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Abstract

Online abusive behavior affects millions and
the NLP community has attempted to mitigate
this problem by developing technologies to de-
tect abuse. However, current methods have
largely focused on a narrow definition of abuse
to detriment of victims who seek both vali-
dation and solutions. In this position paper,
we argue that the community needs to make
three substantive changes: (1) expanding our
scope of problems to tackle both more subtle
and more serious forms of abuse, (2) develop-
ing proactive technologies that counter or in-
hibit abuse before it harms, and (3) reframing
our effort within a framework of justice to pro-
mote healthy communities.

1 Introduction

Online platforms have the potential to enable sub-
stantial, prolonged, and productive engagement
for many people. Yet, the lived reality on social
media platforms falls far short of this potential
(Papacharissi, 2004). In particular, the promise of
social media has been hindered by antisocial, abu-
sive behaviors such as harassment, hate speech,
trolling, and the like. Recent surveys indicate that
abuse happens much more frequently than many
people suspect (40% of Internet users report be-
ing the subject of online abuse at some point),
and members of underrepresented groups are tar-
geted even more often (Herring et al., 2002; Drake,
2014; Anti-Defamation League, 2019).

The NLP community has responded by de-
veloping technologies to identify certain types
of abuse and facilitating automatic or computer-
assisted content moderation. Current technol-
ogy has primarily focused on overt forms of abu-
sive language and hate speech, without consid-
ering both (i) the success and failure of tech-
nology beyond getting the classification correct,
and (ii) the myriad forms that abuse can take.
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Figure 1: Abusive behavior online falls along a spec-
trum, and current approaches focus only on a narrow
range (shown in red text), ignoring nearby problems.
Impact comes from both the frequency (on left) and
real-world consequences (on right) of behaviors. This
figure illustrates the spectrum of online abuse in an
hypothetical manner, with its non-exhaustive examples
inspired from prior surveys of online experiences (Dug-
gan, 2017; Salminen et al., 2018).

As Figure 1 shows, a large spectrum of abu-
sive behavior exists—some with life-threatening
consequences—much of which is currently unad-
dressed by language technologies. Explicitly hate-
ful speech is just one tool of hate, and related tac-
tics such as rape threats, gaslighting, First Amend-
ment panic, and veiled insults are effectively em-
ployed both off- and online to silence, scare, and
exclude participants from what should be inclu-
sive, productive discussions (Filipovic, 2007).

In this position paper, we argue that to pro-
mote healthy online communities, three changes
are needed. First, the NLP community needs to
rethink and expand what constitutes abuse. Sec-
ond, current methods are almost entirely reactive
to abuse, entailing that harm occurs. Instead, the
community needs to develop proactive technolo-
gies that assist authors, moderators, and platform
owners in preventing abuse before it occurs. Fi-
nally, we argue that both of these threads point to
a need for a broad re-aligning of our community
goals towards justice, rather than simply the elim-



ination of abusive behavior. In arguing for these
changes, we outline how each effort offers new
challenging NLP tasks that have concrete benefits.

2 Rethinking What Constitutes Abuse

The classifications we adopt and computation-
ally enforce have real and lasting consequences
by defining both what is and what is not abuse
(Bowker and Star, 2000). Abusive behavior is
an omnibus term that often includes harassment,
threats, racial slurs, sexism, unexpected porno-
graphic content, and insults—all of which can
be directed at other users or at whole communi-
ties (Davidson et al., 2017; Nobata et al., 2016).
However, NLP has largely considered a far nar-
rower scope of what constitutes abuse through its
selection of which types of behavior to recog-
nize (Waseem et al., 2017; Schmidt and Wiegand,
2017; Fortuna and Nunes, 2018). We argue that
NLP needs to expand its computational efforts to
recognize two additional general types of abuse:
(a) infrequent and physically dangerous abuse, and
(b) more common but subtle abuse. Additionally,
we need to develop methods that respect commu-
nity norms in classification decisions. These cate-
gories of abuse and the importance of community
norms have been noted elsewhere (Liu et al., 2018;
Guberman and Hemphill, 2017; Salminen et al.,
2018; Blackwell et al., 2017) but have not yet re-
ceived the same level of attention in NLP.

