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Abstract. The Fiat-Shamir paradigm encompasses many different ways
of turning a given identification scheme into a signature scheme. Secu-
rity proofs pertain sometimes to one variant, sometimes to another. We
systematically study three variants that we call the challenge (signa-
ture is challenge and response), commit (signature is commitment and
response), and transcript (signature is challenge, commitment and re-
sponse) variants. Our framework captures the variants via transforms
that determine the signature scheme as a function of not only the identi-
fication scheme and hash function (to cover both standard and random
oracle model hashing), but also what we call a signing algorithm, to
cover both classical and with-abort signing. We relate the security of the
signature schemes produced by these transforms, giving minimal con-
ditions under which uf-security of one transfers to the other. To apply
this comprehensively, we formalize linear identification schemes, show
that many schemes in the literature are linear, and show that any linear
scheme meets our conditions for the signature schemes given by the three
transforms to have equivalent uf-security. Our results give a comprehen-
sive picture of the Fiat-Shamir zoo and allow proofs of security in the
literature to be transferred automatically from one variant to another.

1 Introduction

Ed25519 [13] is a fast signature scheme with widespread usage including in TLS
1.3, SSH, Signal, and Tor [22]. It is derived via the Fiat-Shamir paradigm [17] ap-
plied to the Schnorr identification scheme [28]. It is not alone; over the last three
decades the Fiat-Shamir paradigm has been a popular way to obtain signature
schemes, for reasons including the following: Speed. It yields some of our most
efficient signature schemes. Proofs. The paradigm is backed by proofs of secu-
rity [27, 1, 21]. Extendability. Classically used with number-theoretic schemes [17,
20, 28, 26], extensions of the paradigm now provide lattice-based schemes, some
of which are proposed to NIST for post-quantum standards [23, 2, 16, 14].

However, referring, above, to “the” Fiat-Shamir paradigm is misleading, for
the paradigm is not monolithic: It encompasses variant methods that, starting
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from a given identification scheme, yield different signature schemes. This creates
some confusion, with proofs in the literature pertaining sometimes to one variant,
sometimes to another, yet being quoted without regard to which variant is being
considered. Extensions such as signing with aborts [23, 2, 16, 14] bring further
variants.

This paper aims to provide a systematic and comprehensive picture of the
variants in a general setting, and give results relating their security under min-
imal assumptions. This allows us to leverage existing security proofs given for
one variant [27, 1, 21], automatically transferring them to another, rather than
prove security of different variants from scratch.

Background. An identification scheme ID is a 3-move interactive protocol. The
prover, having public key pk and secret key sk, sends a commitment Ct, the
verifier sends a random challenge Ch, the prover sends a response Rp, and the
verifier computes a decision d ← ID.V(1λ, pk,Ct,Ch,Rp) to accept or reject,
where 1λ is the unary representation of the security parameter λ. In a signature
scheme based on ID, the prover, now the signer, given message M , computes Ct
as before, sets Ch ← F(1λ, pk, (Ct,M)) to a hash of the commitment and mes-
sage, computes Rp and then returns a signature σ. We distinguish three variants
with regard to what σ consists of. (1) In what we call the transcript variant [27],
σ is (Ct,Ch,Rp). It is verified by checking that ID.V(1λ, pk,Ct,Ch,Rp) = true
and Ch = F(1λ, pk, (Ct,M)). (2) In what we call the commitment variant [25,
1], σ is (Ct,Rp). It is verified by setting Ch ← F(1λ, pk, (Ct,M)) and checking
that ID.V(1λ, pk,Ct,Ch,Rp) = true. (3) In what we call the challenge vari-
ant [17, 28, 20, 26], σ is (Ch,Rp). This usually yields the shortest signatures but
requires a commitment reproducing algorithm ID.CR that allows the verifier to
reproduce Ct ← ID.CR(1λ, pk,Ch,Rp) and then check that Ch = F(1λ, pk,
(Ct,M)).

The history of the various transforms is interesting. Fiat and Shamir (FS) [17],
GQ [20], Schnorr [28] and Okamoto [26] all gave challenge-style signatures. How-
ever, the first security proofs, by Pointcheval and Stern (PS) [27], were for
transcript-style signatures, which seem to originate with them. The proofs of
Abdalla, An, Bellare and Namprempre (AABN) [1] were for commitment-style
signatures, which seem to originate with Ohta and Okamoto (OO) [25]. The
changes are (mostly) made silently: PS, OO, AABN (and subsequent literature)
tend to refer to their results as establishing security of the FS, GQ, Schnorr and
Okamoto schemes, but the proofs pertain to variants not only different from the
original ones but in some cases also different from each other.

Questions. We would like a fuller picture, that given an identification scheme
ID tells us, for each of the three variant signature schemes derived from ID,
whether or not the variant is secure. The above-mentioned results do not di-
rectly yield this information. One approach to filling this gap would be to return
to the techniques in prior proofs and directly try to prove security of each variant
signature scheme. Given the complexity of the techniques, this would be tedious.
Instead, we seek relations between the variants. This means that for each pair
DSx,DSy of variant signature schemes derived from a given identification scheme
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ID, we want to determine an assumption or condition Ax,y on ID under which the
security of DSx implies the security of DSy. Then, if we know from prior work
that DSx is secure, and can establish that ID satisfies Ax,y, we can conclude that
DSy is secure too. This would leverage existing proofs in a modular way. We
seek assumptions Ax,y as weak as possible, both to maximize potential applica-
bility and to understand, theoretically, what are the minimal requirements for a
relation to hold.

