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ABSTRACT cycling safety map at the city level [16]. However, that study treats

Cycling provides various benefits to cyclists and cities. Neverthe-
less, the growth of cycling is still hindered by the lack of citywide
information about perceived cycling safety. Providing cyclists with
information about the safest routes could help increase cycling ac-
tivity. In this paper, we aim to predict the perceived level of cycling
safety for a trip (trip-PLOCS). We utilize LSTM-based architectures
to incorporate the sequential information of segments in a trip, and
predict its cycling safety. Our proposed method can achieve up to
76% F1 micro (65% F1 macro) score, 10% (19%) better than the state-
of-the-art baseline. Finally, we use SHAP to extract insights about
trip-PLOCS, showing that social features contribute to perceived
danger while cycling facilities contributes to the perceived safety.

CCS CONCEPTS

« Human-centered computing — Empirical studies in ubiq-
uitous and mobile computing; « Computing methodologies
— Spatial and physical reasoning; Supervised learning.
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1 INTRODUCTION

A large body of literature demonstrates the benefits of cycling: re-
duction in air pollution [7]; savings in health care costs [1], among
others. However, with more cyclists on the street, cycling safety be-
comes an increasingly important concern. One of the main obstacles
to encourage cycling is the lack of information regarding perceived
cycling safety [2]. Using surveys and mental maps, studies show
that perceived cycling safety is related with various factors, such as
built environment characteristics [6]. Build upon these insights, a
recent study use machine learning models to predict perceived level
of cycling safety (PLOCS) for each segment and create a perceived
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segments independently and ignores the sequential nature of a trip,
and in consequence, the role that previous safety perceptions might
play in the perception of segments visited in the future. In this
paper, we aim to develop machine learning models that allow us to
predict the PLOCS of a cycling trip (trip-PLOCS) with the objective
of helping cyclists identify and select a route that is adequate to
their level of comfort. Ultimately, we envision the cycling trips-
PLOCS to be integrated into cycling route planning applications
that would offer route and cycling safety information at the same
time. We propose to characterize street segments in a similar way as
[16], i.e., a set of built environment and social features, and PLOCS
labels crowdsourced from cyclists; and to capitalize on the sequen-
tial information of the segment trips, we use neural network models
with long short-term memory (LSTM) as the core component.

Beyond building a good predictive model for trip-PLOCS, another
goal of this paper is to understand the important features that
determine predictions. Insights about important features to cycling
safety can help urban planners build better environment to increase
bicycle use. Here we use a method called SHAP (SHapley Additive
exPlanations) [8] to understand features’ importance in predictions
and the contribution direction to predicting PLOCS labels.

The key contributions are: (1) We design LSTM-based models to
predict trip-PLOCS and compare against the state-of-the-art base-
line. (2) We extract insights about cycling safety by interpreting the
contribution of features to PLOCS prediction using SHAP values.

2 RELATED WORK

Perceived cycling safety influences cyclists’ decisions to ride bikes
on the streets [2]. Most studies about perceived cycling safety focus
on the determinants. Cycling facilities, collisions involving cyclists
and the bicycle road network have been shown to influence cycling
safety perception [5, 12, 14]. Besides determinants, a recent study
try to provide citywide cycling safety information on the segment
level to cyclists using machine learning models [16].

3 DEFINITIONS AND PROBLEM STATEMENT

Here we introduce related definitions and the problem statement.

Segment is a part of a street without any intersection inside,
e.g., T street NW is divided into segments including Sz, S3, and Sy.

Segment Features. Segments are represented by social features,
such as crash accidents, and built-environment features, such as
bike lanes, extracted from open and crowdsourced data. We use the
complete list of features in [16]. These features will be useful to
interpret how machine learning models make PLOCS predictions.

Cycling trip is the route the cyclist travels on a bike. It is rep-
resented as a list of segments after the GPS trace is mapped to a
given road network using map matching algorithms [9].
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Trip  Ti={S1, S2, S3, S4, S5}

PLOCS Ratings  PRs: = {PR1, PR, PR3, PRs, ...}
SPs: = Label(Average(PRs:))

Seg-PLOCS  SPi = {SPsy, SPs:, SPss, SPss, SPss}
Trip-PLOCS  TPi = Label(Average(SPi))

PLOCS Labels  Very Da- Dan- Very
_ hgerous  gerous Normal ) Safe . safe

1 18 2.6 34 4.2 5

Figure 1: An example Trip T; near 15th and T street northwest
in Washington D.C.

