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Abstract. Effective symbolic evaluation is key to building scalable ver-
ification and synthesis tools based on SMT solving. These tools use sym-
bolic evaluators to reduce the semantics of all paths through a finite
program to logical constraints, discharged with an SMT solver. Using an
evaluator effectively requires tool developers to be able to identify and re-
pair performance bottlenecks in code under all-path evaluation, a difficult
task, even for experts. This paper presents a new method for repairing
such bottlenecks automatically. The key idea is to formulate the symbolic

performance repair problem as combinatorial search through a space of
semantics-preserving transformations, or repairs, to find an equivalent
program with minimal cost under symbolic evaluation. The key to real-
izing this idea is (1) defining a small set of generic repairs that can be
combined to fix common bottlenecks, and (2) searching for combinations
of these repairs to find good solutions quickly and best ones eventually.
Our technique, SymFix, contributes repairs based on deforestation and
symbolic reflection, and an efficient algorithm that uses symbolic profil-
ing to guide the search for fixes. To evaluate SymFix, we implement it
for the Rosette solver-aided language and symbolic evaluator. Applying
SymFix to 18 published verification and synthesis tools built in Rosette,
we find that it automatically improves the performance of 12 tools by a
factor of 1.1×–91.7×, and 4 of these fixes match or outperform expert-
written repairs. SymFix also finds 5 fixes that were missed by experts.

Keywords: symbolic evaluation · performance optimization

1 Introduction

Tools based on SMT solving have automated vital programming tasks in many
domains, from verifying safety-critical properties of medical software [33] to syn-
thesizing fast computational kernels for cryptographic applications [35]. These
tools employ symbolic evaluation [26, 4] to reduce the semantics of all paths
through a loop-free (i.e., finite) program to logical constraints. The resulting
constraints are then used to express queries about program behavior as logical
satisfiability queries, discharged with an SMT solver. Since the solvability of such
queries hinges on the compactness and simplicity of the underlying constraints,
effective symbolic evaluation is key to building effective solver-aided tools.



Building a tool used to require crafting a custom symbolic evaluator, a
difficult task that can take years of expert work. Today, this burden is much
lower thanks to reusable symbolic evaluators provided by solver-aided host lan-
guages [45, 47] and frameworks [9, 39]. To build a tool, developers simply write an
interpreter for the tool’s source language in the solver-aided host language. When
this interpreter executes a source program, the host’s symbolic evaluator reduces
both the interpreter and the program to constraints. The interpreter can control
its symbolic evaluation, and thus the encoding, through constructs [44, 38] ex-
posed by the host language and through the structure of its implementation [7].
By exploiting these control mechanisms, developers can create, in weeks, state-
of-the-art tools [29] that outperform a custom symbolic execution engine [30, 41].

But if an interpreter performs poorly on a host symbolic evaluator, finding
and fixing the bottleneck can be daunting. Recent work on symbolic profiling [7]
explains why: classic performance engineering techniques assume a single path
of execution, and the all-path execution model of symbolic evaluation violates
this assumption. As a result, standard profiling tools (e.g., time-based) fail to
identify the code that needs to be optimized, and standard optimizations (e.g.,
breaking early out of a loop) can make performance asymptotically worse under
symbolic evaluation. Symbolic profiling addresses the first problem, providing
a new performance model for symbolic evaluation and an automatic technique
for identifying performance bottlenecks in solver-aided code. The second prob-
lem, however, remains open, with developers relying on experience and ad-hoc
experimentation to optimize their code.

To address this problem, we present a new method for automatic repair of
common performance bottlenecks in solver-aided code. The key idea is to for-
mulate the symbolic performance repair problem as combinatorial search in a
space of semantics-preserving transformations, or repairs. Our technique, Sym-
Fix, takes as input a solver-aided program and a workload, and it searches the
repair space for a semantically equivalent program that minimizes the cost of
symbolic evaluation [7] on the input workload. The choice of repairs and the
search strategy are critical to the usefulness and completeness of SymFix. This
paper contributes a small set of generic repairs that combine to fix common bot-
tlenecks, and an effective algorithm for combining repairs into (optimal) fixes.

What makes a generic repair useful for code under symbolic evaluation? Intu-
itively, a repair is useful if its application reduces the cost of symbolic evaluation
for a large class of programs. This cost depends on the program’s control struc-
ture and the evaluator’s strategy for splitting and merging states [7, 27, 46]. So
useful repairs change the program’s control structure or evaluation strategy.

Based on this insight, we develop a set of three repairs that employ deforesta-
tion [48] to simplify program structure and symbolic reflection [46] to simplify
the evaluation strategy. Deforestation is a classic optimization for functional
programming languages that eliminates intermediate lists. Under concrete eval-
uation, deforestation improves performance by a constant factor. Under symbolic
evaluation, however, it can improve performance asymptotically when the inter-
mediate lists are symbolic. We use deforestation based on build/foldr fusion [22]



as one of our repairs. We also develop two repairs for host languages that sup-
port symbolic reflection—a set of language constructs that a program can use
to inspect its symbolic state and control its symbolic evaluation (e.g., by forcing
a split on a merged state). These two repairs work by creating more oppor-
tunities for concrete evaluation. As such, they can both improve performance
asymptotically and, in some cases, fix divergence due to loss of concreteness.

The search space defined by our repairs is finite for every program, so it
supports complete and optimal search. But it is also intractably large for real
programs. We therefore formulate SymFix as an anytime algorithm, equipped
with a pruning mechanism that exploits precedence of repairs and a prioritization
heuristic that exploits symbolic profiling information. The pruning mechanism is
inspired by partial order reduction [15]: if two repairs can always be reordered so
that one is applied before the other without changing the result, SymFix explores
only one of the orders. The prioritization heuristic uses ranking information com-
puted by symbolic profiling to decide what parts of the program to repair first.
In particular, symbolic profiling takes as input a program and a workload, and
ranks the locations in the program from most to least likely bottlenecks. SymFix
uses this ranking to quickly drive the search toward most promising solutions.

We implement SymFix for Rosette [43, 46, 45], a solver-aided host language
that extends Racket [37, 18] with support for symbolic evaluation, reflection,
and profiling. To evaluate SymFix’s effectiveness, we apply it to 15 solver-aided
tools [2, 5, 6, 8, 10, 12, 14, 25, 36, 33, 46, 50, 51] studied in the paper on symbolic
profiling [7], as well as 3 more recent tools [29, 31, 35]. SymFix improves the per-
formance of 12 tools by a factor of 1.1×–91.7×, and 4 of these fixes match or out-
perform those written by experts. SymFix also finds 5 fixes that were missed by
experts. We further show that the improvements made by SymFix generalize to
unseen workloads, and that its search strategy is essential for finding useful fixes.

In summary, this paper makes the following contributions:

1. A formulation of the symbolic performance repair problem as combinatorial
search in a space of semantics-preserving transformations, or repairs.

2. SymFix, a new technique for solving this problem. SymFix contributes a set
of repairs based on deforestation and symbolic reflection, and an effective
anytime algorithm for combining these repairs into useful fixes.

3. An implementation of SymFix for the Rosette solver-aided language [43, 46].

4. An evaluation of SymFix’s effectiveness on 18 published solver-aided tools
built in Rosette, showing that it can find repairs that outperform expert
fixes and that generalize to unseen workloads.

The rest of the paper illustrates symbolic performance repair on a small exam-
ple (§2); formulates the problem of repairing performance bottlenecks in solver-
aided code (§3); presents the SymFix algorithm, repairs, and implementation
for Rosette (§4); shows the effectiveness of SymFix at repairing bottlenecks in
real solver-aided tools hosted by Rosette (§5); discusses related work (§6); and
concludes with a summary of key points (§7).



