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In mechanism design, the firm has an advantage over its customers in its knowledge of the

state of the system, which can affect the utilities of all players. This poses the question: how

can the firm utilize that information (and not additional financial incentives) to persuade

customers to take actions that lead to higher firm utility?

When the firm is constrained to “cheap talk,” and cannot credibly commit to a manner of

signaling, the firm cannot change customer behavior in a meaningful way. Instead, we allow

firm to commit to how they will signal in advance. Then, customers can trust the signals

they receive and act on their realization. This thesis contains the work of three papers, each

of which applies information design to service systems and online markets.

We begin by examining how a firm could signal a queues length to arriving, impatient

customers in a service system. We show that the choice of an optimal signaling mechanism

can written as a infinite linear program and then show an intuitive form for its optimal

solution. We further show that with a fixed service price and optimal signaling, a firm can

generate the same revenue as a firm with an observable queue and length-based prices.

Next, we study demand and inventory signaling in online markets: customers make

strategic purchasing decisions, knowing the price will decrease if an item does not sell out.

The firm aims to convince customers to buy now at a higher price. We show that the optimal

signaling mechanism is public, and sends all customers the same information.

Finally, we consider customers whose ex ante utility is not simply their expected ex post

utility, but instead a (possibly) non-linear function of its distribution. We bound the number

of signals needed for the firm to generate their optimal utility and provide a convex program

reduction of the firm’s problem.



BIOGRAPHICAL SKETCH

David was born on January 22, 1992 in Glendale, California and grew up there and in

Sammamish, Washington. He attended Harvey Mudd College and completed a B.S. in

Mathematics in May, 2010. There, he did a thesis under Michael Orrison and computational

biology work under Ran Libeskind-Hadas. Three months after graduation, he began his Ph.D

at Cornell.

iii



ACKNOWLEDGEMENTS

First and foremost, I’d like to thank my parents, David and Lisa Lingenbrink. Without their

guidance and continual support, I wouldn’t be getting my doctorate or be half the person I

am today. Through math flashcards and summer math programs, they were incredible at

giving me avenues to explore without pushing me too far. I most thank them for being such

good moral role models for me and providing a quality of person to shoot for.

Next, I’d like to thank my adviser, Krishnamurthy Iyer. He was incredibly patient with

my growth as a researcher. When I compare my current abilities and writing to mine when I

started, I realize how much work he did in cultivating that. The mentorship, guidance and

support that Kris provided made me an unquestionably stronger mathematician and person.

I would also like to thank Siddhartha Banerjee and Robert Kleinberg for serving on my

committee. They were always available for questions and provided important feedback on my

work. The work of Chapter 4 was done in collaboration with Jerry Anunrojwong, as well,

who is a brilliant researcher and attentive colleague.

From my earlier education, I’m very thankful to Michael Orrison, who gave me guidance

throughout my studies and was very patient with me as I learned how to do self-directed

research. Thanks, too, to Ran Libeskind-Hadas, who first introduced me to computer science

and made my little academic discoveries feel important.

The last couple years of my work have been much smoother thanks to Margaret Moore,

my incredibly supportive significant other. I thank her for all the ways she’s made my life

better.

I’m very grateful to the other ORIE Ph.D students, who have fostered a great community

where I felt I could ask everybody a question about their (or my) work. Specifically, I’d like

to thank:

• Andrew Daw, for being a friend through the strikes and gutters, ups and downs.

• Sam Gutekunst, for understanding being mentioned second and tolerating a whole lot.

iv



• David Eckman, for being the funniest person in the office and for the many minor

medical packs.

• Ben Grimmer, for pre-chewing and the Sam hot tub plan.

• Pamela Badian-Pessot, for being the heart of Peanut Office.

• Cory Girard, for being the spirit of Peanut Office.

• Calvin Wylie, for the year on Schuyler.

• Alberto Vera and Pu Yang, for all the ASoIaF theories.

• Ken Chong and Daniel Fleischman, for the puzzles and the Only Connect.

• Venus Lo, for all the baked goods.

• Matthew Zalesak, for all the other baked goods.

• The staff, for being so helpful and always making me feel welcome.

