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ABSTRACT

Principal Component Analysis (PCA) is a standard dimen-
sionality reduction technique, but it treats all samples uni-
formly, making it suboptimal for heterogeneous data that are
increasingly common in modern settings. This paper pro-
poses a PCA variant for samples with heterogeneous noise
levels, i.e., heteroscedastic noise, that naturally arise when
some of the data come from higher quality sources than oth-
ers. The technique handles heteroscedasticity by incorpo-
rating it in the statistical model of a probabilistic PCA. The
resulting optimization problem is an interesting nonconvex
problem related to but not seemingly solved by singular value
decomposition, and this paper derives an expectation maxi-
mization (EM) algorithm. Numerical experiments illustrate
the benefits of using the proposed method to combine sam-
ples with heteroscedastic noise in a single analysis, as well as
benefits of careful initialization for the EM algorithm.

Index Terms— Principal component analysis, heteroge-
neous data, maximum likelihood estimation, latent factors.

1. INTRODUCTION

Principal Component Analysis (PCA) is a ubiquitous tool for
unsupervised dimensionality reduction of high-dimensional
data [1]. This paper proposes a PCA variant based on the
probabilistic PCA framework [2] that extends PCA to handle
modern data that are increasingly heterogeneous and messy.
In particular, we consider samples with heteroscedastic noise,
that is, data where some samples are noisier than others. Such
data arises naturally when samples are obtained under varied
conditions. For example, spectrophotometric data in [3] are
averaged over increasingly long windows of time; samples
from shorter windows are nosier. Similarly, atmospheric
noise in the astronomical data of [4] varies across nights.
Conventional PCA can perform poorly on such data since it
treats all samples uniformly, as analyzed in [5].

A common approach to accounting for heteroscedastic
noise is to use a weighted PCA [1, Section 14.2.1] that gives
cleaner samples more weight. In particular, one often weights
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samples by inverse noise variance, i.e., samples with half as
much noise get twice as much weight. This choice whitens
the noise and can be interpreted as a maximum likelihood
weighting [6], but as analyzed in [7], is not aggressive enough
when the signal-to-noise ratio is small. Optimal weights are
derived in [7] that lie between inverse noise variance weights
and their squares. However, optimal weights differ depending
on which principal component one wants to recover, making
them most suitable for recovering individual components.

This paper focuses on recovering multiple components
simultaneously, and derives a probabilistic PCA (PPCA)
approach that estimates latent factors by maximum likeli-
hood estimation of a heteroscedastic factor model (1). In
the homoscedastic setting, the maximum likelihood estimate
is given by applying PCA with shrinkage [2], and can be
computed via singular value decomposition (SVD) of the
data. The heteroscedastic setting involves solving a related
nonconvex problem but seems not to have a direct SVD so-
lution. Section 3 derives an expectation maximization (EM)
algorithm that extends the homoscedastic variants in [2, Ap-
pendix B] and [8]. Numerical experiments in Sections 4 to 6
illustrate the benefits of the proposed heteroscedastic PPCA
method and its initialization.

2. HETEROSCEDASTIC PROBABILISTIC PCA

As in the PPCA [2] derivation of classical PCA, we model n
independent samples y1, . . . , yn ∈ Rd as

yi = Fzi + εi, (1)

where F ∈ Rd×k is a deterministic factor matrix to estimate,
zi ∼ N (0, Ik) are random coefficients, εi ∼ N (0, η2i Id) are
random noise, and η2i is the ith noise variance. Unlike [2], we
allow noise variances to vary across samples. Equivalently,

yi ∼ N (0,FF′ + η2i Id). (2)

PPCA estimates latent factors F by maximizing the log-
likelihood, dropping the ln(2π)−d/2 constant:

L(F) :=
1

2

n∑

i=1

{
ln det(FF′ + η2i Id)

−1 (3)

− y′i(FF′ + η2i Id)
−1yi

}
.



When the noise is homoscedastic, i.e., η21 = · · · = η2n = σ2,
this nonconvex problem can be solved via eigendecomposi-
tion of the sample covariance matrix [2, Section 3.2], but the
same is not true in general.

Writing (3) in terms of U ∈ Rd×k and θ1, . . . , θk, the left
singular vectors and values of F, and simplifying yields

L(F) = c+
1

2

n∑

i=1

{
y′iUWiU

′yi −
k∑

j=1

ln(θ2j + η2i )

}
, (4)

where c is constant with respect to F, and each Wi is a diago-
nal matrix with entries (θ21/η

2
i )/(θ21+η2i ), . . . , (θ2k/η

2
i )/(θ2k+

η2i ). Maximizing (4) with respect to U is a generalized
weighted PCA problem with weighting matrices Wi that de-
pend on the latent factor singular values, but unlike weighted
PCA, it does not seem to be solved by eigendecomposition.