2 Overview

This section illustrates symbolic performance repair on a small solver-aided pro-
gram (Figure 1). The program is adapted from Serval [29], a framework for
verifying systems code at the instruction level. Serval is built in Rosette [43],
and it supports creating scalable automated verifiers by writing interpreters.
Serval’s authors show how to profile this program with a symbolic profiler, and
manually fix the bottleneck using a custom construct implemented as a Rosette
macro. We first revisit this analysis to highlight the challenges of repairing bot-
tlenecks in solver-aided code, and then show how SymFix repairs the problem
automatically and generically, using a repair based on symbolic reflection [46].

1 ; cpu state: program counter and registers
2 (struct cpu (pc regs) #:mutable)
3
4 ; interpret a program from a cpu state
5 (define (interpret c program) ; A
6 (define i (fetch c program)) ; B
7 (match i
8 [(list opcode rd rs imm)
9 (execute c opcode rd rs imm)

10 (when (not (equal? opcode ’ret))
11 (interpret c program))]))
12
13 ; fetch an instruction at the current pc
14 (define (fetch c program)
15 (define pc (cpu-pc c))
16 (vector-ref program pc)) ; C
17
18 ; read register rs
19 (define (cpu-reg c rs)
20 (vector-ref (cpu-regs c) rs))
21
22 ; write value v to register rd
23 (define (set-cpu-reg! c rd v)
24 (vector-set! (cpu-regs c) rd v))
25
26 ; execute instruction (opcode rd rs imm)
27 (define (execute c opcode rd rs imm)
28 (define pc (cpu-pc c))
29 (case opcode
30 [(ret)
31 (set-cpu-pc! c 0)] ; D
32 [(bnez)

33 (if (! (= (cpu-reg c rs) 0))
34 (set-cpu-pc! c imm) ; E
35 (set-cpu-pc! c (+ 1 pc)))] ; F
36 [(sgtz)
37 (set-cpu-pc! c (+ 1 pc))
38 (if (> (cpu-reg c rs) 0)
39 (set-cpu-reg! c rd 1) ; G
40 (set-cpu-reg! c rd 0))] ; H
41 [(sltz)
42 (set-cpu-pc! c (+ 1 pc))
43 (if (< (cpu-reg c rs) 0)
44 (set-cpu-reg! c rd 1) ; I
45 (set-cpu-reg! c rd 0))] ; J
46 [(li)
47 (set-cpu-pc! c (+ 1 pc)) ; K
48 (set-cpu-reg! c rd imm)])) ; L
49
50 (define sgnt #( ; sign in ToyRISC
51 (sltz 1 0 #f) ; 0. r1 = r0<0 ? 1 : 0
52 (bnez #f 1 4) ; 1. branch to 4 if r1!=0
53 (sgtz 0 0 #f) ; 2. r0 = r0>0 ? 1 : 0
54 (ret #f #f #f) ; 3. return
55 (li 0 #f -1) ; 4. r0 = -1
56 (ret #f #f #f) ; 5. return
57 ))
58
59 (define-symbolic X Y integer?)
60 (define c (cpu 0 (vector X Y)))
61 (interpret c sgnt)
62 (verify
63 (assert (= (cpu-reg c 0) (sgn X))))

Fig. 1: A ToyRISC interpreter and program in Rosette, adapted from Serval [29].

Solver-aided programming. Figure 1 shows a small program [29] written in
Rosette, a solver-aided host language that extends Racket [37] with support
for symbolic evaluation. Rosette programs behave like Racket programs when
executed on concrete values. But Rosette also lifts programs, via symbolic eval-
uation, to operate on symbolic values. These values are used to formulate solver-
aided queries, such as verifying that a program satisfies its specification, ex-
pressed as assertions, on all inputs. The example verifies a program in ToyRISC,
a small subset of RISC-V [1], by lifting its interpreter to work on symbolic values.



The ToyRISC interpreter (lines 1–48) implements a simple recursive pro-
cedure for executing a ToyRISC program from a given CPU state. The state
consists of a program counter and vector of two registers, r0 and r1, both hold-
ing integers. A program is a sequence of instructions that manipulate the state.
An instruction is a list of four values, (opcode rd rs imm), specifying the in-
struction’s opcode, destination and source registers, and the immediate constant.
Unused arguments are denoted by #f; for example, the return instruction takes
no arguments, denoted by (ret #f #f #f). In addition to the return instruc-
tion, which halts the execution (line 10), the language also includes instructions
for conditional branching (bnez), loading values into registers (li), and com-
paring register values to zero (sgtz and sltz). The example ToyRISC program,
sgnt, uses these instructions to compute the sign of the value in register r0,
storing the result back into r0 and using r1 as a scratch register.

The sgnt program is correct if it produces the same result as the host sign
procedure, sgn, for all valid CPU states. To verify sgnt, we first use Rosette’s
define-symbolic form to create two fresh symbolic integers, X and Y , and
bind them to the variables X and Y (line 59). Next, we use these variables to
create a CPU state c with the program counter set to 0 and registers set to X

and Y (line 60). The symbolic state c represents all valid concrete CPU states.
Finally, we interpret sgnt on c and use Rosette’s verify query to search for a
counterexample to the assertion that register r0 holds the sign of X. A coun-
terexample to this query would bind the symbolic values X and Y to concrete
integers that trigger the assertion failure. But since sgnt is correct, the query
returns (unsat) to indicate the absence of counterexamples.

Symbolic evaluation and profiling. When interpreting sgnt on the symbolic state
c, Rosette evaluates all paths through the interpreter code and reduces their
meaning to symbolic expressions over X and Y . For example, after the call
to the interpreter (line 61), register r0 of c holds the symbolic value ite(X <

0,−1, ite(0 < X, 1, 0)), which encodes the meaning of sgnt. This value is part of
the symbolic heap that Rosette generates while exploring the interpreter’s sym-
bolic evaluation graph [7] (Figure 2a). The heap consists of all symbolic values
created during evaluation. The graph is a DAG over program states and guarded
transitions between states, and its shape reflects the evaluator’s strategy for path
splitting and state merging. The symbolic heap and evaluation graph character-
ize the behavior of solver-aided code under every (forward) symbolic evaluation
strategy, and controlling their complexity is key to good performance [7].

To help with this task, Rosette provides a symbolic profiler, SymPro, that
monitors the heap and the graph to identify performance bottlenecks. Sym-
Pro computes summary statistics about the effect of each procedure call on
these structures, such as the number of symbolic values added to the heap, and
the number of path splits and state merges added to the graph. It then uses
these statistics to rank the calls to suggest likely bottlenecks. When applied to
ToyRISC, SymPro identifies the calls to execute at line 9 and vector-ref at line
16 as the likely bottlenecks. But how does one diagnose and fix these bottlenecks?



v0 : X < 0
v1 : ¬v0
v2 : ite(v0, 1, 0)
v3 : ite(v0, 4, 2)
v4 : ite(v0, li, sgtz)
v5 : ite(v0,#f, 0)
v6 : ite(v0,−1,#f)
v7 : ite(v0, 5, 3)
v8 : X > 0
v9 : ¬v8
v10 : ite(v8, 1, 0)
v11 : ite(v0,−1, v10)

c 7→ cpu(0, X, Y )
i 7→ (sltz 1 0#f)

B

c 7→ cpu(1, X, 1)

I

c 7→ cpu(1, X, 0)

J

c 7→ cpu(1, X, v2)
i 7→ (bnez#f 1 4)

B

v0 v1

c 7→ cpu(4, X, v2)

E

c 7→ cpu(2, X, v2)

F

c 7→ cpu(v3, X, v2)

A

v0 v1

c 7→ cpu(v3, X, v2)
i 7→ (v4 0 v5 v6)

B

c 7→ cpu(v7,−1, v2)

