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Abstract

We propose a new randomized optimization method for high-dimensional problems
which can be seen as a generalization of coordinate descent to random subspaces.
We show that an adaptive sampling strategy for the random subspace significantly
outperforms the oblivious sampling method, which is the common choice in the
recent literature. The adaptive subspace can be efficiently generated by a correlated
random matrix ensemble whose statistics mimic the input data. We prove that
the improvement in the relative error of the solution can be tightly characterized
in terms of the spectrum of the data matrix, and provide probabilistic upper-
bounds. We then illustrate the consequences of our theory with data matrices of
different spectral decay. Extensive experimental results show that the proposed
approach offers significant speed ups in machine learning problems including
logistic regression, kernel classification with random convolution layers and shallow
neural networks with rectified linear units. Our analysis is based on convex analysis
and Fenchel duality, and establishes connections to sketching and randomized
matrix decomposition.

1 Introduction

Random Fourier features, Nystrom method and sketching techniques have been successful in large
scale machine learning problems. The common practice is to employ oblivious sampling or sketching
matrices, which are typically randomized and fixed ahead of the time. However, it is not clear
whether one can do better by adapting the sketching matrices to data. In this paper, we show that
adaptive sketching matrices can significantly improve the approximation quality. We characterize the
approximation error on the optimal solution in terms of the smoothness of the function, and spectral
properties of the data matrix.

Many machine learning problems end up being high dimensional optimization problems, which
typically follow from forming the kernel matrix of a large dataset or mapping the data trough a high
dimensional feature map, such as random Fourier features [20] or convolutional neural networks [13].
Such high dimensional representations induce higher computational and memory complexities, and
result in slower training of the models. Random projections are a classical way of performing
dimensionality reduction, and are widely used in many algorithmic contexts [25]. Nevertheless, only
recently these methods have captured great attention as an effective way of performing dimensionality
reduction in convex optimization. In the context of solving a linear system Ax = b and least-squares
optimization, the authors of [14] propose a randomized iterative method with linear convergence rate,
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which, at each iteration, performs a proximal update x(k+1) = argminx∈T ‖x− x(k)‖22, where the
next iterate x(k+1) is restricted to lie within an affine subspace T = x(k) + range(A>S), and S is a
n×m dimension-reduction matrix withm 6 min{n, d}. In the context of kernel ridge regression, the
authors of [31] propose to approximate the n-dimensional kernel matrix by sketching its columns to a
lower m-dimensional subspace, chosen uniformly at random. From the low dimensional kernel ridge
solution α∗ ∈ Rm, they show how to reconstruct an approximation x̃ ∈ Rn of the high dimensional
solution x∗ ∈ Rn. Provided that the sketching dimension m is large enough – as measured by the
spectral properties of the kernel matrix K –, the estimate x̃ retains some statistical properties of x∗,
e.g., minimaxity. Similarly, in the broader context of classification through convex loss functions,
the authors of [32, 33] propose to project the d-dimensional features of a given data matrix A to
a lower m-dimensional subspace, chosen independently of the data. After computing the optimal
low-dimensional classifier α∗ ∈ Rm, their algorithm returns an estimate x̃ ∈ Rd of the optimal
classifier x∗ ∈ Rd. Even though they provide formal guarantees on the estimation error ‖x̃− x∗‖2,
their results rely on several restrictive assumptions, that is, the data matrix A must be low rank, or, the
classifier x∗ must lie in the span of the top few left singular vectors of A. Further, random subspace
optimization has also been explored for large-scale trust region problems [27], also using a subspace
chosen uniformly at random. Our proposed approach draws connections with the Gaussian Kaczmarz
method proposed in [14] and the kernel sketching method in [31]. Differently, we are interested in
smooth, convex optimization problems with ridge regularization. In contrast to [32, 33], we do not
make any assumption on the optimal solution x∗.

Our work relates to the considerable amount of literature on randomized approximations of high
dimensional kernel matrices K. The typical approach consists of building a low-rank factorization of
the matrix K, using a random subset of its columns [28, 23, 9, 17]. The so-called Nystrom method
has proven to be effective empirically [30], and many research efforts have been devoted to improving
and analyzing the performance of its many variants (e.g., uniform column sub-sampling, leverage-
score based sampling), especially in the context of kernel ridge regression [1, 2]. In a related vein,
sketching methods have been proposed to reduce the space complexity of storing high-dimensional
data matrices [19, 31], by projecting their rows to a randomly chosen lower dimensional subspace.
Our theoretical findings build on known results for low-rank factorization of positive semi-definite
(p.s.d.) matrices [15, 5, 12, 29], and show intimate connections with kernel matrices sketching [31].
Lastly, our problem setting also draws connections with compressed sensing [7] where the goal is
to recover a high dimensional structured signal from a small number of randomized, and usually
oblivious, measurements.