Chapter 2 is published as Lingenbrink and Iyer (2018a), and a preliminary version

appeared at the 18th ACM Conference of Economics and Computation. A preliminary version

(Lingenbrink and Iyer 2018b) of the work of Chapter 3 appeared at the 12th Workshop on the

Economics of Networks, Systems and Computation. Chapter 4 was written in a collaboration

with Jerry Anunrojwong (Anunrojwong et al. 2019).

I was supported throughout my PhD from the NSF under the grant CMMI-1633920.

v



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction 1

2 Optimal Signaling Mechanisms in Unobservable Queues 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Signaling mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Customer equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Service provider’s decision problem . . . . . . . . . . . . . . . . . . . 19

2.3 Characterization of the signal space . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Equilibrium characterization . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 LP formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Structure of Optimal Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Optimal pricing and signaling . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.1 Linear utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.2 Abandonment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6.3 Heterogeneous types . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Persuasion in Online Retail: Efficacy of Public Signals 42

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Formulation of the firm’s decision problem . . . . . . . . . . . . . . . . . . . 52
3.4 Optimality of public signaling . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Revenue comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 Heterogeneous Customers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1 Observed types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.2 Unobserved types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.3 Numeric comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Persuading Risk-Conscious Agents: A Geometric Approach 72

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.2 Actions, strategy and utility . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.3 Persuasion game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vi



4.3 Towards a tractable formulation . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4 Binary persuasion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.1 Geometry of the convex program . . . . . . . . . . . . . . . . . . . . 90
4.4.2 Structural Characterizations . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Signaling in Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5.1 Queueing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Conclusion 102

A Appendix to Chapter 2 110

A.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
A.1.1 Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.1.2 Proof of Theorem 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.2 Comparison of the fully-revealing and the no-information mechanisms . . . . 123

B Appendix to Chapter 3 125

B.1 Proofs from Sections 3.3 and 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . 125
B.2 Construction of linear program . . . . . . . . . . . . . . . . . . . . . . . . . 132
B.3 Example of public signaling suboptimality with homogeneous customers . . . 133
B.4 Extensions to public signaling . . . . . . . . . . . . . . . . . . . . . . . . . . 135

C Appendix to Chapter 4 139

C.1 Omitted Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
C.1.1 Proof of Lemma 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
C.1.2 Additional Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
C.1.3 Queueing analogue of theorem 4.3 . . . . . . . . . . . . . . . . . . . . 141
C.1.4 Proof of Theorem 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
C.1.5 Proof of Lemma 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
C.1.6 Statement and Proof of Proposition C.1 . . . . . . . . . . . . . . . . 148

vii



CHAPTER 1

INTRODUCTION

It takes time to persuade men to

do even what is for their own good.

Thomas Jefferson

Information plays an important role in mechanism design. The level of information

provided to users can dramatically change the actions they chose: with more information,

users can make better informed choices. The mechanism designer has access to more

information than the users, and can share it with the users. Since the users’ choices impact

the utility of the mechanism designer, the mechanism designer strategically shares the state

information so the users chose actions that benefit the designer more frequently. By fully

revealing the state information to each user, users will always take their best action. However,

by instead combining some states (and telling users that the true state is in a certain set),

the mechanism designer can more strategically influence the behavior of users and increase

their utility. The mechanism designer then faces a trade-off: an uninformative information

sharing policy may never convince users to take an action, but one that is very informative

may cause users to take less-preferred actions for some states. Information, then, has a value

to users, but over-revealing state information may be sub-optimal in designer’s utility. The

choice of the information provided to users in a mechanism is then very important.

One prominent example of this trade-off is in the decisions of drivers in ride-sharing

services such as Uber and Lyft. When a passenger makes a request to the service, they

must indicate their destination, so the service can optimally match them with a driver. This

information is not shared with the driver, who learns the destination upon picking up the

passenger. This is done so that drivers cannot cherry-pick their fares and the service can

guarantee a fast pick-up time for all passengers. This upsets many drivers, many of whom
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resort to practices banned by the service, such as calling the passenger and eliciting their

destination or spoofing their own location, to attain the information. Destination information

is valued by the drivers, but the ride-sharing service has found that sharing it would lead

to lowered revenue from drivers strategically picking the best fares. However, ride-sharing

services are experimenting with other solutions: in 2018, Uber started a pilot program to

allow some drivers to occasionally see the expected duration and cardinal direction of a fare

before accepting.