L

c 7→ cpu(v3, X, v2)

c 7→ cpu(v7, 1, v2)

G

c 7→ cpu(v7, 0, v2)

H

c 7→ cpu(v7, v10, v2)

c 7→ cpu(v7, v11, v2)

A

c 7→ cpu(v7, v11, v2)
i 7→ (ret#f#f#f)

B

c 7→ cpu(0, v11, v2)

D

(v4 = li) ≡ v0 (v4 = sgtz) ≡ v1 v4 = ret
v4 = bnez

v4 = sltz

v8 v9

vector-ref

v1
v0

v3 = 0 v3 = 1 v3 = 3

v3 = 5

C

vector-ref

v9
v8

v7 = 0 v7 = 1 v7 = 2

v7 = 4

C

(a) Original (Figure 1)

v0 : X < 0
v1 : ¬v0
v2 : ite(v0, 1, 0)
v3 : ite(v0, 4, 2)
v4 : X > 0
v5 : ¬X > 0
v6 : ite(v4, 1, 0)
v7 : ite(v0,−1, v6)

c 7→ cpu(0, X, Y )
i 7→ (sltz 1 0#f)

B

c 7→ cpu(1, X, 1)

I

c 7→ cpu(1, X, 0)

J

c 7→ cpu(1, X, v2)
i 7→ (bnez#f 1 4)

B

v0 v1

c 7→ cpu(4, X, v2)

E

c 7→ cpu(2, X, v2)

F

c 7→ cpu(v3, X, v2)

O

v0 v1

c 7→ cpu(4, X, v2)
i 7→ (li 0#f−1)

B v0

c 7→ cpu(5,−1, v2)
i 7→ (ret#f#f#f)

B

c 7→ cpu(0,−1, v2)

D

c 7→ cpu(2, X, v2)
i 7→ (sgtz 0 0#f)

Bv1

c 7→ cpu(3, 1, v2)

G

c 7→ cpu(3, 0, v2)

H

c 7→ cpu(3, v6, v2)
i 7→ (ret#f#f#f)

B

v4 v5

c 7→ cpu(0, v6, v2)

D

c 7→ cpu(0, v7, v2)

(b) Repaired (Figure 3)

Fig. 2: Simplified symbolic evaluation heap and graph for the original (a) and
repaired (b) ToyRISC code. Heaps are shown in gray boxes. Nodes in a symbolic
evaluation graph are program states, and edges are guarded transitions between
states, labeled with the condition that guards the transition. Edges ending at
pink circles denote infeasible transitions. Dotted edges indicate elided parts of
the graph. Circled letters are program locations, included for readability.

Manually repairing bottlenecks. The authors of ToyRISC reasoned [29] that the
first location returned by SymPro “is not surprising since execute implements
the core functionality, but vector-ref is a red flag.” Examining the merging
statistics for vector-ref, they concluded that vector-ref is being invoked with
a symbolic program counter to produce a “merged symbolic instruction” (high-
lighted in Figure 2a), which represents a set of concrete instructions, only some of
which are feasible. Since execute consumes this symbolic instruction (line 9), its
evaluation involves exploring infeasible paths, leading to degraded performance
on our example and non-termination on more complex ToyRISC programs.



(define (interpret c program) ; A
(serval:split-pc [cpu pc] c ; O

(define i (fetch c program)) ; B
(match i

[(list opcode rd rs imm)
(execute c opcode rd rs imm)
(when (not (equal? opcode ’ret))

(interpret c program))])))

(a) Manual repair [29]

(define (interpret c program) ; A
(split-all (c) ; O

(define i (fetch c program)) ; B
(match i

[(list opcode rd rs imm)
(execute c opcode rd rs imm)
(when (not (equal? opcode ’ret))

(interpret c program))])))

(b) Generated repair

Fig. 3: Manual and SymFix repair for ToyRISC code.

Having diagnosed the problem, the authors of ToyRISC then reasoned that
the fix should force Rosette to split the evaluation into separate paths that keep
the program counter concrete. Such a fix can be implemented through symbolic
reflection [46], a set of constructs that allow programmers to control Rosette’s
splitting and merging behavior. In this case, ToyRISC authors used symbolic re-
flection and metaprogramming with macros (which Rosette inherits from Racket)
to create a custom construct, split-pc, that forces a path split on CPU states
with symbolic program counters. Applying split-pc to the body of interpret
(Figure 3a) fixes this bottleneck (Figure 2b)—and ensures that symbolic evalua-
tion terminates on all ToyRISC programs. But while simple to implement, this fix
is hard won, requiring manual analysis of symbolic profiles, diagnosis of the bot-
tleneck, and, finally, repair with a custom construct based on symbolic reflection.

Repairing bottlenecks with SymFix. SymFix lowers this burden by automatically
repairing common performance bottlenecks in solver-aided code. The core idea is
to view the repair problem (§3) as search for a sequence of semantics-preserving
repairs that transform an input program into an equivalent program with min-
imal symbolic cost—a value computed from the program’s symbolic profiling
metrics. To realize this approach, SymFix solves two core technical challenges
(§4): (1) developing a small set of generic repairs that can be combined into
useful and general repair sequences for common bottlenecks, and (2) developing
a search strategy that discovers good fixes quickly and best fixes eventually.

SymFix can repair complex bottlenecks in real code as well as or better than
experts (§5). It can also repair ToyRISC, finding the fix in Figure 3b. This fix
has the same effect as the expert split-pc fix but uses a generic split-all

construct. The construct forces a split on the value stored in a variable depend-
ing on its type: if the value is a struct, the split is performed on all of its fields
that hold symbolic values. The split-all construct can be soundly applied to
any bound occurrence of a local variable in a program, leading to intractable
search spaces even for small programs. For example, there are 55 bound local
variables in ToyRISC, so the split-all repair alone can be used to transform
ToyRISC into 255 syntactically distinct programs. SymFix is able to navigate
this large search space effectively, matching the expert fix in a few seconds.



3 Symbolic Performance Repair

As §2 illustrates, performance bottlenecks in solver-aided code are difficult to
repair manually. This section presents a new formulation of this problem that
enables automatic solving. Our formulation is based on two core concepts: re-
pairs and fixes. A repair is a semantics-preserving transformation on programs.
A fix combines a sequence of repair steps, with the goal of reducing the cost of
a program under symbolic evaluation. The symbolic performance repair problem
is to find a fix, drawn from a finite set of repairs, that minimizes this cost. We
describe repairs and fixes first, present the symbolic performance repair problem
next, and end with a discussion of key properties of repairs that are sufficient
for solving the repair problem in principle and helpful for solving it in practice.

3.1 Repairs, fixes, and symbolic cost

Repairs. A repair transforms a program to a set of programs that are syntacti-
cally different but semantically equivalent (Definition 1 and 2). A repair operates
on programs represented as abstract syntax trees (ASTs). It takes as input an
AST and a node in this AST, and produces an ordered set of ASTs that transform
the input program at the given node or one of its ancestors. This interface gen-
eralizes classic program transformations by allowing repairs to produce multiple
ASTs. The classic interface is often implemented by heuristically choosing one of
many possible outputs that an underlying rewrite rule can generate. Our inter-
face externalizes this choice, while still letting repairs provide heuristic knowledge
in the order of the generated ASTs, as illustrated in Example 1. This enables an
external algorithm to drive the search for fixes, with advice from the repairs.

Definition 1 (Program). A program is an abstract syntax tree (AST) in a
language P, consisting of labeled nodes and edges. A program P ∈ P denotes
a function JP K : Σ → Σ on program states, which map program variables to
values. Programs P and P ′ are syntactically equivalent if their trees consist of
identically labeled nodes, connected by identically labeled edges. They are se-
mantically equivalent iff JP KPσ ≡ JP ′KPσ for all program states σ ∈ Σ, where
J·KP : P → Σ → Σ denotes the concrete semantics of P.

