) remains feasible for
(7). In particular, %) is a feasible solution to (7), with an
objective value of ZpiePf,?) r; (X0 — x) = F(ng)). Thus,

under the optimal solution to (7), the objective value F(ng) U
{l;+}) must be no smaller than F(ng)). O



Step 2 is to show that among all the cuts, L}, must be the
one that minimizes the total traversal number.

Lemma IIL.3. Among all the cuts of P, the optimal set of
links to compromise is the cut with the minimum total traversal
number.

Proof. By definition, if L,, is a cut of P, then P,, = P and
P, = ), which simplifies (1) for a given L., to

max Z r;(X — x) (8a)
pi€EP

S.t. Tmax = Ej >0, Vlj € Ly, (8b)

T > i‘\j >0, Vlj € L,,. (8¢c)

It is easy to see that the optimal solution to (8) is z; = 7 if
l; € Ly, and Z; = Tyax if [; € L,,. Under this solution, the
objective value of (8) equals

Z (miT + (|pi‘ — M) Tmax) — Z r;x

piEP pi€EP
= (T - Tmax) Z m; + Tmax Z |pz‘ - Z r;X, (9)
piEP p,EP pi€EP

where m; is the number of compromised links on path p; and
|p;| is the total number of links on p;. Only the first term
(T — Tmax) Zmep m,; depends on L,,.

AS T — Tmax < 0, maximizing (9) is equivalent to minimiz-
ing > - pmi. We further note that

Somi=>"Y e, =>, Y Licp=»_ wi, (10)

piEP p.EPlEp; l€L,, pi€eP lEL,,

where 1. is the indicator function. Thus, the optimal solution
to L,, among all the cuts is the cut with the minimum total
traversal number. O

Proof of Theorem II1.1. By Lemma III.2, L} must be a cut
of P. Then by Lemma III.3, it must have the minimum total
traversal number among all the cuts. Therefore, L}, must be
the minimum-traversal cut. O

Remark: The minimum-traversal cut of P may not be
unique. From the proof of Theorem III.1, we see that all the
minimum-traversal cuts are equally optimal.

Theorem III.1 implies that given a set of targeted paths P,
the optimal set L,,, of links to compromise is the solution to
a novel combinatorial optimization problem as follows.

Definition 2. Given a set of paths P, the adversarial link
selection (ALS) problem is to find the cut of P with the
minimum total traversal number.

C. Hardness Analysis

Below we show the hardness of ALS by connecting it to
several well-known hard problems in combinatorial optimiza-
tion in both the general case and a nontrivial special case.

1) ALS is NP-hard: We show that ALS for an arbitrary set
of P is NP-hard. To show this, we consider the corresponding
decision problem: determine whether a set of paths P has a cut
with a given total traversal number 7". We will prove that the

decision version of ALS is NP-hard by showing a reduction
from the exact cover problem [41].

Proof of ALS being NP-hard. Given a set of elements of £ =
{e1, ea,..., e, } and a collection S of subsets of F, an exact
cover is a subcollection S* of S such that each element in £
is covered once and only once by sets in S*. To determine if
there exists an exact cover is NP-complete [41].

The exact cover problem can be reduced to the follow-
ing instance of ALS. We construct a set of paths P =
{p1, p2,..., pn} in one-one correspondence with the set of
elements E = {ej, es,..., e,}. Similarly, we construct a set
of links L = {ly, ls, ..., l,,} in one-one correspondence with
the collection of sets S = {s1, S2,..., S }. The relationship
between the paths and the links is such that link /; is traversed
by path p; if and only if set s; covers element e;. Note that
such construction is always possible as we allow P to contain
arbitrary paths in the general case of ALS. Then we claim
that there exists an exact cover S* of F if and only if the
constructed instance of ALS has a cut with a total traversal
number of |P].

Suppose that there exists an exact cover S*, i.e., E C
Uses» s and > q. |s| = |E|. According to the above con-
struction, the corresponding set of links C* = {I; : s, € S*}
must cut each path in P once and only once, and hence C*
is a cut with a total traversal number of |P)|.