Our methods and results contribute to the emerging literature on Bayesian persuasion

(Kamenica and Gentzkow 2011, Rayo and Segal 2010, Bergemann and Morris 2016a,b,

2018) that studies settings where an informed principal strategically chooses the amount of

information to share with uninformed agents to incentivize them to act in a desired manner.

In contrast to the literature on cheap talk (Crawford and Sobel 1982), the distinctive feature

in Bayesian persuasion is the assumption that the principal can commit to sharing information

in a prespecified manner. The main insight is that, in general, the principal’s optimal signal

must obfuscate information by carefully coalescing favorable and unfavorable states of the

agents. Kolotilin et al. (2016) extends this basic model to settings with privately informed

agents who must report their types to the principal before receiving information. For a

general methodological approach to Bayesian persuasion and information design in finite

settings, see Bergemann and Morris (2018) and Taneva (2019).

In this thesis, we apply the techniques of Bayesian persuasion and information design to

service systems and online markets. In Chapter 2, we consider a service system offering a

service at a fixed price to impatient customers. Servers are limited, so arriving customers

may choose to either wait in an unobservable queue to attain service or to leave the system

forever. Before customers make their decision, the service provider can provide them with

information on the current length of the queue1. We make no assumptions about the form

1For simplicity, we let arrivals be according to a Poisson process and service times be exponential. Since
these distributions are memoryless, the length of the queue is the only state information relevant to arriving
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this information may take; for example, valid forms of information are sending no information,

sending the exact length, or sending a “busy”/“not busy” binary signal. Further, we make

limited assumptions about the specifics of a customer’s disutility from waiting; we only

assume it’s monotonically increasing and their net utility from the service becomes worse

than their utility from leaving for especially slow service. Customers are Bayesian, and

use the information provided to update their prior. Note that their prior is dynamic; it is

dependent on the choices of other customers. The problem for the service provider becomes

the following: how should they signal to generate the most revenue from customers using

the service? We first apply an argument analogous to the revelation principle in mechanism

design: we show that to achieve the optimal revenue, the service provider need only send a

binary signal recommendation to each customer, telling them what action to take. Next, we

formulate the choice of an optimal signaling mechanism as the solution to an infinite linear

program over the queue’s steady state distribution. We then show that the optimal signaling

mechanism must follow a simple form. When the customers’ disutility from waiting is a linear

function, we find an explicit form for the signaling mechanism. Finally, we show that for an

optimal fixed price, the optimal signaling mechanism can generate the same revenue as the

optimal length-dependent variable pricing mechanism where the queue is fully-observable.

In Chapter 3, we apply these methods to inventory and demand signaling in online retail.

We consider a two period model where customers arrive in both periods to buy an item that

is of limited stock. The price of the item is higher in the first period, but customers have

a better chance of securing the item if they buy it early. The firm can observe both the

total inventory available and the number of customers present at the first time period. The

problem for the firm is: how can they signal the inventory and demand to all first-period

customers to encourage them to buy early and maximize the firm’s revenue? In contrast

to Chapter 2, the firm must now send a signal to many customers at once, and it is not

immediately clear whether all customers should be sent the same information (we call this

customers.
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a public signaling mechanism). We notice that, like observed in the friendship paradox,

customers believe the demand is stochastically higher than the firm believes it is. First,

we again make a revelation principle style argument and restrict our attention to signaling

mechanisms that recommend an action to every customer. We use this to, like in Chapter 2,

write the choice of an optimal signaling mechanism as an infinite linear program. We establish

that, when customers have homogeneous valuations, the optimal signaling mechanism is

public. Additionally, we provide a polynomial time algorithm for computing it by posing it

as an instance of the fractional knapsack problem. Note that, when customers value the item

differently, the optimal signaling mechanism is not public, and we illustrate the gap between

the optimal signaling mechanism and the optimal public signaling mechanism numerically in

this chapter.