1.1 Contributions

In this work, we propose a novel randomized subspace optimization method with strong solution
approximation guarantees which outperform oblivious sampling methods. We derive probabilistic
bounds on the error of approximation for general convex functions. We show that our method provides
a significant improvement over the oblivious version, and theoretically quantify this observation as
function of the spectral properties of the data matrix. We also introduce an iterative version of our
method, which converges to the optimal solution by iterative refinement.

1.2 An overview of our results

Let f : Rn → R be a convex and µ-strongly smooth function, i.e., ∇2f(w) � µIn for all w ∈ Rn,
and A ∈ Rn×d a high-dimensional matrix. We are interested in solving the primal problem

x∗ = argmin
x∈Rd

f(Ax) +
λ

2
‖x‖22 , (1)

Given a random matrix S ∈ Rd×m with m� d, we consider instead the sketched primal problem

α∗ ∈ argmin
α∈Rm

f(ASα) +
λ

2
α>S>Sα , (2)

where we effectively restrict the optimization domain to a lower m-dimensional subspace. In this
work, we explore the following questions: How can we estimate the original solution x∗ given the
sketched solution α∗? Is a uniformly random subspace the optimal choice, e.g., S ∼ Gaussian i.i.d.?
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Or, can we come up with an adaptive sampling distribution that is related to the matrix A, which
yields stronger guarantees?

By Fenchel duality analysis, we exhibit a natural candidate for an approximate solution to x∗, given
by x̃ = −λ−1A>∇f(ASα∗). Our main result (Section 2) establishes that, for an adaptive sketching
matrix of the form S = A>S̃ where S̃ is typically Gaussian i.i.d., the relative error satisfies a high-
probability guarantee of the form ‖x̃− x∗‖2/‖x∗‖2 6 ε, with ε < 1. Our error bound ε depends on
the smoothness parameter µ, the regularization parameter λ, the shape of the domain of the Fenchel
conjugate f∗ and the spectral decay of the matrix A. Further, we show that this error can be explicitly
controlled in terms of the singular values of A, and we derive concrete bounds for several standard
spectral profiles, which arise in data analysis and machine learning. In particular, we show that using
the adaptive matrix S = A>S̃ provides much stronger guarantees than oblivious sketching, where
S is independent of A. Then, we take advantage of the error contraction (i.e., ε < 1), and extend
our adaptive sketching scheme to an iterative version (Section 3), which, after T iterations, returns
a higher precision estimate x̃(T ) that satisfies ‖x̃(T ) − x∗‖2/‖x∗‖2 6 εT . Throughout this work,
we specialize our formal guarantees and empirical evaluations (Section 5) to Gaussian matrices S̃,
which is a standard choice and yields the tightest error bounds. However, our approach extends to a
broader class of matrices S̃, such as Rademacher matrices, sub-sampled randomized Fourier (SRFT)
or Hadamard (SRHT) transforms, and column sub-sampling matrices. Thus, it provides a general
framework for random subspace optimization with strong solution guarantees.

2 Convex optimization in adaptive random subspaces

We introduce the Fenchel conjugate of f , defined as f∗(z) := supw∈Rn
{
w>z − f(w)

}
, which is

convex and its domain domf∗ := {z ∈ Rn | f∗(z) < +∞} is a closed, convex set. Our control of
the relative error ‖x̃− x∗‖2/‖x∗‖2 is closely tied to controlling a distance between the respective
solutions of the dual problems of (1) and (2). The proof of the next two Propositions follow from
standard convex analysis arguments [22], and are deferred to Appendix C.
Proposition 1 (Fenchel Duality). Under the previous assumptions on f , it holds that

min
x
f(Ax) +

λ

2
‖x‖22 = max

z
−f∗(z)− 1

2λ
‖A>z‖22 .