Conversely, suppose that the constructed set of paths P has
a cut C* with a total traversal number of |P|. By Definition 1,
C* must cut each path in P once and only once. According to
the construction, the corresponding subcollection S* = {s; :
l; € C*} must cover each element in E once and only once,
i.e., S* is an exact cover of E. O

2) Hardness of all-possible-paths ALS: Now consider a
special case where P contains all possible paths between a
given set K of terminals. This case models networks that
employ advanced routing mechanisms such as source routing
or Software Defined Networking (SDN), that allow traffic to
be routed on any path between a pair of terminals. We call
the ALS problem in this special case all-possible-paths ALS.

All-possible-paths ALS can reduce to the Multiway Cut
problem [42]. Also known as the Multiterminal Cut prob-
lem, the Multiway Cut problem is a graph division problem,
where given an undirected graph G(V, E) with link weights
w : E — RT and a set of terminals K C V, we want
to find a subset of links with the minimum total weight to
cut all the paths between the terminals. When the number
of terminals equals 2, the Multiway Cut problem becomes
the min-cut problem, which can be solved efficiently by the
max-flow algorithms. We see that all-possible-paths ALS is
a special case of Multiway Cut, where the weights are the
traversal numbers. We note that the two problems are not
equivalent: in Multiway Cut, the link weights are arbitrary;
in all-possible-paths ALS, the link weights are the traversal
numbers, which are determined by the network topology and
the locations of terminals.

It is known that Multiway Cut is NP-hard, even in a very
special case when all the links have unit weights.
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Theorem II1.4 ([42]). The Multiway Cut problem is NP-hard
for all |K| > 3, even if all the link weights are equal to 1.

The hardness of all-possible-paths ALS still remains an
open question. Based on Theorem IIl.4, we conjecture that
all-possible-paths ALS is NP-hard, since it is also a special
case of Multiway Cut.

Fig. 3 summarizes the relationship between ALS and known
NP-hard problems, where the arrows indicate the direction of
reduction. As shown in Section III-D1, ALS can reduce to the
Weighted Set Cover (WSC) problem, which is also NP-hard.

D. Approximation Algorithms

As ALS is NP-hard, there is no polynomial-time exact
algorithm for it unless P = NP. As we mentioned, ALS
reduces to Weighted Set Cover (WSC), and all-possible-paths
ALS reduces to Multiway Cut. Below we will use known
approximation algorithms designed for WSC and Multiway
Cut to solve ALS and all-possible-paths ALS, respectively.

1) The greedy algorithm for ALS: Given a set of elements
E ={ey, es,...,e,} and a collection S = {s1, $2,..., S}
of subsets of E, where each s; has a weight of w;, WSC
aims at finding the subcollection S* that covers E with the
minimum total weight.

We reduce ALS (for arbitrary P) to WSC as follows. Given
a set of paths P = {pi1, pa,..., pn} traversing a set of
links L = {l1, la,..., L}, we construct a set of elements
E = {e1, es,..., e,} in one-one correspondence with the
paths, and a collection of sets S = {s1, S2,..., S} in one-
one correspondence with the links, such that set s; covers
element e; if and only if link /; is on path p;, as illustrated in
Fig. 4. Each set s; has a weight w; that equals the traversal
number of link [;. It is easy to see that finding the cut with
the minimum total traversal number is equivalent to finding
the subcollection of sets to cover all the elements with the
minimum total weight. We note that in the constructed instance
of WSC, the weight of a set always equals its cardinality (i.e.,
w; = |s;]), and thus ALS is a special case of WSC.

We apply a well-known greedy algorithm [43], designed
for solving WSC, to the ALS problem. The algorithm iterates
until all the paths are compromised, where in each iteration,
it picks a link with the smallest cost-value ratio and adds the
paths traversing it to the set of compromised paths. For a link
l, we define the cost-value ratio by %, where P, is the
set of paths traversing link . Since the link weight equals |P|,
this ratio is the cost we pay for each newly compromised path,
if link [ is selected. The pseudocode is shown in Algorithm 1.