Who has a right to speak and in what manner are
subjective decisions that are guided by social rela-
tionships (Foucault, 1972; Noble, 2018), and the
specific choices our algorithms make about what
speech to allow and what to silence have pow-
erful effects. For instance, rejecting behavior as
not being abusive because it is outside the scope
of our classification can cause substantial harm to
victims (Blackwell et al., 2017), tacitly involving
the NLP community in algorithmic bias that sanc-
tions certain forms of abuse. Thus, categorization
is particularly thorny: a broad categorization is
likely too computationally inefficient, yet a narrow
categorization risks further marginalizing affected
community members and can lead to lasting harm.
Following, we outline three key directions for the
community to expand its definitions.

2.1 Physically Threatening Online Abuse

We outline three computational challenges related
to infrequent but overt physically-manifesting

abuse that NLP could be applied to solve. First,
such behaviors do not necessarily adopt the lan-
guage of hate speech or more common forms of
hate speech and may in some contexts appear in-
nocuous but are clearly dangerous in others. For
example, posting a phone number to call could
be acceptable if one is encouraging others to call
their political representative, yet would be a seri-
ous breach of privacy (doxxing) if posted as part of
a public harassment campaign. Similarly, declara-
tions of “keep up the weight loss!” may be positive
in a dieting community, yet reinforce dangerous
behavior in a pro-anorexia community. Speech
that in isolation appears offensive, such as impo-
liteness or racial slurs, may serve pro-social func-
tions such as promoting intimacy (Culpeper, 1996)
or showing camaraderie (Allan, 2015).

Second, behaviors such as swatting, human traf-
ficking, or pedophilia have all occurred on pub-
lic social media platforms (Jaffe, 2016; Latonero,
2011; Holt et al., 2010). However, methods have
yet to be developed for recognizing when users
are engaging in these behaviors, which may in-
volve coded language, and require recognizing
these alternative forms. Current approaches for
learning new explicitly-hateful symbols could be
adapted to this task (e.g., Roy, 2016; Gao et al.,
2017). Third, online platforms have been used to
incite mobs of people to violence (Siegel, 2015).
These efforts often use incendiary fake news that
plays upon factional rivalries (Samory and Mitra,
2018). Abusive language detection methods can
build upon recent advances at detecting fake news
to identify content-sharing likely to lead to vio-
lence (McLaughlin, 2018; Oshikawa et al., 2018).

2.2 Subtle Abuse

Many forms of abusive behavior are linguistically
subtle and implicit. Behaviors such as condescen-
sion, minimization (e.g., “your situation isn’t that
bad”), benevolent stereotyping, and microagres-
sions are frequently experienced by members of
minority social groups (Sue et al., 2007; Glick and
Fiske, 2001). While subtle, such abuse can still
be as emotionally harmful as overt abuse to some
individuals (Sue, 2010; Nadal et al., 2014). The
NLP community has two clear paths for growth
into this area.

First, although recognized within the larger
NLP abuse typology (Waseem et al., 2017), only a
handful of approaches have attempted these prob-



lems, such as identifying benevolent sexism (Jha
and Mamidi, 2017), and new methods must be de-
veloped to identify the implicit signals. Successful
approaches will likely require advances in natu-
ral language understanding, as the abuse requires
reasoning about the implications of the proposi-
tions. A notable example of such an approach is
Dinakar et al. (2012) who extract implicit assump-
tions in statements and use common sense reason-
ing to identify social norm violations that would
be considered insults.