There exist an unique primal solution x∗ and an unique dual solution z∗. Further, we have Ax∗ ∈
∂f∗(z∗), z∗ = ∇f(Ax∗) and x∗ = − 1

λA
>z∗.

Proposition 2 (Fenchel Duality on Sketched Program). Strong duality holds for the sketched program

min
α
f(ASα) +

λ

2
‖Sα‖22 = max

y
−f∗(y)− 1

2λ
‖PSA>y‖

2

2 ,

where PS = S(S>S)†S> is the orthogonal projector onto the range of S. There exist a sketched
primal solution α∗ and an unique sketched dual solution y∗. Further, for any solution α∗, it holds
that ASα∗ ∈ ∂f∗(y∗) and y∗ = ∇f(ASα∗).

We define the following deterministic functional Zf which depends on f∗, the data matrix A and the
sketching matrix S, and plays an important role in controlling the approximation error,

Zf ≡ Zf (A,S) = sup
∆∈(domf∗−z∗)

(
∆>AP⊥S A

>∆

‖∆‖22

) 1
2

, (3)

where P⊥S = I − PS is the orthogonal projector onto range(S)
⊥. The relationship x∗ =

−λ−1A>∇f(Ax∗) suggests the point x̃ = −λ−1A>∇f(ASα∗) as a candidate for approximat-
ing x∗. The Fenchel dual programs of (1) and (2) only differ in their quadratic regularization term,
‖A>z‖22 and ‖PSA>y‖22, which difference is tied to the quantity ‖P⊥S A>(z − y)‖2. As it holds
that ‖x̃− x∗‖2 = λ−1‖A>(z∗ − y∗)‖2, we show that the error ‖x̃− x∗‖2 can be controlled in
terms of the spectral norm ‖P⊥S A>‖2, or more sharply, in terms of the quantity Zf , which satis-
fies Zf 6 ‖P⊥S A>‖2. We formalize this statement in our next result, which proof is deferred to
Appendix B.1.
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Theorem 1 (Deterministic bound). Let α∗ be any minimizer of the sketched program (2). Then,
under the condition λ > 2µZ2

f , we have

‖x̃− x∗‖2 6

√
µ

2λ
Zf‖x∗‖2 , (4)

which further implies

‖x̃− x∗‖2 6

√
µ

2λ
‖P⊥S A>‖2‖x∗‖2 . (5)

For an adaptive sketching matrix S = A>S̃, we rewrite ‖P⊥S A>‖
2

2 = ‖K −KS̃(S̃>KS̃)†S̃>K‖2,
where K = AA> is p.s.d. Combining our deterministic bound (5) with known results [15, 12, 5]
for randomized low-rank matrix factorization in the form KS̃(S̃>KS̃)†S̃>K of p.s.d. matrices
K, we can give guarantees with high probability (w.h.p.) on the relative error for various types
of matrices S̃. For conciseness, we specialize our next result to adaptive Gaussian sketching, i.e.,
S̃ Gaussian i.i.d. Given a target rank k > 2, we introduce a measure of the spectral tail of A as

Rk(A) =
(
σ2
k + 1

k

∑ρ
j=k+1 σ

2
j

) 1
2

, where ρ is the rank of the matrix A and σ1 > σ2 > . . . > σρ

its singular values. The proof of the next result follows from a combination of Theorem 1 and
Corollary 10.9 in [15], and is deferred to Appendix B.2.
Corollary 1 (High-probability bound). Given k 6 min(n, d)/2 and a sketching dimension m = 2k,
let S = A>S̃, with S̃ ∈ Rn×m Gaussian i.i.d. Then, for some universal constant c0 6 36, provided
λ > 2µc20R

2
k(A), it holds with probability at least 1− 12e−k that

‖x̃− x∗‖2 6 c0

√
µ

2λ
Rk(A)‖x∗‖2 . (6)

Remark 1. The quantity Zf := sup∆∈(domf∗−z∗)

(
∆>AP⊥S A

>∆

‖∆‖22

) 1
2

is the eigenvalue of the matrix

P⊥S A
>, restricted to the spherical cap K := (domf∗ − z∗) ∩ Sn−1, where Sn−1 is the unit sphere

in dimension n. Thus, depending on the geometry of K, the deterministic bound (4) might be much
tighter than (5), and yield a probabilistic bound better than (6). The investigation of such a result is
left for future work.