/ 7,
E ={e, e,, e;} - I P
sy ={ep, epf, w; =2 1, 75
5, = {eg}, wy, =1 /, 3
sy ={ey ), wy=1 c / 2
sy= et wy=1 1, e
S5 = {ey, €5, ws =2 I I,
I P3
1, 15

Fig. 4. Reducing ALS to Weighted Set Cover

Algorithm 1: Greedy ALS

input : Paths P

output: Compromised links L,

P < @;

Ly, < 0,

while P,, # P do
Find the link [ with the smallest ratio
P, +~ P, UP;
Ly < Ly UL,

return L, ;

[Py .
[PI\Pm]|>

NS R W N e

Although straightforward, this greedy algorithm is known to
have the best approximation guarantee for WSC [43]. Applied
to our problem, it guarantees the following.

Theorem IIL.5 ([43]). Algorithm 1 achieves an approximation
factor of Hipj = 1+ 5 + ... + 5 = O(log|P]) for ALS,
ie., T < H p /TP = O(log|P|)T°", where T¢Y is the
total traversal number achieved by Algorithm 1 and T°F" is the
minimum total traversal number of all the cuts of P.

However, our ultimate goal is to maximize the performance
degradation measured by (la). We can substitute Zpi cp M
by 7€ in (9) to get the corresponding objective value.

Corollary IIL.6. Using Algorithm 1 to select the compromised
links and the LP (5) to compute the manipulations achieves a
total performance degradation of

(T - Tmax)Tgreedy + Tmax Z |pl| - Z riX Z
pi€P piEP

(7 = Twmax) Hip T + Tonaxe »_ |pil = Y 1%, (11)
pi€EP piEP

where T#¢% and T°P are defined as in Theorem IIL5.

2) CKR relaxation with rounding for all-possible-paths
ALS: As mentioned in Section III-C2, all-possible-paths ALS
reduces to the Multiway Cut problem, which means we can
apply algorithms for Multiway Cut to all-possible-paths ALS.

Calinescu et al. [44] proposed an approach called CKR
relaxation for Multiway Cut, for which it has been proved
that it is NP-hard to achieve a better integrality gap than CKR
relaxation for any fixed number of terminals, assuming the
Unique Games Conjecture to hold [45]. In a minimization
problem, the integrality gap is the ratio between the objective
value of the optimal integer solution and that of its relaxation,
i.e., OPTiy/OPT elaxation- We first formulate the Multiway Cut
problem as an integer program, and then introduce its CKR
relaxation. Given a set V of nodes, a set £ of links with



weights (wy v/ )(v,0)eps and a set K (K C V) of terminals,
the Multiway Cut problem aims at solving

1
min 3 Z Z Wy o/ | Tyt — Toyr 1] (12a)
(vw')EEtEK
sty myy =1, Yo eV, (12b)
teK
Ty =1, Vie K, (12¢)
2y €0, 1}, YoeV, teK, (12d)

where 2, ; is the decision variable indicating whether node v
will be connected to terminal ¢ after the cut.

By relaxing the integer constraint (12d), we can get the
following convex optimization:

o1
min 5 Z Z Wy,v’ |$’u,t - -7311’,1‘,| (13a)
(vv)eEEtEK
sty myy =1, Yo eV, (13b)
teK
Tep = 17 Vt € K, (13C)
Tyt > 0, YveV, te K. (13d)
Replacing |z, ¢ — 2, ¢| by a new variable y,, . ¢ s.t.
Yo't Z Tyt — T’ ty V(’U,'U/) S E7 te K7 (14)
y’U,’U’,t Z x’u',t - xv,ta V(’U,'U/) € E7 te K7 (15)

converts (13) into an LP [43], i.e., an LP relaxation of (12).

For each node v and each terminal ¢, the solution Z,, ; to the
LP relaxation can be viewed as the probability of assigning
v to (the connected component containing) t after the cut.
A rounding scheme is used to convert this fractional value to
either 0 or 1, subject to the constraint (13b). Different rounding
schemes lead to different approximation factors. Specifically,
the randomized rounding scheme achieves an approximation
factor of 1.5 [43], and the best-known rounding scheme can
achieve an approximation factor of 1.2965 [46].

Finally, given the rounded value of z,, (Vv € V, t € K),
the cut is the set of all the links whose endpoints are assigned
to different terminals, i.e., L,, = {(v,v") € E : 3¢, ¢’ €
K with ¢t # t/, satisfying x,, ; = z, ¢ = 1}.