3. ALGORITHM: EXPECTATION MAXIMIZATION

This section derives an EM algorithm for PPCA with het-
eroscedastic noise in the style of [2, Appendix B], where the
complete data includes samples y1, . . . , yn and coefficients
z1, . . . , zn. First, write the complete data log-likelihood

Lc(F) := −
n∑

i=1

(
‖yi − Fzi‖22

2η2i
+
‖zi‖22

2

)
, (5)

where (5) drops the constants ln(2πηi)
−d/2 and ln(2π)−k/2.

For the E-step, take the expectation of (5) with respect to
the conditionally independent distributions (from Bayes’ rule)

zi|y1, . . . , yn,Ft
ind∼ N

(
Mt,iF

′
tyi, η

2
iMt,i

)
, (6)

where Ft is the current iterate and Mt,i := (F′tFt+η2i Ik)−1,
yielding

L̄(F; Ft) :=
n∑

i=1

[
1

η2i
y′iFEzi −

1

2η2i
tr{F′FE(ziz

′
i)}
]

(7)

=
n∑

i=1

[
1

η2i
y′iFz̄t,i −

1

2η2i
tr{F′F(z̄t,iz̄

′
t,i + η2iMt,i)}

]
,

where z̄t,i := Mt,iF
′
tyi, (7) drops all terms that are constant

with respect to F, and the expectations E are all with respect
to z1, . . . , zn|y1, . . . , yn,Ft as given in (6).

For the M-step, maximize (7) with respect to F, e.g., by
completing the square, to obtain the next EM iterate

Ft+1 = TtS
−1
t , (8)

where

Tt :=
n∑

i=1

1

η2i
yiz̄
′
t,i, St :=

n∑

i=1

1

η2i
z̄t,iz̄

′
t,i + Mt,i. (9)

3.1. Grouping samples with a common noise variance

Samples often share noise variances, e.g., when they come
from the same source or sensor, introducing useful structure
into the update (8). Suppose that η2i ∈ {σ2

1 , . . . , σ
2
L} for all

i ∈ {1, . . . , n}, where n1 of the samples have noise variance
η2i = σ2

1 , n2 have noise variance η2i = σ2
2 , and so on. That is,

each sample has one of L distinct noise variances σ2
1 , . . . , σ

2
L.

Collecting samples in (9) that share noise variance yields

Tt =
L∑

`=1

1

σ2
`

Y`Z̄
′
t,`, St =

L∑

`=1

1

σ2
`

Z̄t,`Z̄
′
t,`+n`Nt,`, (10)

where Y` := (yi : η2i = σ2
` ) ∈ Rd×n` is a matrix whose n`

columns are the samples with noise variance σ2
` ,

Z̄t,` := (z̄t,i : η2i = σ2
` ) = Nt,`F

′
tY` ∈ Rk×n` , (11)

and Nt,` := (F′tFt + σ2
` Ik)−1. Note that

Y`Z̄
′
t,` = Λ`FtNt,`, Z̄t,`Z̄

′
t,` = Nt,`F

′
tΛ`FtNt,`, (12)

where Λ` := Y`Y
′
` ∈ Rd×d only needs to be computed once

during initialization. Thus, using (12) to compute the update
(8) can be more efficient, especially when n` is large.

3.2. Initialization by homoscedastic PPCA

We initialize the latent factors F using the homoscedastic
PPCA solution [2, Section 3.2]:

F0 := V diag
(√

λ1 − λ̄, . . . ,
√
λk − λ̄

)
, (13)

where the columns of V ∈ Rd×k are the k principal eigenvec-
tors of the sample correlation matrix (y1y

′
1 + · · ·+ yny

′
n)/n,

λ1, . . . , λk are the corresponding k principal eigenvalues, and
λ̄ is the average of the remaining d− k eigenvalues.

A benefit of this initialization is that it guarantees all it-
erates will have likelihood at least as large as homoscedastic
PPCA since the EM algorithm never decreases the likelihood.
Furthermore, the homoscedastic PPCA solution is likely close
to the heteroscedastic PPCA solution when samples have rel-
atively low noise or relatively homogeneous noise variance.
Section 4 describes numerical experiments assessing the per-
formance of this initialization.