Definition 2 (Repair). A repair R : P → L → 2P is a function that maps
a program and a location to an ordered finite set of programs. A location l ∈ L
identifies a node in an AST. The set R(P, l) is empty if the repair R is not ap-
plicable to P at the location l. Otherwise, each program Pi ∈ R(P, l) satisfies two
properties. First, P and Pi differ in a single subtree rooted at l or an ancestor
of l in P . Second, P and Pi are semantically equivalent.

Example 1. Consider a repair R1 that performs the rewrite e ∗ 2 → e << 1 on in-
teger expressions. There are three ways to apply this rewrite to the program P =
1 + (a * 2) * 2 at the node a or its ancestors, and R1 orders them as follows:

1 + (a << 1) << 1 ; 0: Apply the rewrite exhaustively.
1 + (a << 1) * 2 ; 1: Apply the rewrite just to a’s parent.
1 + (a * 2) << 1 ; 2: Apply the rewrite just to a’s grandparent.



The order of the generated ASTs suggests that applying the rewrite exhaustively
is most useful, followed by applying it from the inside out.

Fixes. A fix composes a sequence of repair steps into a function from programs
to programs (Definition 3 and 4). A repair step 〈R, l, i〉 specifies the repair R

to apply to a program, the location l at which to apply it, and the index i of
the program to select from the resulting ordered set of programs. In essence,
a repair step turns a repair into a classic program transformation by choosing
one of the repair’s outputs, and fixes can compose these steps to create new
transformations, as illustrated in Example 2.

Definition 3 (Repair step). A repair step 〈R, l, i〉 consists of a repair R,
program location l, and non-negative integer i. A step denotes the function
J〈R, l, i〉K : P ∪ {⊥} → P ∪ {⊥} as follows: J〈R, l, i〉KP = R(P, l)[i] if P 6= ⊥
and |R(P, l)| > i; otherwise the result is ⊥. We write R(P, l)[i] to mean the ith

program in the ordered set R(P, l).

Definition 4 (Fix). A fix F = [〈R1, l1, i1〉, . . . , 〈Rn, ln, in〉] is a finite sequence
of one or more repair steps. A fix F denotes the function that composes the re-
pair steps of F , i.e., JF K = J〈Rn, ln, in〉K ◦ . . . ◦ J〈R1, l1, i1〉K. We say that fix is
successful for a program P if JF KP 6= ⊥.

Example 2. Consider the fix F = [〈R1, a, 0〉, 〈R2, a, 0〉], where R1 is the repair
from Example 1 and R2 performs the rewrite (e << 1) << 1 → e << 2. Applying
F to the program P from Example 1 produces the program 1 + (a << 2):
J〈R2, a, 0〉K(J〈R1, a, 0〉KP ) = J〈R2, a, 0〉K(1 + (a << 1) << 1) = 1 + (a << 2).
In other words, the fix F composes its repair steps to rewrite the second subex-
pression of P using the rule (e ∗ 2) ∗ 2 → e << 2.

Cost. There are many ways to combine repairs into fixes for a given program,
even when the program is small and repairs are few (Example 3). To choose a fix
that is useful for improving the performance of a program under symbolic eval-
uation, we need a way to measure the cost of symbolic evaluation (Definition 5).
We address this challenge by building on the observation that the behavior of
symbolic evaluators is characterized by two structures: the symbolic heap and
the symbolic evaluation graph. Our framework defines symbolic evaluation as a
function from programs and program states to these structures (Definition 6),
and the cost of symbolic evaluation as a function from these structures to (nat-
ural) numbers (Definition 7). The details of the cost function are not important
for the framework, although they are important in practice: the symbolic cost
should correlate with concrete metrics that are meaningful to developers (e.g.,
end-to-end running time), and SymFix uses a cost function (§4) that is sim-
ple but effective (§5). What matters, however, is that the symbolic evaluator
is a total function, which means that we consider only finite computations. In
particular, we make the standard assumption that programs P ∈ P are free of
input-dependent loops, and are therefore guaranteed to terminate under sym-
bolic evaluation, ensuring that we can compute the cost for every fix.



Definition 5 (Useful fix). A fix F is useful for a program P ∈ P, program
state σ ∈ Σ, symbolic evaluator S : P → Σ → G, and cost c : G × H → N, if
JF KP 6= ⊥ and c(S(JF KP, σ)) < c(S(P, σ)).

Definition 6 (Symbolic evaluator). A symbolic evaluator S : P → Σ →
G×H is a function that takes as input a program P ∈ P and program state σ ∈ Σ,
and outputs a pair 〈G,H〉, where G ∈ G is a symbolic evaluation graph and H ∈
H is a symbolic heap [7]. A symbolic heap H = (VH , EH) is a directed acyclic
graph (DAG) with labeled nodes and edges. Heap nodes are symbolic values, and
heap edges connect compound symbolic values to the symbolic or concrete values
from which they are built. A symbolic evaluation graph G = (VG, EG) is a DAG
where nodes VG ⊆ Σ are program states and edges are transitions between states,
each labeled with a (symbolic or concrete) boolean value that guards the transition
and a program location in P that caused the transition. The graph G has σ ∈ VG

as its sole source node. The heap H contains all symbolic values that appear in
G as part of a program state or as an edge label. If H = (∅, ∅) is empty, then G

consists of a single path from σ to JP KPσ, where all edges are labeled with ⊤.

Definition 7 (Symbolic cost). A symbolic cost function c : G × H → N as-
signs a cost, expressed as a natural number, to the results of symbolic evaluation.

Example 3. Consider again the fix F , repairs R1 and R2, and program P from
Example 1 and 2. In addition to F , there are seven different ways to compose
repair steps over R1 and R2 into fixes for P ; two are equivalent to F and five
to the outputs of R1 on P . Intuitively, F produces the best program for all
workloads, and in this case, the intuition is captured by a simple cost function
that measures the size of the symbolic heap, i.e., c(〈G,H〉) = |VH |. For example,
letting σ = {a 7→ A}, where A is a symbolic integer, we can compute the cost of
P , the output of the fix [〈R1, a, 0〉], and the output of the fix F as follows:

c(S(1 + (a * 2) * 2, σ)) = |{v0 : A ∗ 2, v1 : v0 ∗ 2, v2 : 1 + v1}| = 3
c(S(1 + (a << 1) << 1, σ)) = |{v0 : A << 1, v1 : v0 << 1, v2 : 1 + v1}| = 3
c(S(1 + (a << 2), σ)) = |{v0 : A << 2, v1 : 1 + v0}| = 2

As expected, the program produced by F has the lowest cost.

3.2 The symbolic performance repair problem

The symbolic performance repair problem is to find a fix, drawn from a finite
set of repairs, that minimizes the symbolic cost of a program on a given work-
load (Definition 8). To make this problem solvable in principle, it is sufficient
to ensure that the set of repairs is terminating [17], preventing the repairs from
being indefinitely applicable to any program (Definition 9). To help solve the
repair problem in practice, we can use a general property of repairs, precedence,
to prune fixes during search without missing any programs (Definition 10). A
partial order �R is a precedence relation on a set of repairs R if every successful
fix over R can be turned into an equivalent fix by permuting its repair steps to
respect �R. To search for a fix over R with �R, it is sufficient to explore suc-
cessful fixes that order all repair steps according to �R. Example 4 illustrates



these definitions, and we use them in the next section to develop the SymFix
algorithm for solving the repair problem.

Definition 8 (Symbolic performance repair). Let P ∈ P be a program,
σ ∈ Σ a program state, R a finite set of repairs for P, S a symbolic evaluator
for P, and c a symbolic cost function for S. The symbolic performance repair
problem is to find a useful fix F over R that minimizes the cost of evaluating P

on σ; i.e., for all useful fixes F ′ 6= F over R, c(S(JF KP, σ)) ≤ c(S(JF ′KP, σ)).