By similar argument as Corollary III.6, we can bound the
overall performance of the attack as follows.

Corollary IIL.7. Using CKR relaxation with an o-
approximation rounding scheme to select the compromised
links and the LP (5) to compute the manipulations achieves a
total performance degradation of

(T - Tmax)TCKR + Tmax Z ‘p1| - Z r;x Z
piEP pi€EP

(T - 7-max)aT@pt + Tmax Z ‘pll - Z riX,

pi€P piEP

(16)

where TCKR is the total traversal number of the links selected

by CKR relaxation, and T°" is the minimum total traversal
number of all the multiway cuts between the terminals.

TABLE I summarizes the performance guarantee of the

TABLE I
APPROXIMATION ALGORITHMS FOR ALS

algorithm case approximation factor
Greedy ALS general O(log |P|)
CKR relaxation all-possible-paths a!

TABLE II

PARAMETERS OF ISP TOPOLOGIES

Network size #nodes | #links | #candidate terminals?
Bics small 33 48 16

BTN small 53 65 25

Colt medium 153 191 45

Cogent medium 197 245 21

AS 20965 large 968 8283 75

AS 8717 large 1778 3755 1075

aforementioned algorithms in solving ALS.

IV. PERFORMANCE EVALUATION

We conduct simulations to evaluate the capabilities of an
intelligent attacker employing our strategies in comparison
with benchmarks, based on real ISP topologies. To be concrete,
we consider delay-based DGoS attacks, where the attacker
tries to inject the maximum amount of delay onto a set of
targeted paths, while the user of these paths tries to localize
links with abnormally large delays by network tomography.

A. Experiment Setup

1) Network topology: We use real network topologies from
public datasets, whose parameters are shown in the TABLE II.
The first four topologies are Point of Presence (PoP)-level
topologies from the Internet Topology Zoo [47], and the last
two topologies are router-level topologies from the CAIDA
project [48]. We classify the topologies into small, medium,
and large networks. For each topology, we select a given
number of terminals uniformly at random from low-degree
nodes (degree < 2), and repeat this selection for 20 times.

2) Parameter setting: For each topology and each set of

selected terminals, we compute the paths in P in two ways:
(i) All possible paths: In this case, P contains all the
cycle-free paths between the terminals. Note that cutting
all the cycle-free paths is equivalent to cutting all the paths
between the terminals. Since the number of all the cycle-free
paths can grow exponentially with the network size, we only
evaluate this case on the small networks.
(ii) Shortest paths: In this case, P only contains one shortest
path (in hop count) for each pair of terminals, with ties broken
arbitrarily. Since there are only (/51) paths for | K| terminals,
we evaluate this case on the medium—large networks.

Before the attack, each link has a delay of 10 ms. A link
is considered as “normal” if its delay is within 150 ms, i.e.,
7 = 150. The maximum delay at a link is 2000 ms, i.e.,
Tmax = 2000.

'The constant o depends on the rounding scheme, e.g., 1.5 for randomized
rounding and 1.2965 for the rounding scheme in [46].

2For Bics, these are all the nodes with degree < 2; for the other networks,
these are all the nodes with degree one.
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Fig. 5. Average delay degradation for the case of all possible paths
(top 2) and the case of shortest paths (bottom 4)

3) Benchmarks: We compare the two proposed algorithms,
Algorithm 1 (‘greedy’) and CKR relaxation with randomized
rounding (‘CKR’), with the following three heuristics for
selecting the set of compromised links:

(1) “Random selection” (‘random’): To illustrate the capability
of an attacker who cannot actively select which links to com-
promise, this algorithm selects k links uniformly at random,
where k is set to the number of compromised links selected
by ‘CKR’ to facilitate comparison.

(i) “Top traversal” (‘top traversal’): Based on the intuition that
compromising the most traversed links will provide control
over more paths, this algorithm selects the %k links with the
largest traversal numbers. Again, to facilitate comparison, k is
set to the number of compromised links selected by ‘CKR’.
(iii) “Compromise all” (‘all’): Compromising all the links is
also a very intuitive approach to maximize the damage the
attacker can cause to the network.

