
Scalable Object Tracking in Smart Cities
Jose Stovall, Austin Harris, Amanda O’Grady, Mina Sartipi

College of Engineering and Computer Science
Center for Urban Informatics and Progress

University of Tennessee at Chattanooga

Abstract—In smart cities equipped with cameras, one desirable
use-case is to detect and track objects. While object detection has
been implemented using various methods, object tracking poses a
different problem; to track an object requires object permanence
to be established between each frame of video. While many
technologies have been proposed as a solution for problem, an
implementation with scalability in mind has not been developed
and poses many new challenges. This paper proposes e-SORT, a
solution for scalable object tracking using an enhanced version
of the Simple Online and Realtime Tracking (SORT) algorithm.
Beyond its scalability, e-SORT stores a mapping of each objects’
locations such that the full path of each object is available
and several metrics (such as velocity and acceleration) can be
calculated. Both e-SORT’s abilities and our proposed solution to
scalable object tracking are tested and evaluated on Chattanooga
Tennessee’s live urban testbed.

Index Terms—Smart City, Object Detection, Object Tracking,
Machine Learning, Smart Infrastructure

I. INTRODUCTION

Throughout the last decade, smart cities have grown in
popularity. A smart city is a city in which the city and its
occupants live with better connectivity to each other. Smart
cities often include a wide variety of Internet of Things (IoT)
devices and sensors, such as air quality sensors, network ac-
tivity sensors, Vehicle-to-Infrastructure connectivity and more.
Video cameras are often found among these devices, and allow
for many forms of analytics via machine learning such as
object detection, object tracking and more.

Object tracking is one of many applications for video cam-
eras in a smart city, and provides important data to the city’s
occupants. In most object detection algorithms, an image (be
it a video frame or single image) is fed into the model and the
detections are made with their corresponding bounding boxes
and labels. While this addresses many challenges, a detection
model fails to maintain object permanence in between frames.
This poses the issue that object tracking must solve: how to
maintain object permanence in between frames. Due to the
simplicity of the problem object trackers are usually used in
conjunction with object detection models instead of developing
their own model to detect objects, and are only tasked to
help correlate detections between frames to maintain object
permanence. Unlike object detection alone, object tracking
offers the ability to store all previous object locations, predict
future ones, and calculate many variables and statistics based
on an individual event. This can provide the city with helpful

Figure 1: Graphical Representation of the MLK Smart Corri-
dor’s Testbed and its features.

information on traffic trends, pedestrian density, jay-walking
zones and more, allowing it to use this data to make the city
more intelligent.

The complexity of making a city “smart” scales with the
size of the city; all software and hardware design must be
designed with scalability in mind. While many object tracking
solutions have already been developed, they do not address the
challenge of scalability, therefore any proposed solution must
be capable of scaling out to infinitely many cameras provided
that the hardware is available. This paper shall address these
concerns as they relate to object tracking. Additionally, it shall
discuss our scalable object tracking implementation that has
been deployed on the testbed on Chattanooga Tennessee’s
MLK Smart Corridor (illustrated in Figure 1) . Our imple-
mentation on this testbed provides the benefit of a real-time
live urban environment, as opposed to artificial or simulated
environments.

This paper shall break down our enhancements and modi-
fications to a “Simple Online Realtime Tracker” [1] to create
e-SORT, and discuss our implementations in a live urban
environment and how they validate the necessity of e-SORT.
This paper comprises the following sections: Section II surveys
popular implementations of object detection and tracking.
Section III discusses in more depth what the current issues
are, and section IV discusses our proposed approach. Section
V discusses our findings in different metrics for our proposed
tracking solution, and section VI concludes the paper and
discusses future plans and improvements to object tracking
in smart cities.978-1-7281-0858-2/19/$31.00 c©2019 IEEE

II. RELATED WORKS

In this section, we will explore the two major concepts
that object tracking tasks are composed of. In general, the
architecture of a tracking solution begins with the detection of
an object or objects, followed by feeding those detection(s)
into an object tracker to correlate detections to previous
frames. As such, it is generally possible to choose nearly
any object detection solution and fit it to any object tracking
solution.