4. INITIALIZATION EXPERIMENTS

This section compares (13) with random initializations. We
generate n = 103 samples in d = 102 dimensions from k = 3
factors according to the model (1). True latent factors are
generated as F̃ = Ũ diag(θ̃1, θ̃2, θ̃3), where θ̃21 = 4, θ̃22 = 2,
θ̃23 = 1, and Ũ = (ũ1, . . . , ũk) ∈ Rd×k is uniformly drawn
from the set of d × k matrices with orthonormal columns.
The data have heteroscedastic noise: n1 = 200 samples have
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Fig. 1: Example data realization where homoscedastic PPCA
initialization (blue dashed curves) generally converged faster
than random initialization (red solid curves).
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Fig. 2: Example data realization where homoscedastic PPCA
initialization (blue dashed curves) converged slower than
some random initializations (red solid curves).

noise variance σ2
1 = 1 and n2 = 800 samples have noise

variance σ2
2 = 4. Each random initialization F0 is generated

as Q diag(θ̃1, θ̃2, θ̃3), where Q is drawn uniformly at random
from the set of d × k matrices with orthonormal columns.
Namely, random initializations have the true latent covariance
eigenvalues (unknown in practice) with random eigenvectors.

Fig. 1 shows the objective function (3) and normalized
estimation error1 ‖FtF′t − F̃F̃′‖F /‖F̃F̃′‖F over iterations t
when initialized by homoscedastic PPCA (13) and by 100
random initializations for an example data realization. Ran-
dom initializations generally start at worse objective function
values and estimation errors, and take longer to converge.
Some intermediate iterates from random initializations pass
closer to the true latent factors F̃, but they are not minima and
EM moves away from them. Fig. 2 shows a data realization
(generated in the same way) where some randomly initialized
runs converge faster. It is otherwise similar to Fig. 1, however,
and initialization with homoscedastic PPCA still converges as
fast as many of the randomly initialized runs.

These examples were fairly representative in our testing.
Homoscedastic PPCA is generally a better initialization, and
the resulting iterates typically converge at a rate competitive
to those from random initializations. Interestingly, EM seems
to always converge to a global minima even though the ob-
jective (3) is nonconvex, suggesting that (3) may have special
structure similar to homoscedastic PPCA [2, Sections A.2-
A.3]. Characterizing it is an interesting area of future work.

1Since the objective (3) depends on F only through FF′ we can only
hope to recover F̃ up to right multiplication by a k × k orthogonal matrix.

5. COMPARISON WITH HOMOSCEDASTIC PPCA

This section illustrates the benefit of accounting for het-
eroscedasticity in PPCA. We consider n1 = 200 samples
(group 1) with noise standard deviation σ1 = 1 and n2 = 800
samples (group 2) with noise standard deviation σ2. To get a
range of heteroscedastic settings, we sweep σ2 from 0 to 3.
Data is otherwise generated as in Section 4. For each σ2 in
the sweep, we generate 100 data realizations and evaluate re-
covery of the underlying true latent factors F̃ by estimates F̂
obtained from heteroscedastic PPCA on the full data and from
homoscedastic PPCA on: a) the full data, b) only group 1, and
c) only group 2. The heteroscedastic PPCA is initialized as in
Section 3.2 and run for 1000 iterations to obtain F̂ = F1000.

Fig. 3a shows mean normalized estimation errors ‖F̂F̂′−
F̃F̃′‖F /‖F̃F̃′‖F as curves with ribbons for the associated
interquartile intervals. Likewise, Figs. 3b to 3d show mean
and interquartile component recoveries |û′1ũ1|2, . . . , |û′3ũ3|2,
where ũ1, . . . , ũ3 ∈ Rd and û1, . . . , û3 ∈ Rd are the prin-
cipal eigenvectors of F̃F̃′ and F̂F̂′, respectively. Lower is
better for estimation error, and higher is better for component
recoveries. We first compare the homoscedastic PPCA’s.

When σ2 is sufficiently smaller than σ1 = 1, homoscedas-
tic PPCA performs best when applied to only group 2 data
since doing so excludes noisier data. Using the full data has
the advantage of incorporating more samples, but including
noisier group 1 samples is a bigger downside in this regime.
Using only group 1 data performs worst since this dataset is
both smallest and noisiest. As σ2 → 0, group 2 data be-
come noiseless, and using only this data yields perfect com-
ponent recoveries. On the other hand, homoscedastic PPCA
on the full data and on only group 1 still incorporate the noisy
group 1 samples and do not achieve perfect recovery.