Under each selection of compromised links, we solve the LP
(5) to compute the total performance degradation (measured
by the total amount of delay injected by the attacker over all
the paths) under the optimal manipulations.

B. Results

Overall, we observe that the proposed algorithms (‘greedy’
and ‘CKR’) perform similarly to each other and significantly
better than the heuristic algorithms. More importantly, these
algorithms show that it is possible to introduce significant
delay on communication paths without being localized by
network tomography, signaling the need of new defenses.

1) Case of all possible paths: In the case that P contains all
the possible paths between the terminals, the results are shown
in Fig. 5 (top 2). The y-axis is the performance of the attacker
measured by the average injected delay per path (plus/minus
one standard deviation), computed over 20 sets of randomly
selected terminals, and the x-axis is the number of terminals.
In this experiment, ‘CKR’ performs the best as expected, as
it has the best approximation guarantee. Both ‘CKR’ and
‘greedy’ perform much better than the heuristic algorithms,

demonstrating the importance of carefully selecting the
compromised links in modeling the capabilities of intelligent
attackers. Among the heuristic algorithms, ‘top traversal’
performs the best, as it leads to more compromised paths than
‘random’. However, it is not sufficient to just compromise
more paths. To prevent the compromised links from being
detected as bad links by network tomography, the attacker
needs to ensure constraint (le). Therefore, compromising too
many links can reduce the attacker’s capability in injecting
delays. This is why ‘all’ performs the worst.

2) Case of shortest paths: Similar results are shown in
Fig. 5 (bottom 4) for the case where P only contains the
shortest paths between the terminals. We see that ‘greedy’
and ‘CKR’ still significantly outperform the other algorithms.
However, ‘CKR’ is not always the best any more, because
it is not designed for this case. In particular, ‘CKR’ will
select links to cut all the possible paths between the terminals,
while the ALS problem in this case only needs to cut the
shortest paths. Because of that, ‘CKR’ may compromise more
links than necessary, which reduces the attacker’s capability
to manipulate the path delays.

In both cases, the best algorithm is able to inject significant
delays (4-30 seconds/path) without exposing the compromised
links to network tomography.

V. CONSTRAINED ATTACKS

So far we have assumed that the attacker can compromise
any subset of links. In practice, however, there are usually
constraints on which and/or how many links the attacker is
capable of compromising. To shed light on the impact of such
constraints, we analyze the optimal attack strategy under the
constraint that |L,,| < k for a given k € Z*. We leave the
investigation of other types of constraints to future work.

A. Asymptotic Property of the Optimal L,

As the cardinality constraint generally invalidates Theo-
rem III.1, new results are needed to reveal properties of the
optimal set of compromised links under this constraint. First,
we observe that Lemmas II1.2 and II1.3 imply the following.

Lemma V.1. Let L}, be the optimal set of compromised links
under a cardinality constraint k. Then:

1) if L}, is not a cut of P, its cardinality must equal k;
2) if L}, is a cut of P, it must have the minimum total
traversal number among all the cuts of cardinality < k.

Proof. By Lemma II1.2, if L7, is not a cut and |L?,| < k, then
we must be able to improve L}, by adding another link to it,
leading to a contradiction with the optimality of L}, .

By Lemma II1.3, the optimal choice of L,, among the cuts
is the one that minimizes the total traversal number. The proof
still holds if choices are limited to cuts of cardinality < k. [

What is missing is an exact description of the optimal choice
of L,, from all the cuts and non-cuts of up to k links. To this
end, we have the following result.



Theorem V.2. If 7. > r;x (Vp; € P) and Tax > 7, then
the optimal set L}, of compromised links under a cardinality
constraint k is the one achieving:

max Z Z ri; =: Ty (17a)
l;€L], pi€Pm
st. Ly, CL, |Ly| <k, (17b)

where L, := L, \U,cp, p is the set of uncompromised links
that are only traversed by compromised paths.