A. Object Detection

Object detection has been studied extensively. In this sec-
tion, only a few of the most unique (be it accuracy, imple-
mentation methods or speed) will be discussed in this paper;
You Only Look Once (YOLO) (v1 [2], v2 [3] and v3 [4]) will
be discussed in detail for its speed, MaskRCNN [5] for its
overall high accuracy, and Objects as Points [6] for its speed
and unique implementation.

The authors of [2], [3], and [4] have introduced an incre-
mentally improved real-time object detection model. The au-
thors have proposed a Convolutional Neural Network (CNN),
which solves the object detection problem by treating it similar
to a regression problem. Their model provides both labels and
bounding boxes, and comes in many variants. The original
YOLOv1 is limited to only 20 different detectable objects,
and had two variants: YOLO and Fast YOLO. YOLO would
perform at 45 FPS, and Fast YOLO would perform at 155 FPS.
YOLOv2 is capable of detecting 80 different types of objects,
and achieves over 40 FPS (depending on the variant). YOLOv3
brought about a series of smaller quality-of-life changes, such
as utilizing the GPU for more tasks than before. All variants of
YOLO provide a balance between performance and accuracy
that makes it a good fit for a large-scale problem such as the
one we address in this paper.

The authors of [5], an extension to Faster-RCNN [7], not
only detects objects but also predicts each object’s mask. Mask
R-CNN outperforms all other existing single-model detectors
(at the time the authors wrote their paper), and is designed for
use beyond its original scope as an object detection model -
such as human pose estimation. While Mask R-CNN is an
excellent candidate for the detection component in a real-
time scalable object tracking solution for smart cities, it lacks
speed - one of the most critical components for real-time
applications. At a peak of 5 Frame Per Seconds (FPS), it
is incapable of keeping up with the real-time environment
that a smart city encompasses. The extra 25 frames that most
cameras produce will be wasted, and such poor frame-rate may
lead to issues with some object tracking algorithms (such as
SORT [1]) and poses a risk of missing important event details;
a near-miss may be undetectable at frame-rates so low.

The authors of [6] propose that axis-aligned bounding boxes
are highly inefficient. They have introduced the concept of
using points to determine detections, as they are much more
efficient. These points are found using keypoint estimation,
and are located in the center of the object’s bounding box.

The additional information (such as the size, bounds, three-
dimensional location, pose, and more) are found using re-
gression. The authors claim that they have obtained the “best
speed-accuracy trade-off” in their model implementation of
this idea, CenterNet. Results from testing with the Pascal VOC
2007 test prove this to be true; CenterNET achieved as high
as 142FPS average using CenterNet-Res101 (at a 512x512
input resolution) and still managed to achieve a 72.6 mean
average precision (mAP) with an Intersection of Unions (IoU)
threshold of 0.5 (mAP@0.5). This approach proves to have the
frame-rate and accuracy that is necessary for the large-scale
real-time requirements discussed later in this paper.

B. Object Tracking

As discussed, tracking an object poses a problem different
from that of detection; in general, off-the-shelf object detection
algorithms do not offer any means to maintain object persis-
tence between the frames of a video. There are two common
approaches within the subject of object tracking: single-object,
and multi-object. Single-object tracking focuses on tracking
a single object within the camera view, where multi-object
tracking will track all given objects with the camera view. For
the purposes of a smart city there will almost always be more
than a single object within the camera’s view, so this paper has
also been written to address a multiple-object environment.