Finally, in Chapter 4, we consider customers whose utility cannot be written as an

expectation over the utility of each possible state of the world. In particular, the customer’s

utility may be non-linear in their belief; such utility models arise, for example, when the

receiver exhibits aversion to variability and risk in the payoff on choosing an action. In

the presence of such non-linearity, the standard approach of using revelation-principle style

arguments fails to provide an efficient characterization of the set of signals needed in the

optimal signaling scheme. Our main contribution is to provide a theoretical framework, using

results from convex analysis, to overcome this technical challenge. In particular, in general

persuasion settings with risk-conscious agents, we prove that the sender’s problem can be

reduced to a convex optimization program. Furthermore, using this characterization, we

obtain a bound on the number of signals needed in the optimal signaling scheme. We apply

our methods to study a specific setting, namely binary persuasion, where the receiver has

two possible action (0 and 1), and the sender always prefers the receiver taking action 1.

Under a mild convexity assumption on the receiver’s utility and using a geometric approach,

we show that the convex program can be further reduced to a linear program. Furthermore,

this linear program yields a canonical construction of the set of signals needed in an optimal

4



signaling mechanism. In particular, this canonical set of signals only involves signals that

fully reveal the state and signals that induce uncertainty between two states. We illustrate

our results in the setting of signaling in a queueing system with customers whose utilities

depend on the variance of their waiting times.
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CHAPTER 2

OPTIMAL SIGNALING MECHANISMS IN UNOBSERVABLE QUEUES

All things come to those who wait.

Violet Fane

2.1 Introduction

In many services systems, where resources to serve users are often costly and limited, the

user experience depends on the state of the system, namely the resource availability, wait

times, the level of congestion, etc. As an example, in a call center, the wait-time until service

affects a caller’s experience. Similarly, in a ride-hailing service, the availability of drivers in

a ride-requester’s neighborhood directly influences the time until the requester begins her

ride, thereby affecting her utility. When resource availability is too low or the wait times

are high, the users in the system might prefer to not avail the service, and perhaps instead

choose an outside option. For example, if the time until the beginning of a ride is too long, a

ride-requester may instead choose to use public transport.

However, as compared to the service providers, the users of such services typically have

far less information about the system state. A call center may know the number and the

nature of other requests currently on hold, whereas such information is not available to a

caller. Similarly, in a ride-hailing service, the platform has access to the number of drivers

and their location around a ride-requester’s neighborhood, whereas the requester a priori

does not, unless informed by the platform. Without the current state information, a user may

choose to obtain service when the system is in a poor state, and experience a low quality of

service. One main goal of such systems is to minimize the occurrence of instances with poor
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quality of service, while maintaining revenue goals by providing service to a large number of

users.

A common approach towards achieving this goal is to price the service based on the

current system state. For example, in ride-hailing platforms, the price of obtaining rides often

depends on the availability of the drivers in the platform. This price provides information to

ride requesters, who may choose to not use the service if the price is too high. However, in

some settings, practical considerations may render such state-dependent pricing infeasible or

undesirable. This may be because there is no explicit price for the service being offered, or in

other cases, the variability of prices may itself act as a source of user dissatisfaction.

When state-dependent pricing is infeasible or undesirable, a service provider may instead

choose to share information about the system state directly to the users to help them decide

whether or not to avail service. For example, a call-center may choose to make anticipated

delay announcements to incoming callers to help them decide whether to stay on the line

(Armony and Maglaras 2004a). Similarly, a ride-hailing service may choose to provide

information about wait-times to help ride-requesters decide whether to hail rides. A natural

question that arises then is how to effectively share information with users to reliably ensure

they are satisfied with the service quality, while at the same time achieving revenue or profit

goals. A secondary question is to quantify how the revenue so obtained compares with that

under state-dependent pricing.

In this chapter, we study this problem of information sharing in the context of a service

system offering service at a fixed price. Customers arriving at the system must decide whether

to leave without obtaining service or to possibly join a queue to obtain service. The queue

length is observable to the service provider but unobservable to the customers. Each customer

is strategic and incurs a cost of waiting until service completion. Furthermore, the customers

are Bayesian and incorporate any information shared by the service provider into their beliefs

prior to making their decision. We consider a service provider interested in maximizing her
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expected revenue. We pose the following question in this setting: how should the service

provider share information about the queue to incentivize participation, and maximize the

expected revenue in the resulting customer equilibrium?