Perceived Level of Cycling Safety (PLOCS) is the safety per-
ception in the context of cycling. After watching a short cycling
video, cyclists give their subjective safety perception on a 5-level
scale, from 1 to 5 representing very dangerous, dangerous, normal,
safe and very safe. Ratings are collected from local cyclists living
in the same city where the videos are recorded, so that they are
somewhat familiar with the social characteristics of the city.

Seg-PLOCS (SPs,) is the average of PLOCS ratings for S;. The
average is transformed into one of the five PLOCS labels by dividing
the range from 1 the 5 evenly into five bins.

Trip-PLOCS (TP;) is the average of the seg-PLOCS of all seg-
ments in that trip. The trip-PLOCS average is also transformed into
one of the five labels in the same way as the segment average.

Problem Statement. Given a cycling trip T; and the features
for segments in Tj, we aim to classify the trip’s PLOCS, TP;, as a
label among very dangerous, dangerous, normal, safe and very safe.

4 METHODOLOGY

In this section, we will explain three models for the trip-PLOCS
prediction problem. Then we will introduce our proposed training
data expansion approach, and describe how we use SHAP values
to interpret important features for trip-PLOCS prediction.

4.1 Models

Baseline: The baseline setting is adapted from [16]. We predict a
trip-PLOCS by first predicting all the seg-PLOCS in the trip inde-
pendently, averaging all the predicted seg-PLOCS for that trip, and
assigning the closest category. XGB is chosen as the machine learn-
ing method since it is the most accurate method for seg-PLOCS
prediction [16]. However, this approach ignores the sequential na-
ture of a trip. There are two reasons to consider and model the
sequential information in a trip. First, the safety perception of the
current segment might be temporally correlated with the percep-
tion of previous segments. Second, spatial auto-correlation is a
common characteristic of geographical data, such as crimes [15]
and road infrastructure [4]. The sequential information contains the
spatial proximity of segments, i.e., segments next to each other in a
cycling trip are adjacent. The next two approaches are an attempt
to incorporate information for spatial and temporal correlations.
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Sequence Labeling: The task of sequence labeling is to assign
a label to each observation in the input sequence [11]. A commonly
used family of models for this task is Long Short Term Memory
(LSTM). Because the labeling is executed at each time step, a uni-
directional LSTM makes predictions based on only information
from previous time steps. To avoid this limitation, a bidirectional
LSTM layer (BiLSTM) is often used to capture information from the
whole sequence at each labeling step [3]. For our prediction prob-
lem, (Bi)LSTM model will iterate over Trip T with N segments and
predict SPs, for each segment. With an LSTM layer, predictions are
conditioned on the features of S; and the sequential context of pre-
vious segments {Si, ..., Si—1 }. With a BILSTM layer, the sequential
context of subsequent segments {S;+1, ..., SN} is also considered.

Sequence Classification As our goal is to predict the PLOCS
for a trip, we can skip predicting seg-PLOCS for each segment and
instead optimize the model towards the final trip-PLOCS. In this
case, we can frame it as a sequence classification problem: given a
sequence of segments and their feature representations, predict the
trip-PLOCS. The downside of this approach is that models in this
setting do not have full access to the detailed information of the
seg-PLOCS, since the training labels of trip-PLOCS is the average
of the seg-PLOCS. Nevertheless, this setting might be useful where
labels are not available for each segment in the road network.

4.2 Training Data Expansion

Collecting sufficient training labelled data is always a challenge for
supervised machine learning models. It is even more challenging
to collect PLOCS labels at the segment level. Here we propose to
expand training data with plausible trips using sliding window with
one parameter, the window size w. The length of generated trips,
i.e., the number of segments covered in a trip, equals to w. Multiple
window sizes can be applied to the training data to generate trips at
various lengths. The sliding window approach with window size w
works as follows. For a cycling trip T;=S1, .., Sy with N segments,
we apply a window with size w to generate N-w+1 sub-trajectories
(e.g. Ti;=Sj, .. Sj+w-1) to be added to the training dataset.