Definition 9 (Terminating repair set). Let R be a finite set of repairs for
the language P. We say this set is terminating if for every program P ∈ P, there
is an upper bound on the length of every successful fix for P drawn from R.

Definition 10 (Repair precedence). Let R be a finite set of repairs and �R a
partial order on R. Let spine be a function that projects out the repairs from a fix,
i.e., spine(F ) = [R1, . . . , Rn] for F = [〈R1, l1, i1〉, . . . , 〈Rn, ln, in〉]. We say that
�R is a precedence on R if for every program P and every successful fix F for P
drawn from R, there is a fix F ′ such that JF KP = JF ′KP and spine(F ′) permutes
spine(F ) to respect �R, i.e., ∀i, j. spine(F

′)[i] �R spine(F ′)[j] =⇒ i ≤ j.

Example 4. Recall the program P , repairs R1 and R2, fix F , and cost c from
Examples 1–3. The repair set R = {R1, R2} is terminating; R1 �R R2; and F is
a solution to the symbolic performance repair problem for P , R, and c.

4 The SymFix Algorithm and Repairs

This section presents the SymFix system for solving the symbolic performance
repair problem. SymFix consists of two components: an anytime algorithm for
searching the space of fixes drawn from a terminating set of repairs, and a set
of three generic repairs for functional solver-aided languages with symbolic re-
flection. We present the algorithm first and prove its correctness and optimality
(§4.1). We then describe the repairs and a total precedence relation on them,
and argue that they form a terminating set (§4.2). We end by highlighting the
key details of our implementation of SymFix for the Rosette language (§4.3).

4.1 Profile-guided search for fixes

The SymFix algorithm (Figure 4) solves the symbolic performance repair prob-
lem for a cost function based on symbolic profiling. As shown in prior work [7],
the metrics computed by a symbolic profiler closely reflect the overall running
time of solver-aided code (i.e., symbolic evaluation together with solving time),
and reducing these metrics is key to improving performance. In addition to com-
puting these metrics, which measure the size and shape of the symbolic heap and
evaluation graph, a symbolic profilerM also ranks all locations in a program from
most to least expensive to evaluate. The SymFix algorithm uses both of these
outputs: it searches for a fix that minimizes the sum of the profiling metrics for
a given program and workload, and the search is guided by the profiling ranks.



1 function SymFix(Pin, σ, S,M,R,�R)

2 function Info(P, F ) ⊲ Symbolic profile sorts P ’s locations from most to least
3 〈LP ,mP 〉 ←M(S(P, σ)) ⊲ likely bottlencks & collects k profiling metrics.
4 cP ←

∑
0≤i<k

mi ⊲ P ’s cost is the sum of its profiling metrics.

5 return {P 7→ {cost 7→ cP , locs 7→ LP ,fix 7→ F}}

6 function Next(P, info) ⊲ Picks a successor of P , if any, with an extra repair.
7 F ← info[P ][fix ] ⊲ Get the fix that generated P .
8 for R in R do ⊲ Iterate over the repairs in R that do not precede
9 if

∧
Ri∈spine(F ) Ri = R ∨ R 6�R Ri then ⊲ any repairs in P ’s fix,

10 for l in info[P ][locs] do ⊲ then over the ranked locations in P ,
11 for Pj ∈ R(P, l) do ⊲ and then over the ordered results
12 if info[Pj ] = ⊥ then ⊲ to find a new program Pj .
13 return 〈Pj , append(F, 〈R, l, j〉)〉 ⊲ Return Pj and its fix.

14 return 〈⊥,⊥〉 ⊲ No new programs can be obtained from P .

15 function Search(Pin)
16 W, info ← {Pin}, Info(Pin, []) ⊲ Initialize the work set and info map.
17 minCost ← info[Pin][cost] ⊲ Set P ’s cost as current best cost.
18 while W 6= ∅ do

19 P ← min(W,λP.info[P ][cost]) ⊲ Choose the cheapest P ∈ W to work on.
20 〈P ′, F ′〉 ← Next(P, info) ⊲ Get a successor P ′ of P and its fix.
21 if 〈P ′, F ′〉 6= 〈⊥,⊥〉 then ⊲ If P ′ exists,
22 W, info ← W ∪ {P ′}, info ∪ Info(P ′, F ′) ⊲ add P ′ to W and info;
23 if info[P ′][cost] < minCost then ⊲ and if P ′ is best so far,
24 minCost ← info[P ′][cost] ⊲ update minCost and
25 print P ′ ⊲ output P ′.

26 else

27 W ← W \ {P} ⊲ No new programs can be obtained from P .

28 Search(Pin)

Fig. 4: The SymFix search algorithm takes as input a program Pin in a language
P, a workload σ, a symbolic evaluator S for P, a symbolic profiler M for S, a
terminating set of repairs R for P, and a precedence relation �R on R. It searches
the space of fixes drawn from R to find a program that is equivalent to Pin and
minimizes the cost of symbolic evaluation on σ according to the profiler M .

The algorithm relies on the Search procedure to explore the space of fixes for
a program Pin and a terminating set of repairs R. Search performs exhaustive
(rather than greedy) best-first search over this space. It starts by initializing the
work set W with the input program Pin; the info map with a binding from Pin

to its profiling metrics, cost, and the empty fix; and the minimum cost minCost
with the cost of Pin. The main search loop then picks a program P from the
work set, applies one repair step to P to get a new program P ′ (corresponding
to a fix F ′ that extends P ’s fix by one step), and adds P ′ to both W and info. If
the new program P ′ has lower cost than minCost , Search prints it and updates
minCost accordingly. But if no new programs can be obtained from P by apply-
ing a repair from R, then P has no more children in the underlying search graph,
and Search removes it from the work set W . The search continues as long as
there are programs in W , so the entire search graph is eventually explored.

To make the algorithm practically useful, Search employs the procedure
Next to explore the most promising fixes first and to prune the search space
without losing completeness. Search selects the cheapest fix F to extend (line
19), and Next constructs the repair step 〈R, l, j〉 to add to F . To construct



〈R, l, j〉, Next first choses a repair R that does not strictly precede any of the
repairs in F , according to the precedence relation �R. Then, it uses profiling
rankings and the repair’s ordering heuristics to select the location l and the re-
sult index j. This ensures that Search explores only fixes that respect �R, and
that it tries to repair most likely bottlenecks first.

The SymFix algorithm is sound, complete, and optimal (Theorem 1). It pro-
duces correct fixes that are semantically equivalent to the input program (sound-
ness). It always finds a useful fix if one exists in the space defined by the given
set of repairs (completeness). And it eventually finds the best such fix that min-
imizes the symbolic profiling cost on the given workload (optimality).

Theorem 1. Let Pin be a program, σ a workload, R a terminating set of repairs,
and �R a precedence relation on R. Then SymFix(Pin, σ, S,M,R,�R) terminates
and satisfies the following conditions. (1) If Search produces a program at line
25, then every such program P ′ is semantically equivalent to Pin (soundness). (2)
For every cost C < info[Pin][cost], if there is a fix over R with cost C, then line 25
will produce a program P ′ with info[P ′][cost] ≤ C (completeness and optimality).

Proof (sketch). First, note that SymFix explores a search graph where nodes are
programs; two nodes are related by a repair step drawn from R; and a path in the
graph corresponds to a fix over R that respects �R. All paths through this graph
are finite because R is terminating (Definition 9). There are also finitely many
such paths because each node has finitely many outgoing edges (repair steps),
which follows from the finite number of repairs, locations in a program, and repair
outputs. So, (1) the underlying search graph is finite, and (2) by definition of �R

(Definition 10), it contains the same programs (nodes) as the search graph that
includes all fixes (paths) over R. Next, note that (3) SymFix adds each program
in this graph to the work set W exactly once, and (4) each added program is
removed after all of its children have been visited, i.e., added to the info map.
These facts (1–4) imply that the algorithm terminates after visiting each program
in the space defined by R. Completeness and optimality then follow from lines
17, 23–25, and soundness follows from the definition of repairs (Definition 2).