The literature does contain claims about such relations [2, 21, 18], but (as we
will discuss in more detail below) they are mostly informal, specific to particular
schemes, or make assumptions we will show to be unnecessarily strong.

Our framework. We capture the variants via transforms that we call general
to reflect a broader parameterization than in prior work. A general Fiat-Shamir
transform gFS determines a signature scheme DS = gFS[ID,F, S] based on input
parameters an identification scheme ID, a hash function F (allowed access to the
random oracle H) and (most novel) a signing algorithm S (also allowed access to
H). The signing algorithm takes 1λ, pk, sk,M and returns either ⊥ or an honest,
accepting transcript (Ct,Ch,Rp) satisfying Ch = FH(1λ, pk, (Ct,M)). But,
beyond requiring this condition, we do not prescribe how the signing algorithm
operates. To sign message M , run T ←$ SH(1λ, pk, sk,M), and return ⊥ as sig-
nature if T = ⊥. Otherwise, parse T as (Ct,Ch,Rp). Exactly what is returned
as the signature σ, and how that signature is verified, depends on the transform.
This is summarized for each of our three transforms gFStr,gFSct,gFSch in Fig-
ure 1, reflecting the three variants discussed above. The schemes are shown in full
in Figure 4. As we will see, the broad parameterization enhances applicability
because our relations will hold for all choices of F, S.

Relations between security of signature schemes. The security at-
tribute we consider for the signature schemes, hereafter called uf-security, is the
usual unforgeability under chosen message attack [19] extended, due to growing
recognition of its importance, to the multi-user setting [5, 21]. Now, given ID,F, S,
consider the three signature schemes DSx = gFSx[ID,F, S] for x ∈ {tr, ct, ch}.
We seek relations between their uf-security, as discussed above. This means that
for each (distinct) pair x, y ∈ {tr, ct, ch} we ask under what assumption Ax,y the
uf-security of DSx implies the uf-security of DSy.

Our results are summarized by the picture at the bottom of Figure 1. That
DStr and DSct have equivalent uf-security is trivial. The interesting question is,
does uf-security of one of DSct,DSch imply uf-security of the other? The straight,
barred arrows say that in general (that is, without any condition beyond basic
completeness on the commitment reproducing algorithm) the answer is no. The
curved, un-barred arrows say the answer is yes, under conditions on the commit-
ment reproducing algorithm (formally, on the overlying identification scheme ID
that includes this algorithm) that we give. Specifically, Theorem 2 says that if ID
has a property we define and call soundness (SND) then, if DSct is uf-secure, so
is DSch. Theorem 4 says that if ID has a property we define and call consistency
(CNS) then, if DSch is uf-secure, so is DSct. SND-security asks that it be com-
putationally hard to find a challenge and response such that the commitment
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Signature
Signature σ To verify σ, check this:

Scheme

DStr=gFStr[ID,F, S] (Ct,Ch,Rp)
ID.V(1λ, pk,Ct,Ch,Rp) = true

Ch = FH(1λ, pk, (Ct,M))

DSct=gFSct[ID,F, S] (Ct,Rp) ID.V(1λ, pk,Ct,FH(1λ, pk, (Ct,M)),Rp) = true

DSch=gFSch[ID,F, S] (Ch,Rp) Ch = FH(1λ, pk, (ID.CR(1λ, pk,Ch,Rp),M))

DSctDSch DStr

SND, Th. 2

CNS, Th. 4

Th. 5
Prop. 3

Prop. 1

Fig. 1. Top: Signatures and verification in the signature schemes given by our trans-
forms, where ID.CR is the commitment reproducing algorithm of ID. Signing of message
M (not shown) is done by letting (Ct,Ch,Rp)←$ SH(1λ, pk, sk,M) and returning the
shown σ. Bottom: Relations between uf-security of the signature schemes.

reproducing algorithm succeeds in returning a commitment but the resulting
transcript is not accepting. CNS-security asks that it be computationally hard
to create an accepting transcript in which the commitment is different from the
one given by the commitment reproducing algorithm. The reductions underlying
all our positive results are tight.

Breadth of applicability. The positive relations (un-barred arrows in Fig-
ure 1) hold for all choices of hash function F and signing algorithm S. This
broadens applicability. With regard to hashing, it means we can transfer secu-
rity in both the random oracle and the standard models: For x, y ∈ {tr, ct, ch}, if
DSx provides uf-security with a random-oracle hash function then (assuming of
course, as necessary, properties of ID as above) so does DSy, but if DSx provides
uf-security with hash function SHA256, then so does DSy. With regard to sign-
ing, this means that our framework captures both canonical and more modern
variants of the Fiat-Shamir paradigm. For example, in the literature Fiat-Shamir
with aborts [23, 2, 16, 14] is viewed as an extension of the canonical Fiat-Shamir
paradigm. In our framework, the canonical and with-abort variants correspond
simply to different choices of signing algorithm S (cf. Figure 4), so our results
apply automatically to both.

