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ABSTRACT 
Cycling provides various benefts to cyclists and cities. Neverthe-
less, the growth of cycling is still hindered by the lack of citywide 
information about perceived cycling safety. Providing cyclists with 
information about the safest routes could help increase cycling ac-
tivity. In this paper, we aim to predict the perceived level of cycling 
safety for a trip (trip-PLOCS). We utilize LSTM-based architectures 
to incorporate the sequential information of segments in a trip, and 
predict its cycling safety. Our proposed method can achieve up to 
76% F1 micro (65% F1 macro) score, 10% (19%) better than the state-
of-the-art baseline. Finally, we use SHAP to extract insights about 
trip-PLOCS, showing that social features contribute to perceived 
danger while cycling facilities contributes to the perceived safety. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in ubiq-
uitous and mobile computing; • Computing methodologies 
→ Spatial and physical reasoning; Supervised learning. 
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1 INTRODUCTION 
A large body of literature demonstrates the benefts of cycling: re-
duction in air pollution [7]; savings in health care costs [1], among 
others. However, with more cyclists on the street, cycling safety be-
comes an increasingly important concern. One of the main obstacles 
to encourage cycling is the lack of information regarding perceived 
cycling safety [2]. Using surveys and mental maps, studies show 
that perceived cycling safety is related with various factors, such as 
built environment characteristics [6]. Build upon these insights, a 
recent study use machine learning models to predict perceived level 
of cycling safety (PLOCS) for each segment and create a perceived 
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cycling safety map at the city level [16]. However, that study treats 
segments independently and ignores the sequential nature of a trip, 
and in consequence, the role that previous safety perceptions might 
play in the perception of segments visited in the future. In this 
paper, we aim to develop machine learning models that allow us to 
predict the PLOCS of a cycling trip (trip-PLOCS) with the objective 
of helping cyclists identify and select a route that is adequate to 
their level of comfort. Ultimately, we envision the cycling trips-
PLOCS to be integrated into cycling route planning applications 
that would ofer route and cycling safety information at the same 
time. We propose to characterize street segments in a similar way as 
[16], i.e., a set of built environment and social features, and PLOCS 
labels crowdsourced from cyclists; and to capitalize on the sequen-
tial information of the segment trips, we use neural network models 
with long short-term memory (LSTM) as the core component. 

Beyond building a good predictive model for trip-PLOCS, another 
goal of this paper is to understand the important features that 
determine predictions. Insights about important features to cycling 
safety can help urban planners build better environment to increase 
bicycle use. Here we use a method called SHAP (SHapley Additive 
exPlanations) [8] to understand features’ importance in predictions 
and the contribution direction to predicting PLOCS labels. 

The key contributions are: (1) We design LSTM-based models to 
predict trip-PLOCS and compare against the state-of-the-art base-
line. (2) We extract insights about cycling safety by interpreting the 
contribution of features to PLOCS prediction using SHAP values. 
2 RELATED WORK 
Perceived cycling safety infuences cyclists’ decisions to ride bikes 
on the streets [2]. Most studies about perceived cycling safety focus 
on the determinants. Cycling facilities, collisions involving cyclists 
and the bicycle road network have been shown to infuence cycling 
safety perception [5, 12, 14]. Besides determinants, a recent study 
try to provide citywide cycling safety information on the segment 
level to cyclists using machine learning models [16]. 
3 DEFINITIONS AND PROBLEM STATEMENT 
Here we introduce related defnitions and the problem statement. 

Segment is a part of a street without any intersection inside, 
e.g., T street NW is divided into segments including S2, S3, and S4. 

Segment Features. Segments are represented by social features, 
such as crash accidents, and built-environment features, such as 
bike lanes, extracted from open and crowdsourced data. We use the 
complete list of features in [16]. These features will be useful to 
interpret how machine learning models make PLOCS predictions. 
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Figure 1: An example TripTi near 15th and T street northwest 
in Washington D.C. 

Perceived Level of Cycling Safety (PLOCS) is the safety per-
ception in the context of cycling. After watching a short cycling 
video, cyclists give their subjective safety perception on a 5-level 
scale, from 1 to 5 representing very dangerous, dangerous, normal, 
safe and very safe. Ratings are collected from local cyclists living 
in the same city where the videos are recorded, so that they are 
somewhat familiar with the social characteristics of the city. 

Seg-PLOCS (SPSi ) is the average of PLOCS ratings for Si . The 
average is transformed into one of the fve PLOCS labels by dividing 
the range from 1 the 5 evenly into fve bins. 

Trip-PLOCS (TPi ) is the average of the seg-PLOCS of all seg-
ments in that trip. The trip-PLOCS average is also transformed into 
one of the fve labels in the same way as the segment average. 