4.2 Effective repairs for functional hosts with symbolic reflection

The effectiveness of SymFix hinges on the choice of the repair set R. An ideal
repair set includes a few key repairs that can be combined into useful fixes for
most common performance bottlenecks. This section presents three such repairs
for solver-aided languages with functional programming primitives and symbolic
reflection. We use Rosette to illustrate these repairs, but they are applicable to
any solver-aided language or framework with similar features (e.g., [47, 39, 13]).

Deforestation. Higher-order combinators (e.g., map, fold, and filter) are com-
monly used to operate on lists. Using these combinators generates intermediate
lists that are immediately consumed and discarded, slowing down concrete eval-
uation by a constant factor. Under symbolic evaluation, however, the resulting
slow down is asymptotically worse, as the following example demonstrates.



(define (sum-slow xs) ; Sums the positive numbers in xs using an
(foldr + 0 (filter positive? xs))) ; intermediate list (the result of filter).

(define (sum-fast xs) ; Sums the positive numbers in xs without
(foldr (lambda (e acc) ; creating any intermediate lists.

(if (positive? e)
(+ e acc)
acc))

0 xs))

> (define-symbolic xs integer? [100]) ; xs is a list of 100 symbolic integers.

> (time (sum-slow xs)) ; Adds 520,000 values to the symbolic heap.
cpu time: 5119 real time: 4954 gc time: 2194

> (time (sum-fast xs)) ; Adds 100 values to the symbolic heap.
cpu time: 3 real time: 3 gc time: 0 ; Times are given in milliseconds.

Deforestation [48] is a classic program transformation that eliminates inter-
mediate lists produced by list combinators. As such, it makes a powerful repair
for performance bottlenecks in solver-aided code. In the above example, it au-
tomatically transforms sum-slow into sum-fast, avoiding the expensive call to
filter that creates a symbolic intermediate list when the input xs is sym-
bolic. Many variants of deforestation exist for different functional languages; for
Rosette, SymFix uses a repair based on build/foldr fusion [22]. This repair applies
deforestation exhaustively at a given location and outputs at most one program.

Path splitting. Deforestation changes the behavior of a program under symbolic
evaluation by restructuring its implementation. But if the host language supports
symbolic reflection [46], we can control the evaluation more directly, by using
dedicated constructs to force path splitting [44] (or state merging [38]) at specific
program locations. We have seen an example of this in §2, where SymFix used a
path splitting construct to fix the ToyRISC interpreter. In Rosette, this construct
takes the form (split-all (x) E), where x is an identifier and E an expression
over x. If x is bound to a symbolic value that ranges over a small finite set of con-
crete values, {v1, . . . , vn}, then split-all splits the evaluation of E into n paths,
one for each value that x can take, i.e., x = vi ⊢ (let ([x vi]) E) for 1 ≤ i ≤
n. Otherwise, split-all acts as the identity transformation on E. Because path
splitting increases the number of paths that are evaluated, it must be applied
carefully to avoid path explosion—a task we delegate to automated search.

The SymFix path splitting repair works as follows. Given a program location
l in a procedure body P , it outputs all valid ways to insert (split-all (x) E)

into P , so that E contains the location l, x is bound in E’s context, and there is
no other split on x in E or its context. So, nested splits on the same identifier,
(split-all (x) (...(split-all (x) ...), are disallowed. The resulting set
of transformed programs is finite but large, and the repair heuristically prefers
splits with broadest scope (i.e., where E is the highest ancestor of l in P ).

Value splitting. Path splitting allows programs to exert local control on the sym-
bolic evaluation strategy, by concretizing a specific symbolic value at a specific
program location. In principle, it is possible to combine many path splitting
repairs to implement a global change in the evaluation strategy, such as con-
cretizing every operation on a given user-defined type. In practice, however, this



would require prohibitively long and complex fixes. We therefore develop a global
value splitting repair that assumes the host language provides a mechanism for
controlling how all values of a given type are merged and split. In Rosette, this
is done with a transparency annotation, illustrated in the following example.

(require rosette/lib/match)

(struct Cell (v) #:transparent)

; Return a new Cell that doubles
; the value v of c.
(define (twice c)

(match c
[(Cell v) (Cell (+ v v))]))

; Create a symbolic Cell.
(define-symbolic b boolean?)
(define c (if b (Cell 1) (Cell 0)))

; Fields of transparent structs are merged,
; so ‘twice’ works on symbolic values.
> c
(Cell (ite b 1 0))
> (twice c)
(Cell (+ (ite b 1 0) (ite b 1 0)))

; The symbolic heap now contains 4 values:
; b,¬b, ite(b, 1, 0), ite(b, 1, 0) + ite(b, 1, 0).

(require rosette/lib/match)

(struct Cell (v)) ; Opaque struct.

; Return a new Cell that doubles
; the value v of c.
(define (twice c)

(match c
[(Cell v) (Cell (+ v v))]))

; Create a symbolic Cell.
(define-symbolic b boolean?)
(define c (if b (Cell 1) (Cell 0)))

; Fields of opaque structs are not merged,
; so ‘twice’ works on concrete values.
> c
{[b ⊢ (Cell 1)] [(! b) ⊢ (Cell 0)]}
> (twice c)
{[b ⊢ (Cell 2)] [(! b) ⊢ (Cell 0)]}

; The symbolic heap now contains 2 values,
; b,¬b, but the graph has more paths.

The SymFix value splitting repair toggles the transparency annotation on
user-defined structures in a way that preserves soundness. Under Rosette se-
mantics, it is sound to make structs less transparent (i.e., the transparency an-
notation can be removed) but not more. So given a location within a struct
declaration, the value splitting repair produces at most one program. Like path
splitting, this repair creates more opportunities for concrete evaluation, at the
cost of adding more paths to the symbolic evaluation graph.

Termination and precedence. The SymFix repairs form a terminating set with
a total precedence relation RV �R RD �R RP that orders value splitting first,
deforestation second, and path splitting last. To see this, first note that value
splitting applies to structs, while neither of the other repairs does, so RV can
be freely reordered with RD and RP . Next, observe that if deforestation RD

follows path splitting RP , then either they were applied to disjoint locations,
or RP was applied to an expression that is moved but not transformed by de-
forestation (e.g., xs in the sum-slow example). In either case, the same effect
can be achieved by applying RP after RD (though not vice versa). Finally, note
that RV and RD can be applied to the same location at most once, and RP can
be applied at most N times, where N is the number of bound identifiers in the
enclosing context. Hence, the set {RV , RD, RP } is terminating.

4.3 Implementation

We implemented the SymFix algorithm and repairs for Rosette. All three repairs
require side effect analysis to preserve soundness, and we implement a simple
conservative analysis that allows repairs only on expressions built out of proce-
dures and constructs known to be safe. Because the repairs are totally ordered,
we apply them in stages so that all of our fixes are of the form R∗V R

∗
DR∗P . While



our repair framework assumes that programs have no unbounded loops, Rosette
places no bounds on loops by design [46], so it is possible to write a Rosette pro-
gram that does not terminate under symbolic evaluation. Our implementation
deals with diverging and slow executions with timeouts.

5 Evaluation

To evaluate the effectiveness of SymFix, we address three research questions:

RQ1 : Can SymFix repair the performance of state-of-the-art solver-aided tools,
and how do its fixes compare to those written by experts?