2.1 Theoretical predictions as a function of spectral decay

We study the theoretical predictions given by (5) on the relative error, for different spectral decays
of A and sketching methods, in particular, adaptive Gaussian sketching versus oblivious Gaussian
sketching and leverage score column sub-sampling [12]. We denote νk = σ2

k the eigenvalues of AA>.
For conciseness, we absorb µ into the eigenvalues by setting νk ≡ µνk and µ ≡ 1. This re-scaling
leaves the right-hand side of the bound (5) unchanged, and does not affect the analysis below. Then,
we assume that ν1 = O(1), λ ∈ (νρ, ν1), and λ→ 0 as n→ +∞. These assumptions are standard
in empirical risk minimization and kernel regression methods [11], which we focus on in Sections 4
and 5. We consider three decaying schemes of practical interest. The matrix A has either a finite-rank
ρ, a κ-exponential decay where νj ∼ e−κj and κ > 0, or, a β-polynomial decay where νk ∼ j−2β

and β > 1/2. Among other examples, these decays are characteristic of various standard kernel
functions, such as the polynomial, Gaussian and first-order Sobolev kernels [3]. Given a precision
ε > 0 and a confidence level η ∈ (0, 1), we denote by mA (resp. mO, mS) a sufficient dimension for
which adaptive (resp. oblivious, leverage score) sketching yields the following (ε, η)-guarantee on
the relative error. That is, with probability at least 1− η, it holds that ‖x̃− x∗‖2/‖x∗‖2 6 ε.

We determine mA from our probabilistic regret bound (6). For mS , using our deterministic regret
bound (5), it then suffices to bound the spectral norm ‖P⊥

A>S̃
A>‖

2
in terms of the eigenvalues νk,

when S̃ is a leverage score column sub-sampling matrix. To the best of our knowledge, the tightest
bound has been given by [12] (see Lemma 5). For mO, we leverage results from [32]. The authors
provide an upper bound on the relative error ‖x̃−x∗‖2/‖x∗‖2, when S is Gaussian i.i.d. with variance
1
d . It should be noted that their sketched solution α∗ is slightly different from ours. They solve
α∗ = argmin f(ASα) + (2λ)−1‖α‖22, whereas we do include the matrix S in the regularization
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term. One might wonder which regularizer works best when S is Gaussian i.i.d. Through extensive
numerical simulations, we observed a strongly similar performance. Further, standard Gaussian
concentration results yields that ‖Sα∗‖22 ≈ ‖α∗‖

2
2.

Our theoretical findings are summarized in Table 1, and we give the mathematical details of our
derivations in Appendix D. For the sake of clarity, we provide in Table 1 lower bounds on the
predicted values mO and mS , and, thus, lower bounds on the ratios mO/mA and mS/mA. Overall,
adaptive Gaussian sketching provides stronger guarantees on the relative error ‖x̃− x∗‖2/‖x∗‖2.

Table 1: Sketching dimensions for a (ε, η)-guarantee on the relative error ‖x̃− x∗‖2/‖x∗‖2.

ρ-rank matrix κ-exponential decay β-polynomial decay
(ρ� n ∧ d) (κ > 0) (β > 1/2)

Adaptive Gaussian (mA) ρ+ 1 + log
(

12
η

)
κ−1 log

(
1
λε

)
+ log

(
12
η

)
λ−1/2βε−1/β + log

(
12
η

)
Oblivious Gaussian (mO) (ρ+ 1)ε−2 log

(
2ρ
η

)
κ−1ε−2 log

(
1
λ

)
log
(

2d
η

)
λ
− 1

2β ε−2 log
(

2d
η

)
Leverage score (mS ) (ρ+ 1) log

(
4ρ
η

)
κ−1 log

(
1
λε

)
log
(

1
η

) (
λ
− 1

2β ε
− 1
β

)2∧ β
β−1

log
(

1
η

)
Lower bound on mO

mA
ε−2 log ρ ε−2+h log 2d, ∀h > 0 ε1/β−2 log(2d/η)

Lower bound on mS
mA

log ρ min
(

log
(

1
η

)
, κ−1 log

(
1
λε

)) (
λ
− 1

2β ε
− 1
β

)−1+2∧ β
β−1

We illustrate numerically our predictions for adaptive Gaussian sketching versus oblivious Gaussian
sketching. With n = 1000 and d = 2000, we generate matrices Aexp and Apoly, with spectral
decay satisfying respectively νj ∼ ne−0.1j and νj ∼ nj−2. First, we perform binary logistic
regression, with f(Ax) = n−1