The authors of [8] have proposed an MIL object tracker
with online boosting. Their proposed tracking system does not
require object detection (though it can be augmented with it),
as it only requires an initial bounding box which can be drawn
by multiple sources (such as a human or a model). While this
is particularly effective for less complex views, it is not an
ideal solution for camera views with many objects entering and
leaving the scene. Therefore, for the purpose of this paper we
have considered this tracker only in conjunction with a model,
whose detections can be used to update the tracker’s tracklets
(i.e. re-seed the tracker). Since new objects within the camera
view can only be tracked once the tracker is fed in a new
bounding box, a compromise must be made in how often to re-
seed the tracker with model detections. One approach would be
to re-seed the tracker with model detections every other frame,
though we have found this to result in a higher number of
instances where an object’s ID is changed to a completely new
one. Another approach would be to wait longer to re-seed the
tracker with model detections (for example, every 10 frames).
While this approach is a good compromise, it still allows for
objects to be re-assigned to an ID of an object which left the
camera’s view anywhere between 0 and x frames ago, where
x is the number of frames between re-seeding the tracker with
model detections.

The authors of [9] introduce a correlation-filter based track-
ing algorithm which uses their proposed Minimum Output
Sum of Squared Error (MOSSE) filter. This filter allows
for stabilization of correlation filters upon initialization. This
method is robust enough to maintain its performance through
changes of multiple conditions such as scale, lighting, and
more, all-the-while performing at over 600FPS. As it is a

correlation-filter based tracker, it also suffers from the same
issues and compromises that [8] does.

The authors of [1] have proposed a “Simple Online Real-
time Tracker”. This tracker works by taking detections from
some model, and associating a tracklet to these detections
using Intersection of Unions (IoU) and a Kalman Filter. The
Kalman Filter is used to predict the next location of a tracklet,
which is used with IoU and the current detections to associate
a detection back to the tracklet. This tracker requires a model’s
detections every frame, as these detections are how the tracker
performs its reassociation to tracklets. The tracker manages old
tracklets by determining how recently the tracklet has been
reassociated. If the tracklet has not been reassociated within
some threshold of frames (user-configurable), it is deleted
for memory conservation purposes. One shortcoming of this
tracker is that it requires a model which is not provided in the
paper. Additionally, the tracker’s tracklets do not store some
useful information such as a history of that tracklet’s locations
(and including timestamps would also prove useful), and
obsolete tracklets (those tracklets which cannot be reassociated
with detections) are simply deleted. This tracker is also heavily
frame-rate dependent; the higher the frame-rate of the video
and detections, the fewer instances of ID reassignment and
higher the precision of the tracker.

The authors of [10] have proposed a multiple object tracking
solution which uses a K-Shortest-Path algorithm in conjunc-
tion with a linear equation to perform tracking. While this
solution is highly accurate, it fails to perform with the accuracy
and efficiency required to run the many cameras along the
MLK Smart Corridor. Between the linear functions and the K-
Shortest-Path algorithm, this object tracking model is enable
to meet our 30FPS requirement, and would be problematic to
scale with the smart city.

C. Motivations and Contributions

While the combination of SORT [1] and an off-the-shelf
object detection algorithm solves the challenge of tracking an
object in real-time, it fails to address the issue of scalability in
smart cities. We must design a scalable software architecture
for tracking objects in real-time, allowing for new cameras to
be added with ease to increase maintainability for the long
term. As a part of this scalable workflow, we will need to
submit trackers to a real-time publish/subscribe database for
graphing, analysis and more. In order to do so, SORT [1]
will require modifications to optimize certain elements for this
software architecture.

III. PROBLEM STATEMENT

Based on the other works discussed in II, challenges for
e-SORT have been established. e-SORT must be capable of
submitting data from obsolete tracklets (tracklets which no
longer appear within the frame) to our real-time publish/sub-
scribe database. While using an object detection algorithm
with SORT [1] will reduce the complexity of this problem,
the following challenges still remain:

1) This combination of detection and tracking needs to be
scalable.