We elaborate on the second point. We said above how the Fiat-Shamir
paradigm prescribes signing a message M , which we now call the canonical way:
generate Ct as would the honest prover, set Ch ← FH(1λ, pk, (Ct,M)), gener-
ate Rp as would the prover, then return σ computed from Ct,Ch,Rp according
to the variant (challenge, commit or transcript) of interest. This is captured
for us by setting S to the canonical algorithm on the bottom left of Figure 4.
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This works (yields a correct signature) if the identification scheme has perfect
correctness. However, in the identification schemes from lattices [23, 2, 16, 14],
the response can be ⊥ with constant probability. So the process is modified to
repeat picking Ct,Ch,Rp as above until the conversation is accepting or some
time bound is exceeded, which is called signing with aborts. (In this case, the
signature schemes have imperfect correctness, returning ⊥ with negligible prob-
ability.) The challenge, commit and transcript variants for the signature schemes
exist here too, so the question of how their security relates arises again. We do
not need to address this separately. It is captured for us, and addressed by the
results noted above, simply by setting S to the algorithm on the bottom right
of Figure 4. Choices of S beyond these two are possible as well, for potential
further applications.

Perfect uniqueness. We have introduced the SND and CNS conditions on
commitment reproducible identification schemes, showing that they suffice for
transfer of uf-security between the signature variants. (SND allows the uf-security
of DSct to imply that of DSch, and CNS the converse.) We also define a third con-
dition called perfect uniqueness (P-UNIQ). It asks that a transcript Ct,Ch,Rp
be accepting if and only if the commitment reproducing algorithm ID.CR re-
turns exactly Ct on inputs Ch,Rp. Figure 6 says that P-UNIQ implies both
SND and CNS. Establishing P-UNIQ-ness of a commitment reproducible identi-
fication scheme ID is thus a simple path (and one we will often be able to use) to
showing that all the signature variants derived from ID have equivalent uf-cma
security. However, Figure 6 also says that P-UNIQ is a strictly stronger con-
dition than SND or CNS. So for some commitment reproducible identification
schemes, P-UNIQ may fail to be true, yet we might be able to directly establish
SND and CNS to show equivalence of uf-security of the signature variants.

Linear identification schemes. We’d like to know whether identification
schemes in the literature meet our conditions (P-UNIQ, or SND,CNS as nec-
essary). However, there are many schemes, and new ones keep appearing, and
testing them individually is tedious. Instead, we formalize linear identification
schemes and show that any linear identification scheme is (unconditionally)
P-UNIQ. Our results thus say that the three variant signature schemes ema-
nating from any linear identification scheme have equivalent uf-security.

We then show that classical identification schemes like FS [17], Sch [28],
GQ [20] and Ok [26] are linear. We also show that the Ly lattice based identifi-
cation scheme of [23] is linear. Since proofs of uf-security exist for at least one
signature variant for all these identification schemes, we can conclude that all
three variants are uf-secure.

Lyubashevsky [24] directly gives a lattice-based signature scheme that he
does not derive via the FS paradigm. (Indeed the paper presents no identification
scheme.) We show how to capture it in our framework as gFSch[ID,F, SAID,F,t]
where SAt is the abort-based signing algorithm on the bottom right of Figure 4
and ID is an identification scheme that we define and show is linear. This means
we can define the other variant signature schemes and transfer the proofs of [24]
to them.
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As the above indicates, the concept of linear identification schemes serves
also to unify the literature, showing that what look like different schemes are
in fact instances of one underlying scheme. We see this as something that was
understood but not, until now, formalized.

Due to lack of space, the material on linear identification schemes is entirely
omitted from this proceedings version and can be found in our full version [4].

Which variant should one use? Our work is about relating the security
of the different signature variants. The question of which variant to prefer in
usage is orthogonal, and the answer differs from case to case. We discuss the
choices briefly. The challenge variant gFSch usually yields the shortest signa-
tures (examples where this is true are FS [17], GQ [20], Sch in the group of
integers modulo a prime [28] and Ly [23]) but requires that ID be commitment
reproducible (meaning, there exists a commitment reproducing algorithm ID.CR)
which is not always true. When ID is not commitment reproducible, one can use
gFSct. Here, in some cases (like Sch over elliptic curve groups) the signature size
stays as small as with gFSch, but in other cases, it might grow. The transcript
variant gFStr is also an option for usage when commitment reproducibility is
lacking, but there seems no practical reason for this, because signatures are al-
ways shorter with gFSct. We consider gFStr in this paper because it was the
variant for which the seminal work of Pointcheval and Stern [27] gave proofs.

Of course performance (including signature size) is just one criterion with
regard to a choice for usage. Another is security proofs. The general results in
the literature give proofs for gFSct [1] and gFStr [27], not gFSch. Our framework
and results can be used to transfer them to the (usually more efficient) gFSch.

Related work. Kiltz, Masny, and Pan [21] briefly note that DSch,DSct are
equivalent in terms of uf-security assuming the verification algorithm has a cer-
tain property. This seems to be equivalent to the identification scheme being
P-UNIQ. Figure 6 shows that the SND and CNS properties that allow us to es-
tablish the same equivalence are implied by, and strictly weaker than, P-UNIQ,
making our results stronger. Also their results are for the canonical signing al-
gorithm, while ours are for an arbitrary one. Abdalla, Fouque, Lyubashevsky,
and Tibouchi [2] give results for commitment-style signatures with aborts, say-
ing that these transfer to the challenge style for their schemes because “the
commitment is uniquely determined by the challenge and response.” The phrase
in quotes is not too precise but the intent is likely P-UNIQ. Galbraith, Petit,
and Silva [18] show that, for their particular scheme, under weak conditions on
commitment reproducibility, security of the commit version implies security of
a version that is like the challenge one except that signature verification addi-
tionally checks that the verifier accepts the transcript. This is added verification
cost compared to the classical Fiat-Shamir style challenge variant, which is the
version we consider and which does not have such a check.