4.3 Important Features for Trip-PLOCS

Beyond a good predictive model for trip-PLOCS we also aim to
understand the types of features that are determinant of safety per-
ception. This information would also be highly relevant for urban
planners willing to increase bicycle use and other micro-mobility
services. There exist several tools to interpret deep learning and
machine learning models. Scoot and Lee proposed SHAP (SHapley
Additive exPlanations) values to explain the role that each feature
plays in each prediction [8]. SHAP is proposed based on a sound
theoretical framework and is shown to be more consistent with
human’s intuition than other approaches [13]. SHAP values are
computed by an explanation model independent of the predictive
model to be explained. This explanation model first computes the
average model output over a background dataset, e.g., the training
dataset for the predictive model, as the base value. Then it attributes
to each feature the change in base value brought by adding that
feature to the predictive model. This change is the SHAP value
for that feature. In multi-class prediction setting, a SHAP value
is computed for each input feature for each class. By aggregating
SHAP values, we can understand the features’ importance on and
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Problem Model Training Data F1 Score
Setting Expansion Micro Macro
Baseline XGB none 0.66 0.46
Sequence LSTM sw01-13 0.73 0.56
Labeling BiLSTM  sw08-13 0.74 0.61
Sequence LSTM sw01-13 0.76 0.65
Classification BILSTM sw01-13 0.74 0.62

Table 1: Experiment results.

contribution to each trip-PLOCS label. In this paper, we will use
SHAP values to provide information about the role that social and
built environment features might play in cycling safety perception.

5 EXPERIMENTS
5.1 Experiment Settings

5.1.1 Dataset. We use a dataset that contains 82 trips covering 453
segments in Washington D.C. Each street segment in the dataset was
rated by multiple local cyclists that watched videos and provided
their PLOCS. The dataset contains 2295 segment ratings from 235
local cyclists [16]. The dataset is relatively small compared to others
described in the deep learning literature. This is mostly due to the
cost of recording the cycling videos and recruiting local cyclists to
provide the ratings. However, the training data expansion explained
in section 4.2 will enlarge the dataset to up to ~1400 trips. Each
segment is represented as a 231-dimension feature vector, of which
63 are built environment features and 148 are social features. On
average, these trips have 6 segments and a duration of 188 seconds.
In our experiment, we randomly sample 80% of our dataset as
the training data and the rest 20% as the testing data. To have
robust results, we repeat the random sampling ten times and report
average results across runs.
5.1.2  Evaluation metrics. The F1 score is widely used in binary
classification. There are different ways to generalize F1 score to
the multi-class setting. Here we use both F1-micro and F1-macro
to evaluate our models. F1 micro score does not emphasize on rare
classes, e.g., the performance in rare classes would have less impact
on the F1 micro score than common classes with larger population.
On the other hand, F1 macro score treats the F1 scores of each class
equally and is popular in class imbalanced settings [10]. Therefore,
the difference between F1-micro and F1-macro indicates the perfor-
mance of the imbalanced dataset [16]. The smaller the difference
is, the more similar performance in both rare and common classes,
and the better the model handles the imbalanced dataset.
5.1.3 Data expansion setting. Since the maximum number of seg-
ments per trip in our dataset is 14, we set the largest window size
of the sliding window to 13 and the smallest to 1. In principle, any
combination of different window sizes can be applied to expand the
training data. In our experiment, we fix the maximum window size
as 13 and then gradually decrease minimum window size we apply
to the training data. We use swwp,in-Wmax to denote the dataset
expanded by window sizes Wmin, Wmin+1s - Wmax-

5.2 Experiment Results

In this section, we compare the performance of the three problem
settings described above: baseline, sequence labeling and classifica-
tion to predict the PLOCS of a trip. We report the average F1 micro
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and macro score across ten runs with different random train/testing
splits. Table 1 shows the best results achieved by different models
and data expansions. We present the following observations. (1) We
confirm our hypothesis that incorporating sequential information
in a trip improves the trip-PLOCS prediction. Models in both se-
quence labeling and classification have a substantial improvement
over the baseline. The best performance is achieved by the LSTM
model in the sequence classification setting with the largest train-
ing data set expanded. Although the F1-macro is still smaller than
F1l-micro, i.e., the model performs better in common labels with
large number of trips, e.g., normal PLOCS, than rare labels with
small number of trips, e.g., very dangerous PLOCS, the difference
between the them reduces from 0.20 (0.66-0.46) in the baseline to
0.11 (0.76-0.65) in the best model. (2) Models in sequence classifica-
tion setting generally outperform the ones in the sequence labeling
setting with the help of data expansion. As mentioned in section
4, the advantage of sequence labeling is that it fully utilizes all the
labels from all segments in the cycling trips, while the information
of seg-PLOCS in the classification setting is averaged. Nevertheless,
with the help of the data expansion, the models in the classifica-
tion setting have access to more segment-PLOCS information in
the training data and demonstrate their advantage in optimizing
towards the final trip-PLOCS (10% better than baseline XGB, 2%
better than sequence labeling setting). All models in the classifi-
cation setting achieve the best results with the smallest window
sizes (sw01-13). This also suggests that training models to learn
hidden features with shorter trips does not hurt the models’ ability
to capture long sequential information and help them make better
predictions at trips with various lengths. (3) Bidirectional LSTM
performs better than unidirectional LSTM in the sequence labeling
setting, because BiLSTM provides information of the subsequent
segments at the time of making prediction for a segment. For the
classification setting, bidirectional LSTM perform worse than unidi-
rectional, probably because the lengths of trips are quite small and
the models make predictions after observing complete sequences.