∑n
i=1 `yi(a

>
i x) where `yi(z) = yi log(1+e−z)+(1−yi) log(1+ez),

y ∈ {0, 1}n and ai is the i-th row of A. For the polynomial (resp. exponential) decay, we expect the
relative error ‖x̃−x∗‖2/‖x∗‖2 to follow w.h.p. a decay proportional tom−1 (resp. e−0.05m). Figure 1
confirms those predictions. We repeat the same experiments with a second loss function, f(Ax) =
(2n)−1

∑n
i=1(a>i x)2

+−2(a>i x)yi. The latter is a convex relaxation of the penalty 1
2‖(Ax)+−y‖22 for

fitting a shallow neural network with a ReLU non-linearity. Again, Figure 1 confirms our predictions,
and we observe that the adaptive method performs much better than the oblivious sketch.

25 28

(a) ReLU – polynomial

10−2

100

0 500 1000
(b) ReLU – exponential

10−4

10−2

100

25 28

(c) Logistic – polynomial

10−4

10−2

100

0 500 1000
(d) Logistic – exponential

10−5

10−3

10−1

Figure 1: Relative error versus sketching dimension m ∈ {2k | 3 6 k 6 10} of adaptive Gaussian
sketching (red) and oblivious Gaussian sketching (green), for the ReLU and logistic models, and the
exponential and polynomial decays. We use λ = 10−4 for all simulations. Results are averaged over
10 trials. Bar plots show (twice) the empirical standard deviations.

3 Algorithms for adaptive subspace sketching

3.1 Numerical conditioning and generic algorithm

A standard quantity to characterize the capacity of a convex program to be solved efficiently is its
condition number [6], which, for the primal (1) and (adaptive) sketched program (2), are given by

κ =
λ+ supx σ1

(
A>∇2f(Ax)A

)
λ+ infx σd (A>∇2f(Ax)A)

, κS =
supα σ1

(
S̃>A(λI +A>∇2f(AA>S̃α)A)A>S̃

)
infα σd

(
S̃>A(λI +A>∇2f(AA>S̃α)A)A>S̃

) .
The latter can be significantly larger than κ, up to κS ≈ κ

σ1(S̃>AA>S̃)
σm(S̃>AA>S̃)

� κ. A simple change of

variable overcomes this issue. With AS,† = AS(S>S)−
1
2 , we solve instead the optimization problem
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α∗† = argmin
α†∈Rm

f(AS,†α†) +
λ

2
‖α†‖22. (7)

It holds that x̃ = −λ−1A>∇f(AS,†α
∗
†). The additional complexity induced by this change of

variables comes from computing the (square-root) pseudo-inverse of S>S, which requires O(m3)
flops via a singular value decomposition. When m is small, this additional computation is negligible
and numerically stable, and the re-scaled sketched program (7) is actually better conditioned that the
original primal program (1), as stated in the next result that we prove in Appendix C.3.
Proposition 3. Under adaptive sketching, the condition number κ† of the re-scaled sketched pro-
gram (7) satisfies κ† 6 κ with probability 1.

Algorithm 1: Generic algorithm for adaptive sketching.

Input :Data matrix A ∈ Rn×d, random matrix S̃ ∈ Rn×m and parameter λ > 0.
1 Compute the sketching matrix S = A>S̃, and, the sketched matrix AS = AS.

2 Compute the re-scaling matrix R =
(
S>S

)− 1
2 , and the re-scaled sketched matrix AS,† = ASR.

3 Solve the convex optimization problem (7), and return x̃ = − 1
λA
>∇f

(
AS,†α

∗
†

)
.

We observed a drastic practical performance improvement between solving the sketched program as
formulated in (2) and its well-conditioned version (7).

If the chosen sketch dimensionm is itself prohibitively large for computing the matrixQ = (S>S)−
1
2 ,

one might consider a pre-conditioning matrix Q, which is faster to compute, and such that the
matrix SQ is well-conditioned. Typically, one might compute a matrix Q based on an approximate
singular value decomposition of the matrix S>S. Then, one solves the optimization problem
α∗Q = argminα∈Rm f(ASQα) + λ

2 ‖SQα‖
2
2. Provided that Q is invertible, it holds that x̃ satisfies

x̃ = −λ−1A>∇f(ASQα∗Q).