Proof. We rewrite the objective function (1a) as
DD @ —w) =) Y (@ —wy).
pi€Pm ;€L I;€EL pi€EPm,

If [; € L,,, then ; < 7 by (le). If I; € L,, then T; <
min(Tmax, Ming. p, e p, ,r,; =1 r:X) by (1b,1d). For a large Tiax.,
Z; can achieve Ty, if and only if [; € L. Thus, when Tyax
is large, (18) can be simplified to:

Z Z Tij(./l‘\j—xj)%Tmax Z Z Tij-

;€L p; € Py, I,EL!, p;€ Py,

(18)

19)

Therefore, the objective in (1a) is asymptotically equivalent to
the objective in (17a) (as Tyax —> 00). O]

We note that while Theorem V.2 is only proved for the
case of large Tpax, it reduces to Theorem III.1 when L,,
is restricted to cuts. This is because if L,, is a cut, then
L, = Ly and Py = P, and hence ) 7/ >, cp, Tij =
2_1,eL, 2opiep Tij» Which is the total traversal number of all
the uncompromised links. Maximizing the total traversal num-
ber of the uncompromised links is equivalent to minimizing
the total traversal number of the compromised links.

B. Heuristic Algorithms and Evaluation

Theorem V.2 implies another novel combinatorial opti-
mization problem formulated by (17), which we call the
constrained adversarial link selection (CALS) problem. Due
to space limitation, we will present initial results on solving
CALS below, and leave further investigation to future work.

Heuristic algorithms: Although Algorithm 1 (‘greedy ALS’)
can be easily adapted to satisfy the cardinality constraint (17b)
by stopping after selecting k links, it is not designed for the
objective of CALS. Nevertheless, we can modify it for CALS,
referred to as Greedy CALS (‘greedy CALS’). Greedy CALS
has the same structure as Algorithm 1, except:

e line 3 is replaced by “while P, # P and |L,,| < k”;
e line 4 is replaced by “find the link [ yielding the maximum
increase in 7,,,” (where T, is defined in (17a)).

Moreover, the heuristics “random selection” and “top traver-
sal” (see Section IV-A3) can also be easily adapted to satisfy
the cardinality constraint (17b).

Evaluation results: We evaluate these algorithms under
the setup in Section IV-A, except that we fix the number
of terminals and vary the constraint k. Table III shows the
parameter values, where the last column gives the number
of links selected by the original, unconstrained Greedy ALS
(Algorithm 1) in order to cut all the paths in P. The results
are shown in Fig. 6, where k£ = oo is the unconstrained case.

TABLE III
PARAMETERS FOR EVALUATING CONSTRAINED ATTACKS

Network #terminals k | Ly | by Greedy ALS?
Bics 8 [2, 6] 13.85 (1.85)
BTN 8 [2,6] 7.4 (0.86)
Colt 15 [9, 13] 15.5 (1.02)
Cogent 15 [9, 13] 20.8 (1.63)
AS 20965 25 [21, 25] 73.35 (9.84)
AS 8717 25 [21, 25] 44.25 (8.28)
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Fig. 6. Average delay degradation under a constrained number of
compromised links

First of all, the result shows that it is necessary to change
the objective from minimizing the total traversal number to
maximizing 7, (17a) when we (the attacker) are not able
to compromise a cut due to constraints. This is indicated by
the poor performance of ‘greedy ALS’ compared to ‘greedy
CALS’ when k is small. Meanwhile, when we are able
to compromise a cut (k = o0), ‘greedy CALS’ performs
almost as well as ‘greedy ALS’, and far better than the other
heuristics. These observations indicate that ‘greedy CALS’
better models the attacker’s capability in the general case.

VI. CONCLUSION

This work helps to establish the fundamental limit of net-
work tomography in adversarial environments by formulating
and analyzing a novel type of attack, called the stealthy
DeGrading of Service (DGoS) attack, that aims at maximally
degrading the performance of targeted paths without being
localized by network tomography. Through careful analysis,
we derive explicit properties of the optimal attack strategy. The
derived properties allow us to link our problem to well-known
combinatorial optimization problems, and leverage existing
algorithms with approximation guarantees. Our evaluations on
real topologies show that the proposed attack can significantly
degrade communication performances without being localized
by network tomography, signaling the need of new defenses.

31t shows ‘mean (standard deviation)’ computed over 20 sets of terminals.
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