RQ2 : Do the fixes found by SymFix generalize to different workloads?
RQ3 : How important is SymFix’s search strategy for finding useful fixes?

All results in this section were collected using an Intel Core i7-7700K at 4.20GHz
with 16GB of RAM, running Racket v7.4. Each timing result is the average of
10 executions of the corresponding experiment.

5.1 Can SymFix repair the performance of state-of-the-art
solver-aided tools, and how do its fixes compare to experts’?

To demonstrate that SymFix is effective on state-of-the-art solver-aided tools,
we collected a suite of 15 tools [2, 5, 6, 8, 10, 12, 14, 25, 36, 33, 46, 50, 51]
built in Rosette from a prior literature survey [7], together with 3 more recent
tools [29, 31, 35]. For each of these Rosette programs, we applied SymFix to
identify and repair performance bottlenecks.

Figure 5 shows the results. For each program, we report the original running
time in seconds, and the cost of the original program as estimated by SymFix.
We report three sources of repairs: fixes found by SymFix, fixes found by a
baseline greedy algorithm discussed in §5.3, and manual fixes from prior work
[7, 29]. We used a one-hour timeout for all experiments. For each fix, we report
the relative speedup and cost decrease compared to the original run time and
cost. A dash “–” indicates the absence of data due to timeouts or the lack of
known manual fixes. One original program (Cosette) does not terminate within
an hour, so we report only its repaired running times and costs.

SymFix finds fixes that improve the performance of 12 programs, with the
improvements ranging from 1.1× to 91.7×. SymFix also finds 2 fixes that lower
the symbolic cost and runtime only slightly, marked as 1.0× in Figure 5. The “#”
column reports the number of iterations of SymFix’s search procedure needed to
find the fix, and “|F |” reports the number of repair steps in the fix. Most fixes
are found in fewer than 10 iterations, and most have up to 2 repair steps.

Of the 15 benchmarks from prior work, 7 were manually fixed by the authors
of that paper. For two of these benchmarks (Neutrons and RTR), the expert
finds a significantly better fix than SymFix or finds some fix while SymFix finds
none. Overall, SymFix matches or outperforms experts on 4 benchmarks, and



Original SymFix Greedy Manual

Program LoC Time Cost Time Cost |F | # Time Cost Time Cost

Bagpipe 3317 17 s 6.0e4 1.0× 1.0× 1 6 – – – –

Bonsai† 641 27 s 1.5e6 1.3× 1.3× 2 21 1.1× 1.1× 1.0× 0.9×
Cosette§ 2709 – – 21 s 6.8e5 3 33 – – 15 s 7.4e5
Ferrite 350 13 s 9.8e5 2.8× 3.8× 4 11 – – 1.6× 1.1×
Fluidics 145 10 s 6.5e5 1.9× 1.7× 1 1 1.9× 1.7× 2.1× 1.8×
FRPSynth 304 3 s 2.3e4 3.1× 1.6× 4 93 1.4× 1.3× – –
GreenThumb 934 1179 s 2.0e5 1.3× 1.1× 1 1 1.3× 1.1× – –
IFCL 574 53 s 6.2e5 – – – – – – – –
Memsynth 3362 15 s 2.0e6 1.1× 1.1× 1 2 1.0× 1.1× – –
Neutrons 37317 29 s 5.6e6 2.0× 2.3× 3 5 2.0× 2.3× 193.7× 869.9×
Nonograms 6693 8 s 1.5e5 1.1× 1.4× 7 46 – – – –
Quivela 5946 47 s 2.9e6 91.7× 218.4× 6 7 90.1× 187.3× 86.1× 218.5×
RTR 2007 282 s 1.6e7 – – – – – – 7.2× 4.1×
Serval‡ 8641 116 s 7.3e6 6.2× 80.7× 1 1 – – 6.2× 80.7×
Swizzle 1240 7 s 3.1e5 1.8× 1.3× 2 18 – – – –
SynthCL 3732 16 s 7.5e5 – – – – – – – –
Wallingford 3866 2 s 8.5e3 1.0× 1.0× 1 2 – – – –
WebSynth 2057 7 s 1.0e6 – – – – – – – –

† The manual repair was made unnecessary by a subsequent Rosette improvement.
§ The repair by SymFix involves independent changes from users.
‡ The repair by SymFix uses user-supplied repairs.

Fig. 5: Summary of fixes found by SymFix, a baseline greedy search, and
experts. “LoC” is the number of lines of code in a given benchmark; “Cost” is
SymFix’s cost function for search; “|F |” is the number of repair steps in the fix
found by SymFix; and “#” is the number of fixes explored in one hour before
the reported best one is found.

it finds fixes for 5 benchmarks with no expert fix. We inspected all the fixes
manually, and discuss interesting cases below.

For Bonsai (a synthesis tool for checking type-system soundness [12]), Neu-
trons (a verifier for safety-critical systems [33]), and RTR (a refinement type
checker for Ruby), the manual fixes were sound but not semantics-preserving, so
SymFix cannot discover them. For Bonsai, the manual fix was made unnecessary
by a subsequent Rosette improvement, but SymFix still discovers a new repair
that improves the performance further. For Neutrons, SymFix cannot recover the
manual fix but does find a concretization opportunity offering a 2.0× speedup.
For RTR, SymFix does not find a useful fix, suggesting future opportunities to
exploit conditional repairs that are only sound under certain preconditions [40].

For Cosette, an automated prover for deciding the equivalence of two SQL
queries [14], the original implementation did not terminate within one hour. The
expert fix allowed Cosette to terminate in 15 seconds. Because SymFix needs to
execute the original program during the search for repairs, we imposed a timeout
of 60 seconds per execution. SymFix finds a fix that reduces Cosette’s run time to
21 seconds, comparable to the manual fix. This new fix combines path splitting
and deforestation of the map–reduce pattern Cosette uses to filter SQL tables.
Finding the deforestation repair required converting Cosette’s recursive imple-
mentation of this pattern into a higher-order version, but the Cosette developers



Original SymFix

Program Input Time (s) Cost Time Cost

Bonsai nanodot 17 s 7.8e5 1.2× 1.1×
Cosette q2 1 s 4.6e4 2.2× 9.8×
Cosette q3 – – 33 s 1.3e6
Ferrite chrome 99 s 2.1e7 16.2× 15.6×
FRPSynth program0 2 s 1.9e4 0.8× 0.8×
Quivela test-etm-10 19 s 6.7e5 1.8× 1.8×
Serval enosys 105 s 8.0e5 1.8× 11.3×
Swizzle stencil 6 s 2.1e5 1.1× 1.1×
Swizzle aos-sum 5 s 5.4e4 1.1× 1.0×

Fig. 6: Effectiveness of SymFix’s repairs from Figure 5 on alternative workloads.

made this change independently to implement the manual fix; SymFix exploited
this new structure to find another fix that allows Cosette to terminate in seconds.

For Fluidics, a tool for synthesizing programs that control a digital mi-
crofluidics array [51], the expert-written fix involves a change to the core data
structure the tool uses to represent the array. This change is outside the scope
of SymFix’s search space. However, SymFix instead discovers a different fix that
uses path splitting and requires no changes to the data structure. This fix offers
a 1.9× speedup instead of 2.1× for the manual one, but it is made automatically
and allows the tool’s developers to retain their preferred data structure.

For Ferrite, a tool for checking file-system crash consistency [5], SymFix
improves upon the expert-written fix by finding additional opportunities for
concretization through path and value splitting. These changes make Ferrite
close to 2× faster than the expert-repaired version.

For GreenThumb, a tool for developing superoptimizers [36], SymFix finds
a concretization opportunity that the expert did not. The concretization both
improves symbolic evaluation and alters the shape of the SMT formula so that
SMT solving is 1.1× faster. SymFix also finds previously unknown concretiza-
tion opportunities for FRPSynth, a tool for synthesizing functional reactive
programs [31], and Swizzle, a tool for synthesizing GPU kernels [35], leading to
a 3.1× and 1.8× speed-up, respectively.