Problem Statement. Given a cycling trip Ti and the features 
for segments in Ti , we aim to classify the trip’s PLOCS, TPi , as a 
label among very dangerous, dangerous, normal, safe and very safe. 

4 METHODOLOGY 
In this section, we will explain three models for the trip-PLOCS 
prediction problem. Then we will introduce our proposed training 
data expansion approach, and describe how we use SHAP values 
to interpret important features for trip-PLOCS prediction. 

4.1 Models 
Baseline: The baseline setting is adapted from [16]. We predict a 
trip-PLOCS by frst predicting all the seg-PLOCS in the trip inde-
pendently, averaging all the predicted seg-PLOCS for that trip, and 
assigning the closest category. XGB is chosen as the machine learn-
ing method since it is the most accurate method for seg-PLOCS 
prediction [16]. However, this approach ignores the sequential na-
ture of a trip. There are two reasons to consider and model the 
sequential information in a trip. First, the safety perception of the 
current segment might be temporally correlated with the percep-
tion of previous segments. Second, spatial auto-correlation is a 
common characteristic of geographical data, such as crimes [15] 
and road infrastructure [4]. The sequential information contains the 
spatial proximity of segments, i.e., segments next to each other in a 
cycling trip are adjacent. The next two approaches are an attempt 
to incorporate information for spatial and temporal correlations. 

Sequence Labeling: The task of sequence labeling is to assign 
a label to each observation in the input sequence [11]. A commonly 
used family of models for this task is Long Short Term Memory 
(LSTM). Because the labeling is executed at each time step, a uni-
directional LSTM makes predictions based on only information 
from previous time steps. To avoid this limitation, a bidirectional 
LSTM layer (BiLSTM) is often used to capture information from the 
whole sequence at each labeling step [3]. For our prediction prob-
lem, (Bi)LSTM model will iterate over Trip T with N segments and 
predict SPSi for each segment. With an LSTM layer, predictions are 
conditioned on the features of Si and the sequential context of pre-
vious segments {S1, ..., Si−1}. With a BiLSTM layer, the sequential 
context of subsequent segments {Si+1, ..., SN } is also considered. 

Sequence Classifcation As our goal is to predict the PLOCS 
for a trip, we can skip predicting seg-PLOCS for each segment and 
instead optimize the model towards the fnal trip-PLOCS. In this 
case, we can frame it as a sequence classifcation problem: given a 
sequence of segments and their feature representations, predict the 
trip-PLOCS. The downside of this approach is that models in this 
setting do not have full access to the detailed information of the 
seg-PLOCS, since the training labels of trip-PLOCS is the average 
of the seg-PLOCS. Nevertheless, this setting might be useful where 
labels are not available for each segment in the road network. 

4.2 Training Data Expansion 
Collecting sufcient training labelled data is always a challenge for 
supervised machine learning models. It is even more challenging 
to collect PLOCS labels at the segment level. Here we propose to 
expand training data with plausible trips using sliding window with 
one parameter, the window size w . The length of generated trips, 
i.e., the number of segments covered in a trip, equals to w . Multiple 
window sizes can be applied to the training data to generate trips at 
various lengths. The sliding window approach with window size w 
works as follows. For a cycling trip Ti =S1, .., SN with N segments, 
we apply a window with size w to generate N -w+1 sub-trajectories 
(e.g. Ti j =Sj , ..., Sj+w −1) to be added to the training dataset. 

4.3 Important Features for Trip-PLOCS 
Beyond a good predictive model for trip-PLOCS we also aim to 
understand the types of features that are determinant of safety per-
ception. This information would also be highly relevant for urban 
planners willing to increase bicycle use and other micro-mobility 
services. There exist several tools to interpret deep learning and 
machine learning models. Scoot and Lee proposed SHAP (SHapley 
Additive exPlanations) values to explain the role that each feature 
plays in each prediction [8]. SHAP is proposed based on a sound 
theoretical framework and is shown to be more consistent with 
human’s intuition than other approaches [13]. SHAP values are 
computed by an explanation model independent of the predictive 
model to be explained. This explanation model frst computes the 
average model output over a background dataset, e.g., the training 
dataset for the predictive model, as the base value. Then it attributes 
to each feature the change in base value brought by adding that 
feature to the predictive model. This change is the SHAP value 
for that feature. In multi-class prediction setting, a SHAP value 
is computed for each input feature for each class. By aggregating 
SHAP values, we can understand the features’ importance on and 
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Problem 
Setting 

Model Training Data 
Expansion 

F1 Score 
Micro Macro 

Baseline XGB none 0.66 0.46 

Sequence 
Labeling 

LSTM 
BiLSTM 

sw01-13 
sw08-13 

0.73 
0.74 

0.56 
0.61 

Sequence 
Classifcation 

LSTM 
BiLSTM 

sw01-13 
sw01-13 

0.76 
0.74 

0.65 
0.62 

Table 1: Experiment results. 
contribution to each trip-PLOCS label. In this paper, we will use 
SHAP values to provide information about the role that social and 
built environment features might play in cycling safety perception. 