As σ2 increases, homoscedastic PPCA performance using
either the full data or only group 2 degrades since the sam-
ples they use become noisier. Moreover, the benefit of using
only group 2 samples diminishes, and using the full data be-
comes better than using only group 2. The performance of us-
ing only group 1 remains the same; its performance depends
on the size n1 and noise level σ1 of group 1, not σ2. When
σ2 = σ1 and noise is homoscedastic, using the largest full
dataset performs best, followed by using only group 2 then
using only group 1. When σ2 > σ1, excluding the cleaner
group 1 data gives no benefit, but using only group 1 ini-
tially remains worse than using only group 2 because it has
n1/n2 = 1/4 as many samples. As σ2 continues to grow, full
data and group 2 homoscedastic PPCA performances even-
tually degrade beyond using only group 1, and using only
group 1 yields the best homoscedastic PPCA performance.

Heteroscedastic PPCA (dashed blue) uses the full data but
accounts for their heteroscedastic noise. When σ2 is small, it
seems to match the best performing homoscedastic PPCA that
uses only group 2. As σ2 increases, its performance degrades
like full data or group 2 homoscedastic PPCA, but it does so
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Fig. 3: Comparison with homoscedastic PPCA.

Inverse noise variance weighted PCA Square inverse noise variance weighted PCA Heteroscedastic PPCA

0 1 2 3

σ2

0

0.2

0.4

0.6

0.8

1

‖Û
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Fig. 4: Comparison with weighted PCA.

more slowly, matching then outperforming both. Eventually,
its performance approaches homoscedastic PPCA using only
group 1. Throughout, heteroscedastic PPCA either matches
or outperforms the three homoscedastic PPCA approaches. It
appropriately balances the two groups of data, and seems to
always benefit from including all samples even if very noisy.

6. COMPARISON WITH WEIGHTED PCA

This section repeats the experiments of Section 5 but with
weighted PCA [1, Section 14.2.1]. Weighted PCA estimates
principal components Û = (û1, . . . , ûk) ∈ Rd×k as the prin-
cipal eigenvectors of the weighted sample covariance matrix

1

n

n∑

i=1

ω2
i yiy

′
i =

1

n

L∑

`=1

w2
`

∑

i:ηi=σ`

yiy
′
i =

1

n

L∑

`=1

w2
`Λ`,

where we give group 1 samples a weight of w2
1 and group 2

samples a weight of w2
2 . We consider inverse noise variance

weights w2
` = 1/σ2

` that effectively rescale samples to make
the noise homoscedastic, and square inverse noise variance
weights w2

` = 1/σ4
` that can be more effective in low signal-

to-noise ratio regimes since they more aggressively down-
weight noisier samples [7].

Fig. 4 shows the mean and interquartile principal subspace
estimation errors ‖ÛÛ′ − ŨŨ′‖F /‖ŨŨ′‖F and component
recoveries |û′1ũ1|2, . . . , |û′3ũ3|2. When σ2 is small, both
weighted PCA approaches perform similarly to heteroscedas-
tic PPCA; they account for heteroscedasticity and benefit
from using the full data. As σ2 grows, inverse noise variance
weighted PCA becomes worse than heteroscedastic PPCA,
especially in the weaker components 2 and 3, since it does not

downweight noisier group 2 samples enough. Square inverse
noise variance weights, on the other hand, remain comparable
to heteroscedastic PPCA, with similar subspace estimation
error throughout the sweep. Component recoveries are worse
for moderate σ2, but this gap shrinks as σ2 grows large and
both methods likely rely primarily on cleaner group 1 data.

The performance of weighted PCA and heteroscedastic
PPCA compared with the homoscedastic PPCA approaches
underscores the benefit of accounting for heteroscedasticity.
By appropriately combining heterogeneous samples in one
analysis, these methods make better use of all available data.

7. CONCLUSION

This paper proposes a PPCA for data with heteroscedastic
noise and derives an EM algorithm to compute the factor esti-
mate. Numerical experiments show the benefits of initializing
EM with homoscedastic PPCA. Experiments also illustrate
how the proposed heteroscedastic PPCA outperforms inverse
and square inverse weighted PCA, as well as homoscedastic
PPCA applied to all available samples or to only those sharing
a noise variance.

Other optimization approaches that utilize the alterna-
tive log-likelihood form (4) is an avenue of ongoing work.
Orthonormality constraints in the resulting problem suggest
approaches based, e.g., on manifold optimization. Another
area for future work is characterizing the objective (3) to
understand why the EM algorithm seemed to always con-
verge to global minima. Finally, extensions of this approach
to incorporate other aspects of messy data, notably miss-
ing/unobserved data, is an important avenue for further work.
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