3.2 Error contraction and almost exact recovery of the optimal solution

The estimate x̃ satisfies a guarantee of the form ‖x̃−x∗‖2 6 ε‖x∗‖2 w.h.p., and, with ε < 1 provided
that λ is large enough. Here, we extend Algorithm 1 to an iterative version which takes advantage of
this error contraction, and which is relevant when a high-precision estimate x̃ is needed.

Algorithm 2: Iterative adaptive sketching

Input :Data matrix A ∈ Rn×d, random matrix S̃ ∈ Rn×m, iterations number T , parameter λ > 0.
1 Compute the sketched matrix AS,† as in Algorithm 1. Set x̃(0) = 0.
2 for t = 1, 2, . . . , T do
3 Compute a(t) = Ax̃(t−1), and, b(t) =

(
S>S

)− 1
2 S>x̃(t−1).

4 Solve the following convex optimization problem

α
(t)
† = argmin

α†∈Rm
f(AS,†α† + a(t)) +

λ

2
‖α† + b(t)‖22 . (8)

Update the solution by x̃(t) = − 1
λA
>∇f(AS,†α

(t)
† + a(t)).

5 end
6 Return the last iterate x̃(T ).

A key advantage is that, at each iteration, the same sketching matrix S is used. Thus, the sketched
matrix AS,† has to be computed only once, at the beginning of the procedure. The output x̃(T )

satisfies the following recovery property, which empirical benefits are illustrated in Figure 2.
Theorem 2. After T iterations of Algorithm 2, provided that λ > 2µZ2

f , it holds that

‖x̃(T ) − x∗‖2 6

(
µZ2

f

2λ

)T
2

‖x∗‖2 . (9)
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Further, if S = A>S̃ where S̃ ∈ Rn×m with i.i.d. Gaussian entries and m = 2k for some target
rank k > 2, then, for some universal constant c0 6 36, after T iterations of Algorithm 2, provided
that λ > 2c20µR

2
k(A), the approximate solution x̃(T ) satisfies with probability at least 1− 12e−k,

‖x̃(T ) − x∗‖2 6

(
c20µR

2
k(A)

2λ

)T
2

‖x∗‖2 . (10)

24 26 28 210

(b) Power method

10−1

100

q = 0

q = 1

q = 2

24 26 28 210

(a) Iterative method

10−2

10−1

100

T = 1

T = 2

T = 3

Figure 2: Relative error versus sketching dimension m ∈ {2k | 3 6 k 6 10} of adaptive Gaussian
sketching for (a) the iterative method (Algorithm 2) and (b) the power method (see Remark 2). We use
the MNIST dataset with images mapped through 10000-dimensional random Fourier features [20]
for even-vs-odd classification using binary logistic loss, and, λ = 10−5. Results are averaged over 20
trials. Bar plots show (twice) the empirical standard deviations.

Remark 2. An immediate extension of Algorithms 1 and 2 consists in using the power method [15].
Given q ∈ N, one uses the sketching matrix S = (A>A)

q
A>S̃. The larger q, the smaller the

approximation error ‖AA>−AS(S>S)†S>A>‖2 (see Corollary 10.10 in [15]). Of pratical interest
are data matrices A with a spectral profile starting with a fast decay, and then becoming flat. This
happens typically for A of the form A = A+W , where A has a fast decay and W is a noise matrix
with, for instance, independent subgaussian rows [26]. Our results easily extend to this setting and
we illustrate its empirical benefits in Figure 2.

4 Application to empirical risk minimization and kernel methods

By the representer theorem, the primal program (1) can be re-formulated as

w∗ ∈ argmin
w∈Rn

f(Kw) +
λ

2
w>Kw , (11)

where K = AA>. Clearly, it holds that x∗ = A>w∗. Given a matrix S̃ with i.i.d. Gaussian entries,
we consider the sketched version of the kernelized primal program (11),

α∗ ∈ argmin
α∈Rm

f(KS̃α) +
λ

2
α>S̃>KS̃α . (12)

The sketched program (12) is exactly our adaptive Gaussian sketched program (2). Thus, setting w̃ =

−λ−1∇f(KS̃α∗), it holds that x̃ = A>w̃. Since the relative error ‖x̃− x∗‖2/‖x∗‖2 is controlled
by the decay of the eigenvalues of K, so does the relative error ‖A>(w̃ − w∗)‖2/‖A>w∗‖2. More
generally, the latter statements are still true if K is any positive semi-definite matrix, and, if we
replace A> by any square-root matrix of K. Here, we denote Zf ≡ Zf

(
K

1
2 ,K

1
2 S̃
)

(see Eq. (3)).