5 EXPERIMENTS 
5.1 Experiment Settings 
5.1.1 Dataset. We use a dataset that contains 82 trips covering 453 
segments in Washington D.C. Each street segment in the dataset was 
rated by multiple local cyclists that watched videos and provided 
their PLOCS. The dataset contains 2295 segment ratings from 235 
local cyclists [16]. The dataset is relatively small compared to others 
described in the deep learning literature. This is mostly due to the 
cost of recording the cycling videos and recruiting local cyclists to 
provide the ratings. However, the training data expansion explained 
in section 4.2 will enlarge the dataset to up to ~1400 trips. Each 
segment is represented as a 231-dimension feature vector, of which 
63 are built environment features and 148 are social features. On 
average, these trips have 6 segments and a duration of 188 seconds. 

In our experiment, we randomly sample 80% of our dataset as 
the training data and the rest 20% as the testing data. To have 
robust results, we repeat the random sampling ten times and report 
average results across runs. 
5.1.2 Evaluation metrics. The F1 score is widely used in binary 
classifcation. There are diferent ways to generalize F1 score to 
the multi-class setting. Here we use both F1-micro and F1-macro 
to evaluate our models. F1 micro score does not emphasize on rare 
classes, e.g., the performance in rare classes would have less impact 
on the F1 micro score than common classes with larger population. 
On the other hand, F1 macro score treats the F1 scores of each class 
equally and is popular in class imbalanced settings [10]. Therefore, 
the diference between F1-micro and F1-macro indicates the perfor-
mance of the imbalanced dataset [16]. The smaller the diference 
is, the more similar performance in both rare and common classes, 
and the better the model handles the imbalanced dataset. 
5.1.3 Data expansion seting. Since the maximum number of seg-
ments per trip in our dataset is 14, we set the largest window size 
of the sliding window to 13 and the smallest to 1. In principle, any 
combination of diferent window sizes can be applied to expand the 
training data. In our experiment, we fx the maximum window size 
as 13 and then gradually decrease minimum window size we apply 
to the training data. We use swwmin -wmax to denote the dataset 
expanded by window sizes wmin , wmin+1, .., wmax . 
5.2 Experiment Results 
In this section, we compare the performance of the three problem 
settings described above: baseline, sequence labeling and classifca-
tion to predict the PLOCS of a trip. We report the average F1 micro 

and macro score across ten runs with diferent random train/testing 
splits. Table 1 shows the best results achieved by diferent models 
and data expansions. We present the following observations. (1) We 
confrm our hypothesis that incorporating sequential information 
in a trip improves the trip-PLOCS prediction. Models in both se-
quence labeling and classifcation have a substantial improvement 
over the baseline. The best performance is achieved by the LSTM 
model in the sequence classifcation setting with the largest train-
ing data set expanded. Although the F1-macro is still smaller than 
F1-micro, i.e., the model performs better in common labels with 
large number of trips, e.g., normal PLOCS, than rare labels with 
small number of trips, e.g., very dangerous PLOCS, the diference 
between the them reduces from 0.20 (0.66-0.46) in the baseline to 
0.11 (0.76-0.65) in the best model. (2) Models in sequence classifca-
tion setting generally outperform the ones in the sequence labeling 
setting with the help of data expansion. As mentioned in section 
4, the advantage of sequence labeling is that it fully utilizes all the 
labels from all segments in the cycling trips, while the information 
of seg-PLOCS in the classifcation setting is averaged. Nevertheless, 
with the help of the data expansion, the models in the classifca-
tion setting have access to more segment-PLOCS information in 
the training data and demonstrate their advantage in optimizing 
towards the fnal trip-PLOCS (10% better than baseline XGB, 2% 
better than sequence labeling setting). All models in the classif-
cation setting achieve the best results with the smallest window 
sizes (sw01-13). This also suggests that training models to learn 
hidden features with shorter trips does not hurt the models’ ability 
to capture long sequential information and help them make better 
predictions at trips with various lengths. (3) Bidirectional LSTM 
performs better than unidirectional LSTM in the sequence labeling 
setting, because BiLSTM provides information of the subsequent 
segments at the time of making prediction for a segment. For the 
classifcation setting, bidirectional LSTM perform worse than unidi-
rectional, probably because the lengths of trips are quite small and 
the models make predictions after observing complete sequences. 