A central assumption in our model, as opposed to previous work (Allon et al. 2011),

is that the service provider can commit to an information sharing mechanism. Without

this commitment power, the service provider will always prefer to share (possibly false)

information that maximizes the likelihood a customer joins the queue, and consequently,

there cannot be any meaningful information transmission. On the other hand, as we show,

by committing to a prespecified mechanism for information sharing, the service provider can

credibly convey information about the state of the system.

Note that the set of all such mechanisms is quite complex. At one extreme, the service

provider may choose to fully reveal the queue length to each arriving customers. At the

other extreme, the service provider may choose not to disclose any information about the

queue length to the customers. But, in between these two extremes, there exists a multitude

of signaling mechanisms where the service provider sends a signal correlated with queue

length to the customer. Moreover, each such choice of the signaling mechanism leads to the

customers responding according to an equilibrium, and one must identify their equilibrium

strategies in order to determine the resulting expected revenue. This task further exacerbates

the complexity of identifying the optimal signaling mechanism.

The main contribution of this work is the rigorous formulation of the service providers’

decision problem, and identifying, for general waiting costs, the structure of the optimal

signaling mechanism. In particular, we show that the service provider’s decision problem can

be formulated as an infinite linear program, whose variables correspond to the steady-state

distribution of the queue under a feasible signaling mechanism. By analyzing the linear

program, we show that for any given fixed-price, there exists an optimal signaling mechanism

that uses binary signals and has a threshold structure. This structure establishes that the
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optimal amount of information sharing requires the service provider to strategically provide

ambiguous information about the queue, where the same signal is provided over a range

of values of the queue length. In particular, the optimal signaling mechanism neither fully

reveals nor fully conceals information about the system state.

We summarize our main results below.

(1) Linear programming formulation: We begin in Section 2.2 by formulating the service

provider’s decision problem as an optimization problem, where the customers’ behavior is

constrained to be in an equilibrium. In Section 2.3, we first use a revelation principle style

argument (Fudenberg and Tirole 1991, Bergemann and Morris 2018) to show that it suffices

to consider binary signaling mechanisms, where the signal the service provider sends is

either “join” or “leave”, and the customer equilibrium involves following the service provider’s

recommendation. Using this structural characterization of the set of signals, we show that the

service provider’s decision problem can be formulated as a linear program with a countable

number of variables and constraints.

(2) Optimality of threshold mechanisms: Next, by analyzing this linear program, we

establish in Section 2.4 that the optimal signaling mechanism has a threshold structure, where

the service provider sends the “join” signal if the queue length is below some threshold, and

“leave” otherwise. (In addition, at the threshold, the service provider may randomize.) We

establish this result through a perturbative analysis, where any feasible solution is perturbed

to a solution with better objective in two steps. Furthermore, in Section 2.6.1, for the special

case of linear waiting costs, we use the structural characterization of the optimal mechanism

to obtain closed-form expressions for the optimal value of the threshold for any fixed-price.

(3) Comparison of signaling with optimal state-dependent prices: Finally, in Section 2.5,

we study the service provider’s problem of setting the optimal fixed price in addition to

subsequently choosing the optimal signaling mechanism. Interestingly, we find that with the
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optimal choice of the fixed price and using the corresponding optimal signaling mechanism,

the service provider can achieve the same revenue as with the optimal state-dependent

pricing mechanism in an observable queue. (Hassin and Koshman (2017) obtain this result

independently for the special case of linear waiting costs.) This suggests that in settings

where state-dependent pricing is not feasible, the service provider can effectively use optimal

signaling to achieve revenue comparable to those under state-dependent pricing.