We view our work as unifying, systematizing and formalizing long-standing
understanding, scattered observations and folklore. Nothing in this paper is very
novel or technically difficult. Our hope is that it fills some gaps and can be a
point of reference for variants of Fiat-Shamir signatures.
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Prover

Input: pk, sk

(Ct,St)←$ ID.Ct(1λ, pk)

Rp ← ID.Rp(1λ, pk, sk,Ch,St)

Ct✲
Ch✛
Rp✲

Verifier

Input: pk

Ch←$ ID.ChS(λ)

d ← ID.V(1λ, pk,Ct,Ch,Rp)

Fig. 2. Operation of an identification scheme ID.

Extensions. Beyond basic (uf-cma) signature schemes, identification schemes
have been used to build identity-based signatures [8], blind signatures [15, 27]
leakage-resilient signatures [3, 6], double authentication preventing signatures [10]
and beyond. Returning to the basic setting, variants of the Fiat-Shamir paradigm
offering better concrete security have been considered [9]. In all these places and
settings, the commit, challenge and transcript variants arise. One can ask how
their security relates, and extend our framework and results to answer this ques-
tion.

2 Basic definitions

Notation. We let ε denote the empty string. If Z is a string then |Z| denotes
its length. If X is a finite set, we let x←$ X denote picking an element of X
uniformly at random and assigning it to x, and we let |X| denote the size of X.
We use ⊥ (bot) as a special symbol to denote rejection, and it is assumed to not
be in {0, 1}∗. Both inputs and outputs to algorithms can be ⊥. We adopt the
convention that if any input to an algorithm is ⊥, then its output is ⊥ as well.
By λ ∈ N we denote the security parameter, and by 1λ its unary representation.
Recall that a function ν: N → R is negligible if for every positive polynomial
p: N → R there is a λp ∈ N such that ν(λ) ≤ 1/p(λ) for all λ ≥ λp.

Algorithms may be randomized unless otherwise indicated. Running time is
worst case. “PT” stands for “polynomial time,” whether for a randomized algo-
rithm or a deterministic one. If A is an algorithm, we let y ← AO1,...(x1, . . . ;ω)
denote running A on inputs x1, . . . and coins ω, with oracle access to O1, . . .,
and assigning the output to y. By y ←$ AO1,...(x1, . . .) we denote picking ω at
random and letting y ← AO1,...(x1, . . . ;ω). We let [AO1,...(x1, . . .)] denote the set
of all possible outputs of A when run on inputs x1, . . . and with oracle access to
O1, . . .. An adversary is an algorithm.

We use the code-based game-playing framework of [12]. (See Figure 5 for an
example.) By Pr[G] we denote the probability that the execution of game G
results in the game returning true. We adopt the convention that the running
time of an adversary executing with some game refers to the worst case execution
time of the game with the adversary, meaning the time taken for oracles to
compute replies to queries is included. The random oracle (RO) model [11] is
captured by inclusion in the game of a procedure H that implements a variable
output length RO. See for example Figure 3.
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Identification schemes. An identification scheme ID (called a canonical iden-
tification scheme in [1]) specifies several algorithms and associated quantities,
as follows. In an initialization phase, via (pk, sk)←$ ID.Kg(1λ), the prover runs
the key-generation algorithm ID.Kg on input the unary representation 1λ of
the security parameter λ to obtain a public key pk and a private key sk, both
of which she stores. It is assumed that the verifier is in possession of pk. (In
practice this is likely done via certificates, but that is not in the scope of the
identification scheme.) Identification then operates as depicted in Figure 2. Via
(Ct,St)←$ ID.Ct(1λ, pk), the prover generates a commitment Ct and corre-
sponding private state St. The verifier sends a challenge Ch←$ ID.ChS(λ)
drawn at random from the challenge space ID.ChS(λ) = {0, 1}ID.ChL(λ) where
ID.ChL: N → N is the challenge length function associated to ID. The prover’s
response Rp ← ID.Rp(1λ, pk, sk,Ch,St) is computed via a deterministic algo-
rithm ID.Rp. The verifier’s decision d ← ID.V(1λ, pk,Ct,Ch,Rp), which is ei-
ther true, false or ⊥, is also computed deterministically. Algorithms ID.Kg, ID.Ct,
ID.Rp, ID.V are required to be PT.

The honest-transcript generating function HTRID,λ associated to ID and λ ∈
N takes input (pk, sk) ∈ [ID.Kg(1λ)], and returns a transcript of a conversation
between the honest prover and the verifier, as follows:

HTRID,λ(pk, sk)

(Ct,St)←$ ID.Ct(1λ, pk) ; Ch←$ ID.ChS(λ) ; Rp ← ID.Rp(1λ, pk, sk,Ch,St)
Return (Ct,Ch,Rp)

For λ ∈ N and (pk, sk) ∈ [ID.Kg(1λ)], we define the set of accepting transcripts

ACCID,λ(pk) = { (Ct,Ch,Rp) : ID.V(1λ, pk,Ct,Ch,Rp) = true } .