Theorem 3. Let K ∈ Rn×n be any positive semi-definite matrix. Let w∗ be any minimizer of the
kernel program (11) and α∗ be any minimizer of its sketched version (12). Define the approximate
solution w̃ = − 1

λ∇f(KS̃α∗). If λ > 2µZ2
f , then it holds that

‖K 1
2 (w̃ − w∗)‖2 6

√
µ

2λ
Zf‖K

1
2w∗‖2 . (13)
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For a positive definite kernel k : Rd × Rd → R and a data matrix A = [a1, . . . , an]> ∈ Rn×d,
let K be the empirical kernel matrix, with Kij = k(ai, aj). Let ϕ(·) ∈ RD be a random feature
map [20, 8], such as random Fourier features or a random convolutional neural net. We are interested
in the computational complexities of forming the sketched versions of the primal (1), the kernel
primal (11) and the primal (1) with ϕ(A) instead of A. We compare the complexities of adaptive and
oblivious sketching and uniform column sub-sampling. Table 2 shows that all three methods have
similar complexities for computing AS and ϕ(A)S. Adaptive sketching exhibits an additional factor
2 that comes from computing the correlated sketching matrices S = A>S̃ and S = ϕ(A)>S̃. In
practice, the latter is negligible compared to the cost of forming ϕ(A) which, for instance, corresponds
to a forward pass over the whole dataset in the case of a convolutional neural network. On the other
hand, uniform column sub-sampling is significantly faster in order to form the sketched kernel matrix
KS̃, which relates to the well-known computational advantages of kernel Nystrom methods [30].

Table 2: Complexity of forming the sketched programs, given A ∈ Rn×d. We denote dk the number
of flops to evaluate the kernel product k(a, a′), and, dϕ the number of flops for a forward-pass ϕ(a).
Note that these complexities could be reduced through parallelization.

AS ϕ(A)S KS̃

Adaptive sketching O (2mdn) O (dϕn) +O (2mDn) O
(
dkn

2
)
+O

(
mn2

)
Oblivious sketching O (mdn) O (dϕn) +O (mDn) -

Uniform column sub-sampling O (mdn) O (dϕn) +O (mDn) O (dknm)

5 Numerical evaluation of adaptive Gaussian sketching

We evaluate Algorithm 1 on MNIST and CIFAR10. First, we aim to show that the sketching
dimension can be considerably smaller than the original dimension while retaining (almost) the same
test classification accuracy. Second, we aim to get significant speed-ups in achieving a high-accuracy
classifier. To solve the primal program (1), we use two standard algorithms, stochastic gradient
descent (SGD) with (best) fixed step size and stochastic variance reduction gradient (SVRG) [16]
with (best) fixed step size and frequency update of the gradient correction. To solve the adaptive
sketched program (2), we use SGD, SVRG and the sub-sampled Newton method [4, 10] – which we
refer to as Sketch-SGD, Sketch-SVRG and Sketch-Newton. The latter is well-suited to the sketched
program, as the low-dimensional Hessian matrix can be quickly inverted at each iteration. For both
datasets, we use 50000 training and 10000 testing images. We transform each image using a random
Fourier feature map ϕ(·) ∈ RD, i.e., 〈ϕ(a), ϕ(a′)〉 ≈ exp

(
−γ‖a− a′‖22

)
[20, 18]. For MNIST and

CIFAR10, we choose respectively D = 10000 and γ = 0.02, and, D = 60000 and γ = 0.002, so
that the primal is respectively 10000-dimensional and 60000-dimensional. Then, we train a classifier
via a sequence of binary logistic regressions – which allow for efficient computation of the Hessian
and implementation of the Sketch-Newton algorithm –, using a one-vs-all procedure.