Second, new methods should identify dispar-
ity in treatment of social groups. For exam-
ple, in a study of the respectfulness of police
language, Voigt et al. (2017) found that officers
were consistently less likely to use respectful lan-
guage with black community members than with
white community members—a disparity in a pos-
itive social dimension. As NLP solutions have
been developed for other social dimensions of
language such as politeness (Danescu-Niculescu-
Mizil et al., 2013; Munkova et al., 2013; Chhaya
et al., 2018) and formality (Brooke et al., 2010;
Sheikha and Inkpen, 2011; Pavlick and Tetreault,
2016), these methods could be readily adapted for
identifying such systematic bias for additional so-
cial categories and settings.

2.3 Community Norms Need to be Respected

Social norms are rules and standards that are un-
derstood by members of a group, and that guide
and constrain social behavior without the force of
laws (Triandis, 1994; Cialdini and Trost, 1998).
Norms can be nested, in that they can be adopted
from the general social context (e.g., use of pejo-
rative adjectives are rude), and more general in-
ternet comment etiquette (e.g., using all caps is
equivalent to shouting). Yet, norms for what is
considered acceptable can vary significantly from
one community to another, making it challenging
to build one abuse detection system that works for
all communities (Chandrasekharan et al., 2018).

Current NLP methods are largely context- and
norm-agnostic, which leads to situations where
content is removed unnecessarily when deemed
inappropriate (i.e., false positives), eroding com-
munity trust in the use of computational tools to
assist in moderation. A common failure mode for
sociotechnical interventions like automated mod-
eration is failing to understand the online com-
munity where they are being deployed (Krishna,

2018). Such community-specific norms and con-
text are important to take into account, as NLP re-
searchers are doubling down on context-sensitive
approaches to define (e.g., Chandrasekharan and
Gilbert, 2019) and detect abuse (e.g., Gao and
Huang, 2017).

However, not all community norms are so-
cially acceptable within the broader world. Even
behavior considered harmful in one community
might be celebrated in another, e.g., Reddit’s
r/fatpeoplehate (Chandrasekharan et al., 2017),
and Something Awful Forums (Pater et al., 2014).
The existence of problematic normative behaviors
within certain atypical online communities poses
a challenge to abuse detection systems. Fraser
(1990) notes that when a public space is governed
by a dominant group, its norms about participation
end up perpetuating inequalities. One approach to
address this challenge would be to work closely
with the different stakeholders involved in online
governance, like platform administrators, policy
makers, users and moderators. This will enable
the development of solutions that cater to a wider
range of expectations around moderating abusive
behaviors on the platform, especially when deal-
ing with deviant communities.

2.4 Challenges for Creating New NLP
Shared Tasks on Abusive Behavior

Shared tasks have long been an NLP tradition
for establishing evaluating metrics, defining data
guidelines, and, more broadly, bringing together
researchers. The broad nature of abusive behavior
creates significant challenges for the shared task
paradigm. Here, we outline three opportunities
for new shared tasks in this area. First, new NLP
shared tasks should develop annotation guidelines
accurately define what constitutes abusive behav-
ior in the target community. Recent works have
begun to make progress in this area by modeling
the context in which a comment is made through
user and community-level features (Qian et al.,
2018; Mishra et al., 2018; Ribeiro et al., 2018),
yet often the norms in these settings are implicit
making it difficult to transfer the techniques and
models to other settings. As one potential solu-
tion, Chandrasekharan et al. (2018) studied com-
munity norms on Reddit in a large-scale, data-
driven manner, and released a dataset of over 40K
removed comments from Reddit labeled according
to the specific type of norm being violated (Chan-



drasekharan and Gilbert, 2019).
Second, new NLP shared tasks must address

the data scarcity faced by abuse detection research
while minimizing harm caused by the data. Con-
stant exposure to abusive content has been found
to negatively and substantially affect the mental
health of moderators and users (Roberts, 2014;
Gillespie, 2018; Saha et al., 2019). However, la-
beled ground truth data for building and evaluating
classifiers is hard to obtain because platforms typ-
ically do not share moderated content due to pri-
vacy, ethical and public relations concerns. One
possibility for significant progress is to work with
platform administrators and stakeholders to make
proprietary data available as private test sets on
platforms like Codalab, thereby keeping annota-
tions in line with community norms and still al-
lowing researchers to evaluate on real behavior.