Correctness, for most schemes, is simple, saying that honest transcripts are
always accepting: formally, for all λ ∈ N and all (pk, sk) ∈ [ID.Kg(1λ)] we
have [HTRID,λ(pk, sk)] ⊆ ACCID,λ(pk). We call this perfect correctness. How-
ever we will need to also consider a relaxation where there is a correctness
error, and this has to be carefully formulated. We say that ID has correct-
ness error ν: N → R if for all λ ∈ N and all (pk, sk) ∈ [ID.Kg(1λ)] we have
Pr[(Ct,Ch,Rp) ∕∈ ACCID,λ(pk)] ≤ ν(λ), where the probability is over (Ct,
Ch,Rp)←$ HTRID,λ(pk, sk). This captures the requirement that the verifier
accepts with probability at least 1 − ν(λ) in an interaction with the honest
prover. Some commonly occurring choices for ν are a constant, like ν(·) = 1/2,
or a negligible function, and in the latter case we say that ID has negligible
correctness error.

Signature Schemes. A (digital) signature scheme DS specifies several al-
gorithms and associated quantities, as follows. In an initialization phase, via
(pk, sk)←$ DS.Kg(1λ), the signer runs the PT key-generation algorithm DS.Kg
on input 1λ to obtain a public key pk and a private key sk, both of which she
stores. It is assumed that the verifier is in possession of pk. (As with identi-
fication, how this happens is not in the scope of the signature scheme.) Via
σ ←$ DS.SignH(1λ, pk, sk,M), the signer generates a signature σ of a message
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Game Guf
DS,A(λ)

n ← 0 ; S ← ∅
(M,σ, i)←$ ANew,Sign,H(1λ)
d ← DS.VH(1λ, pki,M,σ)
Return (d = true) ∧ ((i,M) /∈ S)

H(W, ℓ)

If HT[W, ℓ] = ⊥ then HT[W, ℓ]←$ {0, 1}ℓ
Return HT[W, ℓ]

Sign(i,M)

σ ←$ DS.SignH(1λ, pki, ski,M)
S ← S ∪ {(i,M)}
Return σ

New()
n ← n+ 1
(pkn, skn)←$ DS.Kg(1λ)
Return pkn

Fig. 3. Game for UF-CMA security of digital signature schemes in the multi-user
setting.

M ∈ {0, 1}∗. Via d ← DS.VH(1λ, pk,M,σ), a verifier can deterministically ob-
tain a decision regarding whether σ is a valid signature of M under pk. The
signing and verifying algorithms have oracle access to the random oracle H
and are required to be PT. We say that DS has correctness error ν: N → R
if, for all λ ∈ N, all (pk, sk) ∈ [DS.Kg(1λ)] and all M ∈ {0, 1}∗ we have
Pr[DS.VH(1λ, pk,M,DS.SignH(1λ, pk, sk,M)) ∕= true] ≤ ν(λ), where the proba-
bility is over the random choices of H and the coins of DS.Sign. We say correctness
is perfect if ν(·) = 0.

Our security metric for signatures, called uf-security, is the usual unforge-
ability under chosen-message attack [19], but in the multi-user setting, due to
increasing recognition of the importance of the latter [5, 21]. Consider game
Guf

DS,A(λ) in Figure 3 associated to signature scheme DS and adversary A. By
calling the New oracle, the adversary can initialize a new user (signer), obtaining
her public key. The number of users n, being the number of queries to New, is
thus under the adversary’s control. Via the Sign oracle, the adversary can mount
its chosen-message attack, obtaining a signature on a message of its choice under
a user of its choice. The adversary eventually outputs a pointer i ∈ {1, . . . , n}
to a user, a message M , and a claimed signature of M under pki, winning if
the signature is valid and non-trivial. We let Advuf

DS,A(λ) = Pr[Guf
DS,A(λ)] be

the probability that the game returns true. We say that DS is uf-secure if the
function Advuf

DS,A(·) is negligible for all PT adversaries A.

3 Transforms and signature relations

The FS transforms are usually viewed as turning an identification scheme into
a signature scheme in the random oracle model. Our general transforms take
not only an identification scheme, but a hash function F, so that both standard
model and random oracle model hash functions are covered. More novel, they
take a description S of a signing process, to cover the fact that FS has been used
in settings with and without abort. We begin with commitment reproducibility,
needed for some of the transforms, then discuss the other parameters, and then
specify the transforms. We then define the SND and CNS security notions for
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commitment reproducible identification schemes that allow us to relate the se-
curity of the schemes emanating from the different general transforms. Finally
we study relations between security notions for commitment reproducible iden-
tification schemes.

Commitment reproducibility.A commitment reproducing algorithm for iden-
tification scheme ID is a deterministic, PT algorithm ID.CR that returns an out-
put in {0, 1}∗ ∪ {⊥}. We require the following completeness condition: for all
λ ∈ N, all (pk, sk) ∈ [ID.Kg(1λ)] and all (Ct,Ch,Rp) ∈ [HTRID,λ(pk, sk)] ∩
ACCID,λ(pk) we have Ct = ID.CR(1λ, pk,Ch,Rp). Completeness says that
the commitment in an accepting transcript of an interaction between the honest
prover and the verifier is uniquely determined by the challenge and response, and
moreover can be computed from them in PT by the commitment reproducing
algorithm. An identification scheme ID is commitment reproducible if it specifies
(in addition to the quantities it already specifies as per Section 2) a commitment
reproducing algorithm ID.CR that satisfies the completeness condition.