2) Once a tracklet is obsolete, it must be captured and
submitted to our real-time publish/subscribe database,
requiring that:

a) The tracklet stores its own label.
b) The tracklet stores a mapping of its history of

locations in the frame with their corresponding
timestamps (in UTC).

c) SORT [1] is modified to allow access to the obso-
lete trackers.

3) The tracklet map of location to timestamps is reduced
to prevent overly large messages.

4) Tracklet data is formed as a JSON to submit to our real-
time publish/subscribe database.

Additionally, e-SORT must be implemented with scalability
in mind so that it may perform real-time object tracking
across the testbed’s cameras (of which 24 have been de-
ployed already, with up to 8 more to be deployed across
two additional intersections). Since each camera runs at a
resolution of 1920 × 1080 at 30 frames per second, this
task is computationally expensive as well and thus hardware
considerations must also be made. Since no publicly available
solutions for scalable object tracking exist, it is necessary to
create the entire architecture which utilizes e-SORT (among
many other technologies).

IV. PROPOSED APPROACH

A. Proposed Architecture

We propose a multi-processed architecture, seen in Figure
2, which is designed with scalability in mind. A block queue
is used to transfer data between the four different types of
processes, and there is a queue dedicated for raw frames,
processed frames and tracking results. Each of the queues’
placements within the architecture can be seen in Figure 2.
The four aforementioned types of processes are:

1) Capture Processor: This architecture contains n Capture
Processors (represented in blue in Figure 2, where n is the
number of cameras in the Smart City. Each of these is a
dedicated process for capturing video frames from one specific
camera on the infrastructure. Each Capture Processor contains
its own instance of SORT [1], as there are n/3 Frame Proces-
sors. n/3 was found to be the most efficient distribution of our
limited computational resources. The Frame Processor which
processes the frame resulting from this process is random as
a result of the shared queue logic that allows each processor
to share data.

2) Frame Processor: This architecture contains n/3 Frame
Processors (represented in red in Figure 2), where n is the
number of cameras in the Smart City. This number was a result
of testing, where the Frame Processor was allocated another
Capture Processor until the Frame Processor could not keep
up. The Frame Processor is responsible for performing object
detection via any model, although some models may require
modification of the Frame Processor’s algorithm if their output

Figure 2: Architecture Overview, where n is the number
of cameras in the Smart City. Blue indicates n number of
Capture Processors, whose purpose is solely to capture video
footage. Red indicates n/3 number of Frame Processors,
whose purpose is to detect and track objects. Purple indicates
the Database Processor, whose purpose is to form data from
the Frame Processor into a JSON format and submit to
our real-time publish/subscribe database. Green indicates the
Stream Processor, whose purpose is to stream all n streams
for demonstration purposes.

is not (or cannot be parsed to be) of form [x1, y1, x2, y2]. The
results from detection are fed into the SORT instance which
corresponds to the frame. Obsolete tracklets from the results
of SORT are then fed into the Submission Queue, the original
video frame is destroyed for privacy purposes, and the frame
from the Frame Processor has overlays drawn around objects,
which is fed into the Stream Queue.

3) Submission Processor: This architecture contains 1 Sub-
mission Processor (represented in purple in Figure 2). The
Submission Processor uses in the obsolete tracklets from the
Submission Queue to create a JSON message containing crit-
ical information. This JSON message contains the following:

• ID: A UUID created for the tracklet.
• Label: The label of the tracklet, given by the detection

algorithm.
• Hit Count: The number of locations within the frame that

the tracklet was found.
• Locations: A mapping of timestamp : boundingbox for

that tracklet, which stores every single bounding box (a
list containing x1, y1, x2, y2) and maps it to the time (in

UTC) that it was detected.
Once the JSON object is created, it is published to our

real-time publish/subscribe database for further consumption.
This data allows us to perform several useful analytics such
as near-miss detection without sacrificing the privacy of the
city’s occupants.