Third, tasks must clearly define who is the end-
user of the classification labels. For example, will
moderators use the system to triage abusive con-
tent, or is the goal to automatically remove abu-
sive content? Current solutions are often trained
and evaluated in a static manner, only using pre-
existing data; whether these solutions are effective
upon deployment remains relatively unexplored.
Evaluation must go beyond just traditional mea-
sures of performance like precision and recall, and
instead begin optimizing for metrics like reduction
in moderator effort, speed of response, targeted re-
call for severe types of abuse, moderator trust and
fairness in predictions.

3 Proactive Approaches for Abuse

Existing computational approaches to handle abu-
sive language are primarily reactive and intervene
only after abuse has occurred. A complementary
approach is developing proactive technologies that
prevent the harm from occurring in the first place,
and we motivate three proactive computational ap-
proaches to prevent abuse here.

First, bystanders can have a profound effect on
the course of an interaction by steering the direc-
tion of the conversation away from abuse (Markey,
2000; Dillon and Bushman, 2015). Prior work
has used experimenter-based intervention but a
substantial opportunity exists to operationalize
these interventions through computational means.
Munger (2017) developed a simple, but effective,
computational intervention for the use of toxic
language (the n-word), where a human-looking

bot account would reply with a fixed comment
about the harm such language caused and an ap-
peal to empathy, leading to long-term behavior
change in the offenders. Identifying how to best
respond to abusive behavior—or whether to re-
spond at all—are important computational next
steps for this NLP strategy and one that likely
needs to be done in collaboration with researchers
from fields such as Psychology. Prior work has
shown counter speech to be effective for limit-
ing the effects of hate speech (Schieb and Preuss,
2016; Mathew et al., 2018; Stroud and Cox, 2018).
Wright et al. (2017) notes that real-world exam-
ples of bystanders intervening can be found on-
line, thereby providing a potential source of train-
ing data but methods are needed to reliably iden-
tify such counter speech examples.

Second, interventions that occur after a point of
escalation may have little positive effect in some
circumstances. For example, when two individu-
als have already begun insulting one another, both
have already become upset and must lose face to
reconcile (Rubin et al., 1994). At this point, de-
escalation may prevent further abuse but does lit-
tle for restoring the situation to a constructive dia-
log (Gottman, 1999). However, interventions that
occur before the point of abuse can serve to shift
the conversation. Recent work has shown that it
is possible to predict whether a conversation will
become toxic on Wikipedia (Zhang et al., 2018)
and whether bullying will occur on Instagram (Liu
et al., 2018). These predictable abuse trajectories
open the door to developing new models for pre-
emptive interventions that directly mitigate harm.

Third, messages that are not intended as offen-
sive create opportunities to nudge authors towards
correcting their text if the offense is pointed out.
This strategy builds upon recent work on explain-
able ML for identifying which parts of a mes-
sage are offensive (Carton et al., 2018; Noever,
2018), and work on paraphrase and style transfer
for suggesting an appropriate inoffensive alterna-
tive (Santos et al., 2018; Prabhumoye et al., 2018).
For example, parts of a message could be para-
phrased to adjust the level of politeness in order
to minimize any cumulative disparity towards one
social group (Sennrich et al., 2016).