For Serval, a toolset for automatic verification of systems software [29], Sym-
Fix does not discover a significant fix using its built-in repairs. But Serval comes
with its own set of symbolic optimizations, which were originally designed for
manual application [29]. Using these optimizations as repairs, SymFix discovers
the manual fix, showing that its algorithm works well with a variety of repairs.

5.2 Do the fixes found by SymFix generalize to different workloads?

SymFix generates each of the fixes in Figure 5 using a single input to the respec-
tive program. To determine whether discovered repairs generalize to different
program inputs, we identified the programs in Figure 5 that have alternative
inputs available and executed the repaired versions on them.

Figure 6 shows the performance of each program on alternative inputs, both
before and after the fix that SymFix discovered in Figure 5. In all but one case,



the fix generalizes to the new input and improves the program’s performance.
The relative performance improvement varies from Figure 5 due to different prob-
lem sizes; for example, the new Ferrite input is much larger than the original and
so spends comparatively less time in the fixed procedure. The one exception is
the “program0” input to FRPSynth, which is 20% slower than the original ver-
sion. Manual inspection of this fix shows that the last of its 4 repair steps overfits
to the initial input, and the first 3 steps improve the performance on both inputs.

5.3 How important is SymFix’s search strategy for finding fixes?

SymFix employs a complete form of best-first search, guided by symbolic profil-
ing ranks. To evaluate the importance of these design choices, we consider two
alternative algorithms without them:

Random implements a complete best-first search that is not guided by profiling
ranks, and instead chooses a location randomly at line 10 in Figure 4; and

Greedy implements the standard greedy best-first search, which applies only
the first repair produced by Next at line 20 and never backtracks (by re-
moving P from W unconditionally at line 27).

The Random algorithm discovers no useful fix for any benchmark within a
one hour timeout. This is not surprising since the space of fixes is exponential
in the number of potential repair locations, and there are thousands of such lo-
cations in each benchmark. The results for the Greedy algorithm are reported
in the last two columns of Figure 5. Greedy finds a useful fix for only half (7)
of the benchmarks repaired by SymFix, and none of its fixes are better than
those found by SymFix. These results show that the key features of the SymFix
algorithm are vital for fixing performance bottlenecks in real solver-aided tools.

6 Related Work

Profile-guided optimization. Compilers often support profile-guided optimiza-
tion, in which the compiler uses profile data to guide its optimization phases
(see Gupta et al. [23] for a survey). For example, the efficacy of inlining depends
on factors including cache size and access patterns that are best determined by
executing the program in the intended environment. Pettis and Hansen [34] in-
troduce a profile-guided code layout algorithm that tries to position commonly
used code together in memory to improve spatial locality. As another exam-
ple, many JIT compilers for both static and dynamic languages will specialize
methods based on type information observed at run time [20, 32] (e.g., special-
izing virtual calls for a particular concrete receiver). SymFix takes inspiration
from these approaches, using profile data to guide the application of semantics-
preserving repairs. But unlike them, SymFix focuses on optimizing a program’s
symbolic evaluation strategy rather than its utilization of machine resources.

Not all profile-guided optimization techniques are automated. Optimization
coaching [42] is an interactive tool that gives programmers feedback about the



optimizations a compiler applied to their program, and optimizations that it tried
unsuccessfully. SymFix does not provide interactivity, but because its repairs are
high level, it can follow the optimization coach approach of reporting them to
the programmer as syntactic changes to their input program.

Symbolic profiling. Because SymFix uses profile data to guide the search for
fixes, its effectiveness depends on high quality profiles. SymFix builds on sym-
bolic profiling [7], a technique for profiling the behavior of symbolic evaluation
engines. Symbolic profiling generalizes across a spectrum of symbolic evaluation
techniques, and so SymFix’s approach could generalize to other engines that sup-
port symbolic profiling (e.g., Crucible [21]). Other profiling techniques measure
different aspects of automated tools. The Z3 Axiom Profiler [3] measures axiom
instantiations in the Z3 [16] SMT solver’s quantifier theory module. It can be
used to detect optimization opportunities at the SMT level. Using such profilers
to extend SymFix to the SMT level is an interesting direction for future work.

Optimizing symbolic evaluation. A number of approaches exist for interactively
improving the performance of tools based on symbolic evaluation. Wagner et al.
[49] introduce a configuration for optimizing compilers to prioritize generating
code that is amenable to symbolic execution. Cadar [11] develops a suite of com-
piler optimizations that make code easier to evaluate symbolically. Nelson et al.
[29] develop a set of custom symbolic optimizations that can be manually applied
to build scalable verifiers for low-level languages (e.g., RISC-V [1], LLVM [28],
x86 [24], and eBPF [19]) on top of a generic verification framework. SymFix
is complimentary to these approaches: it can automatically apply custom opti-
mizations to verifiers for low-level code, and these verifiers can further benefit
from the custom compiler optimizations applied to their input programs.

7 Conclusion

This paper presented a new approach to repairing performance bottlenecks in
code under symbolic evaluation. Our approach rests on three technical contribu-
tions. We formulate the symbolic performance repair problem as combinatorial
search for a fix that applies a sequence of semantics-preserving repairs to a pro-
gram and a workload; the resulting fixed program is guaranteed to be equivalent
to the input program, and to have minimal symbolic evaluation cost on the in-
put workload. To solve this repair problem, we develop SymFix, a system with
two key components: (1) a small set of generic repairs based on deforestation
and symbolic reflection, and (2) an anytime search algorithm that uses sym-
bolic profiling to guide the exploration of this space. Our evaluation shows that
SymFix can discover useful fixes for state-of-the-art verification and synthesis
tools, matching or outperforming experts, and that the fixed programs continue
to work well across different workloads. As more programmers employ symbolic
evaluation to automate verification and synthesis tasks for new domains, SymFix
can help them build better tools more easily.



Bibliography

[1] The RISC-V Instruction Set Manual, Volume II: Privileged Architecture.
RISC-V Foundation (Jun 2019)

[2] Amazon Web Services: Quivela (2018), https://github.com/awslabs/quivela
[3] Becker, N., Müller, P., Summers, A.J.: The axiom profiler: Understanding

and debugging SMT quantifier instantiations. In: Proceedings of the 25th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). pp. 99–116. Prague, Czech Republic (Apr
2019)

[4] Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking
without BDDs. In: Proceedings of the 5th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). pp.
193–207. Amsterdam, The Netherlands (Mar 1999)

[5] Bornholt, J., Kaufmann, A., Li, J., Krishnamurthy, A., Torlak, E., Wang,
X.: Specifying and checking file system crash-consistency models. In: Pro-
ceedings of the 21st International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). pp. 83–98.
Atlanta, GA, USA (Apr 2016)

[6] Bornholt, J., Torlak, E.: Synthesizing memory models from framework
sketches and litmus tests. In: Proceedings of the 38th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI). pp.
467–481. Barcelona, Spain (Jun 2017)

[7] Bornholt, J., Torlak, E.: Finding code that explodes under symbolic evalu-
ation. Proc. ACM Program. Lang. (OOPSLA), 149:1–149:26 (Oct 2018)

[8] Borning, A.: Wallingford: Toward a constraint reactive programming lan-
guage. In: Proceedings of the Constrained and Reactive Objects Workshop
(CROW). Málaga, Spain (Mar 2016)

[9] Bucur, S., Kinder, J., Candea, G.: Prototyping symbolic execution engines
for interpreted languages. In: Proceedings of the 19th International Confer-
ence on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). pp. 239–254. Salt Lake City, UT, USA (Mar 2014)
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