4) Stream Processor: This architecture contains 1 Stream
Processor (represented in green in Figure 2). The purpose
of the Stream Processor is purely visual; it enables us to
show the results of our tracking on a web interface, which
has backend authentication for privacy purposes. The Stream
Processor takes frames from the Stream Queue and streams
them using an asynchronous web-hosting library.

B. e-SORT Modifications

This architecture requires some modifications to the original
SORT algorithm. We propose an enhanced version of the
SORT algorithm called e-SORT. The next three sections shall
discuss in detail what modifications were made and how they
are implemented to create e-SORT.

1) Obsolete Tracklets: The original SORT algorithm, for
the purposes of memory management, deletes obsolete track-
lets upon calling the update function. Since our publish/sub-
scribe database is not designed to handle the updating of an
entry, it is required that the JSON submission contain all of
the data for the tracklet, as opposed to submitting the data as
it comes in. As a result, keeping the obsolete tracklets was a
clear solution to this problem, as it would allow us to have all
of the information at once and will not be updated (since the
tracker is obsolete and won’t be updated again within SORT).
Therefore, modifications to the update function have been
made to allow it to also return these obsolete tracklets. After
enqueueing the tracklet to the Submission Queue, the obsolete
tracklet is deleted. This retains the much needed memory
management while meeting our needs for the publish/subscribe
database.

2) Object Labels: Each tracklet in SORT does not store
its label. This is an important trait as it simplifies the work-
flow (as detailed in the Obsolete Tracklets portion above). To
resolve this, modifications to SORT’s update method had to be
made. The update function now requires a labels argument,
such that when the tracklet is reassociated to a detection, it
can also be reassociated with the correct label. For further
improvement, model detection labels may vary for the same
tracklet. Instead of overwriting the label each time, a list of all
assigned labels from the detection model are kept within the
tracklet. When the tracklet’s label is then requested using the
getlabel function, the label which is most frequently found
is returned. This prevents any anomalies from the labelling
process to be corrected in most instances.

3) History of Locations: Another trait required from SORT
was a way for each tracklet to retain knowledge of “when” and
“where” it was. This takes form as a Python dict whose keys
are timestamps (in UTC) and whose values are a bounding box
(of form x1, y1, x2, y2). A new key-value pair are appended

to the tracklet’s locations dict when update is called to the
SORT instance. This is also the time at which the timestamp
is created which delays the timestamp less than a second more
than the actual event occurring, which for most use-cases in
a smart city is negligible. This history allows for a user to
subscribe to the publish/subscribe database later and perform
later analysis and calculate properties such as velocity and
acceleration.

As mentioned in Section III, the tracklet’s history of lo-
cations must be reduced before publishing to our real-time
publish/subscribe database. This can be done by applying a
threshold for the euclidean distances between two timestamps.
This can be seen in the algorithm below. This algorithm is
important as it prevents a still car from creating thousands of
entries to flood into the database, while retaining important
details such as how long it stayed in that location. In testing,
a 30 pixel threshold has been found to be most optimal within
our environment.

Input: locations, threshold
for timestamp, bbox in locations do

if distance(last bbox, bbox) >= threshold then
ret val[timestamp] = bbox
last bbox = bbox

end
end
return ret val

Algorithm 1: History Simplification

V. NUMERICAL RESULTS

To test e-SORT and the scalable architecture discussed in
Section IV, we used the testbed located on Chattanooga’s
MLK Smart Corridor (located in Tennessee). The testbed is an
open platform which permits research problems to be tested in
a live urban environment. At the time of writing, the testbed
contains 27 cameras across 9 major intersections. All IoT
devices within the testbed have a 10-gigabit fiber backbone
which supports real-time data transfers to and from each pole.
The results described in this section come from real-time video
stream from this testbed. More information on the testbed’s
capabilities can be found on the testbed’s website [11], and a
representative figure can be seen in Figure 1.