First, we evaluate the test classification error of x̃. We solve to optimality the primal and
sketched programs for values of λ ∈ {10−4, 5 · 10−5, 10−5, 5 · 10−6} and sketching dimensions
m ∈ {64, 128, 256, 512, 1024}. In Table 3 are reported the results, which are averaged over 20 trials
for MNIST and 10 trials for CIFAR10, and, empirical variances are reported in Appendix A. Overall,
the adaptive sketched program yields a high-accuracy classifier for most couples (λ,m). Further, we
match the best primal classifier with values of m as small as 256 for MNIST and 512 for CIFAR10,
which respectively corresponds to a dimension reduction by a factor ≈ 40 and ≈ 120. These results
additionally suggest that adaptive Gaussian sketching introduces an implicit regularization effect,
which might be related to the benefits of spectral cutoff estimators. For instance, on CIFAR10, using
λ = 10−5 and m = 512, we obtain an improvement in test accuracy by more than 2% compared to
x∗. Further, over some sketching dimension threshold under which the performance is bad, as the
value of m increases, the test classification error of x̃ increases to that of x∗, until matching it.

Further, we evaluate the test classification error of two sketching baselines, that is, oblivious Gaussian
sketching for which the matrix S has i.i.d. Gaussian entries, and, adaptive column sub-sampling
(Nystrom method) for which S = A>S̃ with S̃ a column sub-sampling matrix. As reported in Table 4,
adaptive Gaussian sketching performs better for a wide range of values of sketching size m and
regularization parameter λ.
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Table 3: Test classification error of adaptive Gaussian sketching on MNIST and CIFAR10 datasets.

λ x∗MNIST x̃64 x̃128 x̃256 x̃512 x̃1024 x∗CIFAR x̃64 x̃128 x̃256 x̃512 x̃1024

10−4 5.4 4.8 4.8 5.2 5.3 5.4 - - - - - -
5 · 10−5 4.6 4.1 3.8 4.0 4.3 4.5 51.6 52.1 50.5 50.6 50.8 51.0
10−5 2.8 8.1 3.4 2.4 2.5 2.8 48.2 60.1 54.5 47.7 45.9 46.2

5 · 10−6 2.5 11.8 4.9 2.8 2.6 2.4 47.6 63.6 59.8 51.9 47.7 45.8

Table 4: Test classification error on MNIST and CIFAR10. "AG": Adaptive Gaussian sketch, "Ob":
Oblivious Gaussian sketch, "N": Nystrom method.

λ x∗MNIST x̃AG
256 x̃AG

1024 x̃Ob
256 x̃Ob

1024 x̃N256 x̃N1024

5 · 10−5 4.6 % 4.0 % 4.5 % 25.2 % 8.5% 5.0 % 4.6
5 · 10−6 2.5% 2.8% 2.4% 30.1% 9.4% 3.0% 2.7%

λ x∗CIFAR x̃AG
256 x̃AG

1024 x̃Ob
256 x̃Ob

1024 x̃N256 x̃N1024

5 · 10−5 51.6 % 50.6% 51.0% 88.2% 70.5% 55.8% 53.1%
5 · 10−6 47.6% 51.9% 45.8% 88.9% 80.1% 57.2% 55.8%

Then, we compare the test classification error versus wall-clock time of the optimization algorithms
mentioned above. Figure 3 shows results for some values of m and λ. We observe some speed-ups
on the 10000-dimensional MNIST problem, in particular for Sketch-SGD and for Sketch-SVRG, for
which computing the gradient correction is relatively fast. Such speed-ups are even more significant
on the 60000-dimensional CIFAR10 problem, especially for Sketch-Newton. A few iterations of
Sketch-Newton suffice to almost reach the minimum x̃, with a per-iteration time which is relatively
small thanks to dimensionality reduction. Hence, it is more than 10 times faster to reach the best test
accuracy using the sketched program. In addition to random Fourier features mapping, we carry out
another set of experiments with the CIFAR10 dataset, in which we pre-process the images. That is,
similarly to [24, 21], we map each image through a random convolutional layer. Then, we kernelize
these processed images using a Gaussian kernel with γ = 2·10−5. Using our implementation, the best
test accuracy of the kernel primal program (11) we obtained is 73.1%. Sketch-SGD, Sketch-SVRG
and Sketch-Newton – applied to the sketched kernel program (12) – match this test accuracy, with
significant speed-ups, as reported in Figure 3.

0 50 100
(a) MNIST, m = 512, λ = 10−5.
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(b) CIFAR, m = 256, λ = 10−5.
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Figure 3: Test classification error (percentage) versus wall-clock time (seconds).
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