Commitment reproducibility is enough to define the gFSch transform, but
further attributes (SND,CNS) will be necessary to establish relations between
uf-security of the signature schemes.

Hashing. The gFS transforms use a hash function. Most of our results hold
regardless of the choice of the hash function, in particular both when it is a
standard-model function and when it is a random oracle. To capture this for-
mally, we define a hash function as a deterministic algorithm F that may have
access to a random oracle H. It is compatible with identification scheme ID if
FH(1λ, pk, x) ∈ ID.ChS(λ) for all λ ∈ N, all (pk, sk) ∈ [ID.Kg(1λ)], all x and all
H. In our usage, x = (Ct,M) will consist of a commitment and message. By
setting FH(1λ, pk, x) = H((1λ, pk, x), ℓ(λ)) for some ℓ: N → N we can cover the
case where the hash function is a random oracle, but we can also, for example, set
FH(1λ, pk, x) = SHA256((1λ, pk, x)) to cover schemes where the hash function
has been instantiated via SHA256.

Signing. Let ID be an identification scheme, and F a hash function compatible
with it. A signing algorithm compatible with ID and F is a PT algorithm S that
operates as T ←$ SH(1λ, pk, sk,M). We require that if T ∕= ⊥ then it parses as
(Ct,Ch,Rp) ← T satisfying Ch = FH(1λ, pk, (Ct,M)) and (Ct,Ch,Rp) ∈
[HTRID,λ(pk, sk)] ∩ACCID,λ(pk). That is, a non-⊥ signature is an honest, ac-
cepting transcript in which the challenge is the hash of the commitment and
message. We say that S has signing error ν: N → R if Pr[SH(1λ, pk, sk,M) =
⊥] ≤ ν(λ) for all λ ∈ N, all (pk, sk) ∈ [ID.Kg(1λ)] and all M ∈ {0, 1}∗, where
the probability is over the coins of S and H.

On the bottom left of Figure 4 is the canonical signing algorithm SCID,F.
This is the classical choice, representing the usual, prescribed way to generate
FS signatures. When ID has perfect correctness, SCID,F has zero signing error. On
the right is a signing with aborts algorithm SAID,F,t as per [23], where t: N → N
is a polynomial. This may be used when ID has imperfect correctness. It tries to
generate an honest, accepting transcript, returning⊥ if it fails after t(·) attempts.
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DStr.Sign
H(1λ, pk, sk,M)

T ←$ SH(1λ, pk, sk,M)
If (T = ⊥) then return ⊥
(Ct,Ch,Rp) ← T
σ ← (Ct,Ch,Rp) ; Return σ

DStr.V
H(1λ, pk,M,σ)

(Ct,Ch,Rp) ← σ
d0 ← ID.V(1λ, pk,Ct,Ch,Rp)
d1 ← (Ch = FH(1λ, pk, (Ct,M)))
Return (d0 ∧ d1)

DSct.Sign
H(1λ, pk, sk,M)

T ←$ SH(1λ, pk, sk,M)
If (T = ⊥) then return ⊥
(Ct,Ch,Rp) ← T
σ ← (Ct,Rp) ; Return σ

DSct.V
H(1λ, pk,M,σ)

(Ct,Rp) ← σ
Ch ← FH(1λ, pk, (Ct,M))
Return ID.V(1λ, pk,Ct,Ch,Rp)

DSch.Sign
H(1λ, pk, sk,M)

T ←$ SH(1λ, pk, sk,M)
If (T = ⊥) then return ⊥
(Ct,Ch,Rp) ← T
σ ← (Ch,Rp) ; Return σ

DSch.V
H(1λ, pk,M,σ)

(Ch,Rp) ← σ
Ct ← ID.CR(1λ, pk,Ch,Rp)
If (Ct = ⊥) then return false
Return (Ch = FH(1λ, pk, (Ct,M)))

Algorithm SCH
ID,F(1

λ, pk, sk,M)

(Ct,St)←$ ID.Ct(1λ, pk)
Ch ← FH(1λ, pk, (Ct,M))
Rp ← ID.Rp(1λ, pk, sk,Ch,St)
Return (Ct,Ch,Rp)

Algorithm SAH
ID,F,t(1

λ, pk, sk,M)

d ← false ; i ← 0
While (d = false and i < t(λ)) do:

i ← i+ 1
(Ct,St)←$ ID.Ct(1λ, pk)
Ch ← FH(1λ, pk, (Ct,M))
Rp ← ID.Rp(1λ, pk, sk,Ch,St)
d ← ID.V(1λ, pk,Ct,Ch,Rp)

If (d = true) then return (Ct,Ch,Rp)
Else return ⊥

Fig. 4. Top three panels show signing and verifying algorithms of the signature schemes
DStr, DSct and DSch obtained by applying the gFStr,gFSct and gFSch transforms,
respectively, to identification scheme ID, hash function F and signing algorithm S.
Bottom panel shows examples of signing algorithms.

If ID has correctness error a (non-zero) constant ν(·) = ε < 1, then setting t(λ),
to, say, ⌈log2(λ) · log(1/ε)⌉ will result in SAID,F,t having negligible signing error
in the case that F is a random oracle. For other choices of F, the correctness
error of SAID,F,t would have to be evaluated directly (this seems to be somewhat
glossed over in prior work) but for practical choices of F we expect it to still be
about ν by the random oracle paradigm [11]. Our transforms will not pin down
a particular way of generating signatures, but rather allow that to be specified
by a signing algorithm S that they take as input. This allows our results to cover
many different types of signing.