Determining the accuracy of our approach poses new chal-
lenges, as there are multiple metrics by which accuracy can
be determined. This is made possible by the login-protected
live streaming of our processed video streams, which allow an
analyst to view what the algorithm is detecting. The method of
accuracy determination used and discussed in this paper was a
manual process in which an analyst would count the number
of times an event would occur, then calculate the accuracy
using total count of objects from the beginning and end of
their session. The types of events counted for were multiple-
ID instances, no ID instances, and mislabeled instances, each
of which will be discussed in further detail below. Each
experiment was performed on differing video data and results,

as it is against our privacy policy to store any video from the
testbed for any time period longer than 30 minutes.

A. Multiple-ID Instances

Multiple-ID instances are cases in which one object gets
multiple IDs, meaning its tracklet was lost too early. In
observing the object tracking algorithm, on average for every
115 objects there would be five cases of ID reassignment.
Considering that this count of objects is gathered from the vi-
sualization, the object count should actually be approximately
five ID reassignments per 110 objects. This can be represented
as a 95.45% ID retention rate or a 4.55% ID reassignment rate.

The importance of ID reassignment is beyond aesthetic;
ID reassignment is a direct result of tracklet reassignment.
This indicates that the tracklet prior to reassignment will be
considered as obsolete before the object actually is, resulting
in a single object represented by two tracklets. This is prob-
lematic for a few reasons, one of which being the real-time
publish/subscribe database. Since we submit the data from
tracking upon retrieval of obsolete tracklets, one object will be
represented by two events in the publish/subscribe database.
This means that traffic counts may be higher (albeit only by a
difference of 5-10 objects), but more importantly the future
use of the dataset being created by our approach may be
problematic, as two objects’ paths may be shorter than they
should be.

B. No ID Instances

No ID instances are cases in which an object is not given an
ID at all, indicating that our detection algorithm did not detect
the object to begin with. We have monitored these events and
have found that we have a 2.978% likelihood for improperly
tracking / detecting an object; that is to say, we have a 97.022%
accuracy in this category. While the number of objects this was
analyzed for was 6421 according to the visualization, this is
technically incorrect. Considering that 6421 was the count for
an average of 97.022% of all actual objects through the scene,
then the actual count should be approximately 6612 objects.

C. Mislabeled Instances

Mislabeled instances: cases in which the label from our
object detection algorithm failed to give the correct label for
the object. We have gathered this metric for 8112 different
objects, revealing that only 2.79% of the time is an object
mislabeled; that is to say, we have a 97.21% accuracy in this
category.

D. Real-time Visualizations

An easy to understand use for the real-time tracking data
coming into our real-time publish/subscribe database takes
form through visualizations. While there are many options to
use, there are two that have already been implemented and
receive regular use:

Figure 3: Graph of Aggregated Counts of Objects from
Tracking for 24 hours, where each different color represents a
different camera’s object counts, e.g., mlk-central-cam-2 Avg:
251 indicates that an average of 251 objects have passed
through that camera’s view in a 10-minute interval

1) Graphing Dashboard: As a part of our server’s software
stack, we have deployed a graphic dashboard to read the data
published to our real-time publish/subscribe database. This
allows us to visualize the data easily, making some traffic
trends quite clear. Figure 3 shows a sample for 10 cameras
on Chattanooga Tennessee’s up and coming smart city.

2) Overlay Generator: Written using the OpenCV library
for Python, another visualization that uses the real-time track-
ing data is an Overlay Generator. This overlay generator uses
an existing image of the camera view requested, and overlays
paths of objects (retrieved from our real-time publish/subscribe
database) in different colors for each object. This allows us
to show off what the data looks like in an anonymous but
still important way, and makes more visible. For example, this
imagery makes it possible to see jay-walking trends, vehicles
in the bike lanes and more. This can be seen in Figure 4.

Utilizing only ten of the 27 cameras on the MLK Smart
Corridor’s testbed (due to hardware limitations), our proposed
solution to scalable object tracking produces approximately
200,000 results per day. As the accuracy of our proposed
solution shows improvement, this number will more accurately
reflect a day’s worth of traffic in the live urban environment
we have performed tests on.