4 Justice Frameworks for NLP

Martin Luther King Jr. wrote that the biggest ob-
stacle to Black freedom is the “white moderate,



who is more devoted to ‘order’ than to justice,
who prefers a negative peace which is the absence
of tension to a positive peace which is the pres-
ence of justice” (King, 1963). Analogously, by fo-
cusing only on classifying individual unacceptable
speech acts, NLP risks being the same kind of ob-
stacle as the white moderate: Instead of seeking
the absence of certain types of speech, we should
seek the presence of equitable participation. We
argue that NLP should consider supporting three
types of justice—social justice, restorative justice,
and procedural justice—that describe (i) what ac-
tions are allowed and encouraged, (ii) how wrong-
doing should be handled, and (iii) what procedures
should be followed.

First, the capabilities approach to social justice
focuses on what actions people can do within a so-
cial setting (Sen, 2011; Nussbaum, 2003) and pro-
vides a useful framework for thinking about what
justice online could look like. Nussbaum (2003)
provides a set of 10 fundamental capabilities for
a just society, such as the ability to express emo-
tion and to have an affiliation. These capabili-
ties provide a blueprint for articulating the val-
ues and opportunities an online community pro-
vides: Instead of a negative articulation—an ever-
growing list of prohibited behaviors—we should
use a positive phrasing (e.g., “you will be able
to”) of capabilities in an online community. Such
effort naturally extends our proposal for detect-
ing community-specific abuse to one of promot-
ing community norms. Accordingly, NLP tech-
nologies can be developed to identify positive be-
haviors and ensure individuals are able to fulfill
these capabilities. Several recent works have made
strides in this direction by examining positive be-
haviors such as how constructive conversations
are (Kolhatkar and Taboada, 2017; Napoles et al.,
2017), whether dialog on contentious topics can
exist without devolving into squabbling (Tan et al.,
2016), or the level of support given between com-
munity members (Wang and Jurgens, 2018).

Second, once we have adequately articulated
what people in a community should be able to
do, we must address how the community han-
dles transgressions. The notion of restorative jus-
tice is a useful theoretical tool for thinking about
how wrongdoing should be handled. Restorative
justice theory emphasizes repair and uses a pro-
cess in which stakeholders, including victims and
transgressors, decide together on consequences.

A restorative process may produce a punishment,
such as banning, but can include consequences
such as apology and reconciliation (Braithwaite,
2002). Just responses consider the emotions of
both perpetrators and victims in designing the
right response (Sherman, 2003). A key problem
here is identifying which community norm is vio-
lated and NLP technologies can be introduced to
aid this process of elucidating violations through
classification or use of explainable ML techniques.
Here, NLP can aid all parties (platforms, victims,
and transgressors) in identifying appropriate av-
enues for restorative actions.

Third, just communities also require just means
of addressing wrongdoing. The notion of proce-
dural justice explains that people are more likely
to comply with a community’s rules if they be-
lieve the authorities are legitimate (Tyler and Huo,
2002; Sherman, 2003). For NLP, it means that
our systems for detecting non-compliance must be
transparent and fair. People will comply only if
they accept the legitimacy of both the platform and
the algorithms it employs. Therefore, abuse detec-
tion methods are needed to justify why a particu-
lar act was a violation to build legitimacy; a natu-
ral starting point for NLP in building legitimacy is
recent work from explainable ML (Ribeiro et al.,
2016; Lei et al., 2016; Carton et al., 2018).

5 Conclusion

Abusive behavior online affects a substantial
amount of the population. The NLP community
has proposed computational methods to help mit-
igate this problem, yet has also struggled to move
beyond the most obvious tasks in abuse detec-
tion. Here, we propose a new strategy for NLP
to tackling online abuse in three ways. First, ex-
panding our purview for abuse detection to include
both extreme behaviors and the more subtle—
but still offensive—behaviors like microaggres-
sions and condescension. Second, NLP must de-
velop methods that go beyond reactive identify-
and-delete strategies to one of proactivity that in-
tervenes or nudges individuals to discourage harm
before it occurs. Third, the community should
contextualize its effort inside a broader frame-
work of justice—explicit capabilities, restorative
justice, and procedural justice—to directly support
the end goal of productive online communities.
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