The gFS transforms. Let ID be an identification scheme, F a hash function
compatible with it, and S a signing algorithm compatible with both. The gFStr

transform associates to ID,F, S the signature scheme DStr = gFStr[ID,F, S]
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whose algorithms are specified in the first panel in Figure 4. The gFSct trans-
form associates to ID,F, S the signature scheme DSct = gFSct[ID,F, S] whose
algorithms are specified in the second panel in Figure 4. Assuming additionally
that ID is commitment reproducible, and letting ID.CR be its commitment re-
producing algorithm, the gFSch transform associates to ID,F, S the signature
scheme DSch = gFSch[ID,F, S] whose algorithms are specified in the third panel
of Figure 4. Although this is not explicitly indicated in the code, note that in
all cases, as per our general conventions, the signature verification algorithm re-
turns ⊥ if its input signature σ is ⊥. The correctness error of a signature scheme
DS = gFS[ID,F, S] given by one of our transforms is just the signing error of the
signing algorithm S. So, for example, if ID has perfect correctness and S = SCID,F,
then DS has perfect correctness.

Attributes of the commitment reproducing algorithm. Security of the
different variants of the FS transform will rely on different properties of commit-
ment reproducible identification schemes that we now introduce. In the following
let ID be a commitment reproducible identification scheme.

The strongest attribute is what we call Perfect Uniqueness (P-UNIQ). It
asks that for all λ ∈ N, all (pk, sk) ∈ [ID.Kg(1λ)], all Ch ∈ ID.ChS(λ) and all
Ct,Rp that are not ⊥ we have: ID.V(1λ, pk,Ct,Ch,Rp) = true if and only if
Ct = ID.CR(1λ, pk,Ch,Rp). Figure 6 says the SND,CNS attributes we define
next are implied by P-UNIQ, but strictly weaker than it.

We now introduce soundness. To understand it, we start with Perfect Sound-
ness (P-SND). This asks that for all λ ∈ N, all (pk, sk) ∈ [ID.Kg(1λ)], all
Ch ∈ ID.ChS(λ) and all Rp we have: If Ct ← ID.CR(1λ, pk,Ch,Rp) is not
⊥ then ID.V(1λ, pk,Ct,Ch,Rp) = true. SND-security is a computational re-
laxation of this, asking that it be computationally hard to create a challenge
and response where commitment reproducibility succeeds but the transcript is
rejecting. This is formalized in game Gsnd

ID,A(λ) in Figure 5. Via oracle New,
the adversary can initialize a user (we are in the multi-user setting) and ob-
tain not only its public key but also its secret key. It outputs a challenge
Ch ∈ ID.ChS(λ) and responseRp, as well as a pointer to some user i ∈ {1, . . . , n}.
It wins if the commitment reproducing algorithm, given pki,Ch,Rp, returns a
non-⊥ value but the corresponding transcript is rejected by the verifier. Let
Advsnd

ID,A(λ) = Pr[Gsnd
ID,A(λ)]. We say that ID is SND-secure if the function

Advsnd
ID,A(·) is negligible for every PT adversary A.

We turn to consistency. Again, to understand it we start with Perfect Con-
sistency (P-CNS). This asks that for all λ ∈ N, all (pk, sk) ∈ [ID.Kg(1λ)], all
Ch ∈ ID.ChS(λ) and all Ct,Rp we have: If Ct ∕= ID.CR(1λ, pk,Ch,Rp) then
ID.V(1λ, pk,Ct,Ch,Rp) ∕= true. CNS-security is a computational relaxation
of this, asking that it be computationally hard to create an accepting tran-
script in which the commitment is different from the one given by the commit-
ment reproducing algorithm. This is formalized using game Gcns

ID,A(λ) in Fig-
ure 5. Via oracle New, the adversary can initialize a user and obtain both its
keys. It outputs Ct,Ch,Rp with Ch ∈ ID.ChS(λ) and a pointer to some user
i ∈ {1, . . . , n}. It wins if the transcript is accepting but the commitment repro-
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Game Gsnd
ID,A(λ)

n ← 0
(Ch,Rp, i)←$ ANew(1λ)
Ct ← ID.CR(1λ, pki,Ch,Rp)
d ← ID.V(1λ, pki,Ct,Ch,Rp)
Return (d = false) ∧ (Ct ∕= ⊥)

New()

n ← n+ 1 ; (pkn, skn)←$ ID.Kg(1λ)
Return (pkn, skn)

Game Gcns
ID,A(λ)

n ← 0
(Ct1,Ch,Rp, i)←$ ANew(1λ)
Ct0 ← ID.CR(1λ, pki,Ch,Rp)
d1 ← ID.V(1λ, pki,Ct1,Ch,Rp)
Return (d1 = true) ∧ (Ct0 ∕= Ct1)

New()

n ← n+ 1 ; (pkn, skn)←$ ID.Kg(1λ)
Return (pkn, skn)

Fig. 5. Games defining soundness (SND-security) and consistency (CNS-security) of a
commitment reproducible identification scheme ID.

ducing algorithm returns a commitment different from the one in the transcript.
Let Advcns

ID,A(λ) = Pr[Gcns
ID,A(λ)]. We say that ID is CNS-secure if the function

Advcns
ID,A(·) is negligible for every PT adversary A.