VI. CONCLUSION AND FUTURE WORK

In this work, we have discussed our solution to object
tracking which can scale to fit the size of a smart city. This
approach allows for each type of detectable object (determined
solely by the object detection model used) to be treated as an
event with unique attributes, such as object label, path taken,
timestamp of each location, and more. With these metrics, it is
possible to perform trajectory prediction using known velocity
and acceleration for the event. If the predicted trajectories of
any two objects overlap, their trajectories and velocities are
used to calculate time ’til collision (TTC). If the TTC of these
two objects falls below a certain threshold and the two objects

Figure 4: Heat map of the tracked objects from one camera.
Top: All objects’ paths; Bottom: Objects paths for objects
with label “Pedestrian”. The bottom image makes pedestrian
walking trends clear.

do not collide, a near-miss event has just occurred. This near-
miss use-case will be explored in a future work.

There are a few methods which can be applied to improve
the proposed solution for scalable object tracking, the first of
which has to do with frame-rate. Due to the nature of how
SORT [1] works, it is very frame-rate dependent; since it
uses a Kalman Filter to predict the next location, a higher
frame-rate will increase the accuracy of this prediction. The
testbed our approach has been deployed on is equipped with
cameras which stream two types of video stream in parallel:
H.264, and MJPEG. MJPEG is the most convenient solution
to use in code, but comes at the cost of low frame-rate (6 to
8 FPS) as a result of the camera itself. This is believed to be
the main contributor to the re-assigned ID issue discussed in
Section V. Since the H.264 stream does maintain 30FPS with
no issue it would is the ideal solution, but includes a decoding
overhead which is not present when using the MJPEG stream.
A solution is being implemented now to offload the H.264
decoding overhead.

Another optimization yet to be deployed is to reduce overall
CPU usage, allowing for more instances of the tracking
algorithm to be run on the same hardware. This source of the

CPU savings was the video streaming, used as a visualization
and for demonstration purposes. The prior video streaming
implementation used a synchronous, threaded approach, in
which every new stream-viewing client would be processed
on a newly spawned thread. The new approach uses an
asynchronous method, which does not require new threads for
each user.

ACKNOWLEDGMENT

The project team would like to extend their gratitude to the
NSF US Ignite (Award #1647161) for partially funding this
project.

REFERENCES

[1] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” CoRR, vol. abs/1602.00763, 2016. [Online].
Available: http://arxiv.org/abs/1602.00763

[2] J. Redmon, S. K. Divvala, R. B. Girshick, and
A. Farhadi, “You only look once: Unified, real-time object
detection,” CoRR, vol. abs/1506.02640, 2015. [Online]. Available:
http://arxiv.org/abs/1506.02640

[3] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” arXiv
preprint arXiv:1612.08242, 2016.

[4] ——, “Yolov3: An incremental improvement,” arXiv, 2018.
[5] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask

R-CNN,” CoRR, vol. abs/1703.06870, 2017. [Online]. Available:
http://arxiv.org/abs/1703.06870

[6] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as
points,” CoRR, vol. abs/1904.07850, 2019. [Online]. Available:
http://arxiv.org/abs/1904.07850

[7] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-
CNN: towards real-time object detection with region proposal
networks,” CoRR, vol. abs/1506.01497, 2015. [Online]. Available:
http://arxiv.org/abs/1506.01497

[8] B. Babenko, M. Yang, and S. Belongie, “Robust object tracking with on-
line multiple instance learning,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 33, no. 8, pp. 1619–1632, Aug. 2011.

[9] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual ob-
ject tracking using adaptive correlation filters,” in 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, June
2010, pp. 2544–2550.

[10] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua, “Multiple object tracking
using k-shortest paths optimization,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 9, pp. 1806–1819, Sep.
2011.

[11] “CUIP.” [Online]. Available: https://utccuip.com/