5.3 Important Features in Trip-PLOCS

To understand the most relevant features behind trip-PLOCS pre-
dictions, we take the best model in Table 1, i.e., LSTM trained with
dataset sw01-13 in the sequence classification setting, and compute
the SHAP values in predicting the testing data. SHAP value is a
local explanation of each input feature for a prediction. To under-
stand the contribution of each built-environment and social feature
to the trip-PLOCS, we need to aggregate these SHAP values.

First, we compute the overall contribution of each feature across
trip-PLOCS classes. This is computed as the average absolute SHAP
values across classes and segments. The top 15 most important
features are shown in Figure 2(a). All 15 are built-in environment
features, which is in line with previous work on seg-PLOCS predic-
tion, where built-environment features alone achieve better perfor-
mance than social features alone[16]. Most of the important built
environment features are topological (names start with "Dual"). Not
being a highway segment is the second most important feature.
Whether the segment is one- or two-way street and whether the
segment has bike lanes or tracks are also very important. The im-
portance of bike facilities to perceived cycling safety is well studied
[12]. But whether a segment is one- or two-way street is seldom
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Figure 2: Contribution of Top 15 features to trip-PLOCS prediction. (i) Features starting with "Dual" or "Primary". Features
starting with "Primary” means it is a metric computed in a primary graph, where segments are the edges and intersections are
the nodes, and the one starting with "Dual” are graph-based metrics computed in dual map, where the segments are the nodes
and intersections are the edges. Following "Dual” or "Primary", "D" means the network is directed and "UD" means undirected.
The rest of the name is the metric’s name. (ii) Features starting with Crime, Crash and 311 are different types of features

extracted from crimes, crashes and 311 requests datasets.

mentioned in the literature about the determinants of perceived
cycling safety. Although being important in predictive model does
not entail causality, the relationship between perceived cycling
safety and this feature is worth further examination.

Next, we examine the contributions of each feature, i.e., the di-
rection of contribution to each class of trip-PLOCS (e.g., Figures
2(b) and 2(c), SHAP for other 3 PLOCS levels are not reported due
to space limit). A dot in the plot represents that feature for one seg-
ment. It is colored based on the feature value for that segment, pink
for high and blue for low values. The x-axis represents the SHAP
value. For a feature, if all the pink dots have positive values and
all the blue dots have negative value, it means high values in that
feature consistently favor that class, and low values consistently
push the prediction away from that class. There is a clear distinction
between important features for predicting very dangerous and very
safe. (1) Social features are very important in predicting very dan-
gerous trip-PLOCS. Large values in crimes (with guns or robberies)
and crashes (whether crashes involve fixed objects, produce harms
to other objects) determine that the trips are probably very dan-
gerous. Although we did not provide any social features to cyclists
when they watched and rated the cycling videos, local cyclists still
picked up social features of the neighbourhood and gave proper
safety rating to those segments. This observation reinforces that
cities should start their local campaigns to collect ratings from local
cyclists. (2) In contrast, immediate built-in environment features
perceived by the cyclists directly, such as bike lanes, are important
in predicting safe routes. Cycling trips involving segments with
bike lanes or cycle tracks tend to be very safe.

6 CONCLUSION

In this paper, we use LSTM-based models to predict trip-PLOCS in
two problem settings, namely sequence labeling and classification.
To deal with the potentially small labeled datasets, we propose a
sliding window approach to expand the training data. By modeling
the sequential information in cycling trips, models in both problem
settings perform substantially better than the baseline setting that
treats segments independently (10% improvement in F1 micro score
and 19% in F1 macro score). We also use SHAP values to under-
stand the contribution of each feature to the trip-PLOCS prediction.
Overall, built-environment features are most important, such as

segment type and graph-based centrality features. For each class
of trip-PLOCS, the contributions of these features vary. Notably,
social features such as crashes and crimes are very important for
determining perceived dangers and bike lanes and tracks are indeed
useful to build a safe cycling environment.
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