For convenience of our reductions, the definitions of soundness and consis-
tency are in the multi-user setting. A standard hybrid argument shows that
single user security (captured as security relative to adversaries making only one
call to New) implies multi-user security. This reduction is not tight, the advan-
tage degrading linearly in the number of queries to New. When we say that the
results in our paper are underlain by tight reductions we mean that the reduc-
tions in Theorems 2 and 4 are tight to the assumptions made in these theorems,
which are the multi-user versions of SND and CNS, respectively.

Signature scheme relations. We give the formal result statements underly-
ing the picture at the bottom of Figure 1. The proofs are in [4]. We start with
whether uf-security of DSct implies that of DSch. The following Proposition says
that in general (meaning, with no conditions on the commitment reproducing
algorithm other than completeness) the answer is “no.” Theorem 2 will show
that SND-security of ID suffices to make the answer “yes.” For simplicity the
Proposition sets the signing algorithm to the canonical one, but the Theorem
holds for all signing algorithms.

Proposition 1. Let ID∗ be a commitment reproducible identification scheme
and F a hash function compatible with ID∗. Assume signature scheme DS∗ct =
gFSct[ID

∗,F, SCID∗,F] is uf-secure. Then there is a commitment reproducible iden-
tification scheme ID such that F is compatible with ID and (1) DSct = gFSct[ID,F,
SCID,F] is uf-secure but (2) DSch = gFSch[ID,F, SCID,F] is not uf secure.

If ID has the stronger property of being SND-secure, then uf-security of DSct
does transfer to DSch. Note that ID as constructed in the proof of Proposition 1
is not SND-secure, so there is no contradiction. Hence the Proposition can also
be viewed as showing that the SND-security assumption is necessary for the
following Theorem. For conciseness, the theorem statement is asymptotic, but
it is underlain by a tight reduction explicitly stated and proved in [4].
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Theorem 2. Let ID be a commitment reproducible identification scheme, F a
hash function compatible with ID and S a signing algorithm compatible with ID,F.
Let DSct = gFSct[ID,F, S] and DSch = gFSch[ID,F, S]. Assume ID is SND-
secure and DSct is uf-secure. Then DSch is uf-secure.

This result holds regardless of F, S, meaning no (extra) conditions are put on
these, which means we cover both canonical and with-abort signing via the
choices of S shown in Figure 4.

We turn to the converse, asking whether uf-security of DSch implies that of
DSct. Analogously to the above, Proposition 3 says that in general the answer
is “no,” and Theorem 4 says that it becomes “yes” assuming ID is CNS-secure.

Proposition 3. Let ID∗ be a commitment reproducible identification scheme
and F a hash function compatible with ID∗. Assume signature scheme DS∗ch =
gFSch[ID

∗,F, SCID∗,F] is uf-secure. Then there is a commitment reproducible
identification scheme ID such that F is compatible with ID and (1) DSch =
gFSch[ID,F, SCID,F] is uf-secure but (2) DSct = gFSct[ID,F, SCID,F] is not uf
secure.

Theorem 4. Let ID be a commitment reproducible identification scheme, F a
hash function compatible with ID and S a signing algorithm compatible with ID,F.
Let DSct = gFSct[ID,F, S] and DSch = gFSch[ID,F, S]. Assume ID is CNS-secure
and DSch is uf-secure. Then DSct is uf-secure.

Recall that the interest of gFStr is that the first proofs were for this vari-
ant [27]. However the following says it is equivalent in uf-security to gFSct.

Theorem 5. Let ID be an identification scheme, F a hash function compatible
with ID and S a signing algorithm compatible with ID,F. Let DSct = gFSct[ID,
F, S] and DStr = gFStr[ID,F, S]. Then DSct is uf-secure if and only if DStr is
uf-secure.

Identification relations. We have defined several attributes of commitment
reproducing identification schemes: P-UNIQ, P-SND, SND, P-CNS, CNS. Fig-
ure 6 determines the relations between the five notions, in the style introduced
by [7]. An arrow XX → YY is an implication: every commitment reproducible
identification scheme that has property XX also has property YY. A barred
arrow XX 󰃼 YY is a separation: there exists a commitment reproducible identi-
fication scheme having property XX but not having property YY. Proofs of the
relations in Figure 6 are in [4].

The picture shows a minimal set of implications and separations but de-
termines the relation between any two nodes. For example, does P-CNS imply
P-SND? No, because if it did we would get a path from P-CNS to SND, contra-
dicting that shown separation.

What emanates from the relations? Recall we have seen that if DSct =
gFSct[ID,F, S] and DSch = gFSch[ID,F, S] then SND suffices for uf-security of
DSct to imply that of DSch, and CNS suffices for the converse. Figure 6 says that
P-UNIQ would also suffice for (both) these conclusions, but that SND,CNS are
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P-UNIQ

P-SND ∧ P-CNS

P-SND P-CNS

SND CNS

Fig. 6. Relations between security notions for commitment reproducible identification
scheme. Arrows denote implications and barred arrows denote separations.

strictly weaker assumptions. It also says that SND,CNS are distinct; neither
implies the other. In fact even P-SND does not imply CNS, and P-CNS does not
imply SND. So the conditions required for uf-security to transfer across DSch
and DSct are not symmetric.
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