5.3 Important Features in Trip-PLOCS 
To understand the most relevant features behind trip-PLOCS pre-
dictions, we take the best model in Table 1, i.e., LSTM trained with 
dataset sw01-13 in the sequence classifcation setting, and compute 
the SHAP values in predicting the testing data. SHAP value is a 
local explanation of each input feature for a prediction. To under-
stand the contribution of each built-environment and social feature 
to the trip-PLOCS, we need to aggregate these SHAP values. 

First, we compute the overall contribution of each feature across 
trip-PLOCS classes. This is computed as the average absolute SHAP 
values across classes and segments. The top 15 most important 
features are shown in Figure 2(a). All 15 are built-in environment 
features, which is in line with previous work on seg-PLOCS predic-
tion, where built-environment features alone achieve better perfor-
mance than social features alone[16]. Most of the important built 
environment features are topological (names start with "Dual"). Not 
being a highway segment is the second most important feature. 
Whether the segment is one- or two-way street and whether the 
segment has bike lanes or tracks are also very important. The im-
portance of bike facilities to perceived cycling safety is well studied 
[12]. But whether a segment is one- or two-way street is seldom 

https://0.76-0.65
https://0.66-0.46


SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Jiahui Wu, Lingzi Hong, and Vanessa Frias-Martinez 

(a) Overall contribution. (b) SHAP for trip-PLOCS of "very dangerous" . (c) SHAP for trip-PLOCS of "very safe". 

Figure 2: Contribution of Top 15 features to trip-PLOCS prediction. (i) Features starting with "Dual" or "Primary". Features 
starting with "Primary" means it is a metric computed in a primary graph, where segments are the edges and intersections are 
the nodes, and the one starting with "Dual" are graph-based metrics computed in dual map, where the segments are the nodes 
and intersections are the edges. Following "Dual" or "Primary", "D" means the network is directed and "UD" means undirected. 
The rest of the name is the metric’s name. (ii) Features starting with Crime, Crash and 311 are diferent types of features 
extracted from crimes, crashes and 311 requests datasets. 

mentioned in the literature about the determinants of perceived 
cycling safety. Although being important in predictive model does 
not entail causality, the relationship between perceived cycling 
safety and this feature is worth further examination. 

Next, we examine the contributions of each feature, i.e., the di-
rection of contribution to each class of trip-PLOCS (e.g., Figures 
2(b) and 2(c), SHAP for other 3 PLOCS levels are not reported due 
to space limit). A dot in the plot represents that feature for one seg-
ment. It is colored based on the feature value for that segment, pink 
for high and blue for low values. The x-axis represents the SHAP 
value. For a feature, if all the pink dots have positive values and 
all the blue dots have negative value, it means high values in that 
feature consistently favor that class, and low values consistently 
push the prediction away from that class. There is a clear distinction 
between important features for predicting very dangerous and very 
safe. (1) Social features are very important in predicting very dan-
gerous trip-PLOCS. Large values in crimes (with guns or robberies) 
and crashes (whether crashes involve fxed objects, produce harms 
to other objects) determine that the trips are probably very dan-
gerous. Although we did not provide any social features to cyclists 
when they watched and rated the cycling videos, local cyclists still 
picked up social features of the neighbourhood and gave proper 
safety rating to those segments. This observation reinforces that 
cities should start their local campaigns to collect ratings from local 
cyclists. (2) In contrast, immediate built-in environment features 
perceived by the cyclists directly, such as bike lanes, are important 
in predicting safe routes. Cycling trips involving segments with 
bike lanes or cycle tracks tend to be very safe. 

6 CONCLUSION 
In this paper, we use LSTM-based models to predict trip-PLOCS in 
two problem settings, namely sequence labeling and classifcation. 
To deal with the potentially small labeled datasets, we propose a 
sliding window approach to expand the training data. By modeling 
the sequential information in cycling trips, models in both problem 
settings perform substantially better than the baseline setting that 
treats segments independently (10% improvement in F1 micro score 
and 19% in F1 macro score). We also use SHAP values to under-
stand the contribution of each feature to the trip-PLOCS prediction. 
Overall, built-environment features are most important, such as 

segment type and graph-based centrality features. For each class 
of trip-PLOCS, the contributions of these features vary. Notably, 
social features such as crashes and crimes are very important for 
determining perceived dangers and bike lanes and tracks are indeed 
useful to build a safe cycling environment. 
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