This chapter provides a rigorous framework for analyzing the service provider’s decision

problem in a variety of related models that incorporate (exogenous) abandonments and

customer heterogeneity, as we discuss in Sections 2.6.2 and 2.6.3. In particular, in these

models, our framework leads to analogous linear programs whose solutions determine the

optimal signaling mechanism. Our structural characterization of the optimal signaling

mechanism continues to hold under abandonments. When customers are heterogeneous and

their types are public, we show that the optimal mechanism may lack the threshold structure.

However, we prove that the threshold structure of the optimal mechanism is restored if all

customers types are charged the same price, or if the prices are set optimally.

2.1.1 Related work

Our work fits in the framework of Bayesian persuasion in a dynamic setting. Several recent

papers fit this description. Kremer et al. (2014) study a setting where a group of agents

must sequentially choose an action from a set of actions with unknown, but deterministic,

rewards; a principal observes the reward obtained by each agent and may share information

about this to the next agent in sequence, with the goal being to maximize the expected

average reward across all agents. The central tension in this setting is that agents prefer

to exploit given their information, whereas the principal seeks to balance exploration and

exploitation. Papanastasiou et al. (2017) extend this model to allow for stochastic rewards
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in an infinite-horizon, decentralized multi-armed bandit setting with discounted rewards

and characterize the optimal disclosure policy as a solution to a linear program. Mansour

et al. (2016) study a similar model (and other more general settings) and propose a bandit

algorithm that achieves asymptotically optimal regret in maximizing social welfare. Our work

differs from these papers in two aspects. First, since these papers study learning in a bandit

setting, the focus is on a transient analysis starting with exogenously specified priors. In

contrast, we perform a steady-state analysis, which leads to the customers’ prior beliefs arising

endogenously in equilibrium. Second, these papers focus on social welfare maximization,

whereas we analyze a setting where the principal seeks to maximize her own revenue. Finally,

Ely (2017) studies Bayesian persuasion in a dynamic setting where a principal provides

information about a stochastically evolving state to a myopic agent. In contrast to our work,

the state evolution here is independent of the agent’s actions.

Our work also ties into the long line of work on strategic behavior in queues in both

observable and unobservable settings. In the seminar paper, Naor (1969) studies revenue and

welfare maximizing through static pricing in an observable M/M/1 queue, where customers

strategically choose to join or leave on arrival. Edelson and Hilderbrand (1975) study static

pricing in an unobservable M/M/1 queue with strategic balking and observe that the revenue-

maximizing static price equals welfare-maximizing static price. Chen and Frank (2001) study

state-dependent pricing in an observable queue with homogeneous customers and prove that

the revenue-optimal prices also maximize the social welfare. For more detailed discussions,

see the book (Hassin and Haviv 2012), or the more recent extensive survey (Hassin 2016); in

the following, we discuss few papers closely related to our model and results.

A number of papers have analyzed service systems where strategic customers are partially

informed about system parameters and state (Burnetas and Economou 2007, Economou and

Kanta 2008a,b), and the service provider makes announcements about delay and service

quality. Armony and Maglaras (2004a) analyze a customer contact center where arriving
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customers choose among joining a queue to obtain service, leaving (never to return), and

putting a service request for a call-back. Customers receive a state-dependent anticipated

delay information before making their decision. (Armony and Maglaras (2004b) study a similar

setting without the anticipated delay announcements.) The authors analyze a many-server,

heavy-traffic regime and propose an asymptotically consistent delay announcement policy

and an asymptotically optimal routing rule. Yu et al. (2017a) perform an empirical study

on how delay announcements impact customer behavior using call-center data and observe

that delay announcements directly affect customers’ waiting costs. Cui and Veeraraghavan

(2016) consider a setting where customers in an observable queue do not know the service

parameters, such as the service rate, and have arbitrary beliefs about them. The authors

compare the effects of revealing these parameters and find situations where the announcement

of service parameters hurts consumer welfare. Pender et al. (2017, 2018) consider a setting

where customers choosing between two queues are provided delayed queue-length information

(or a moving-average of queue-lengths over a time window). They find that such information

can lead to oscillations in the two queues if the delay is beyond a critical value. Hassin and

Roet-Green (2017) study an unobservable queue where customers can obtain the queue-length

information by paying a cost of inspection. The authors prove the existence and uniqueness

of the equilibrium and study its properties for a range of inspection costs.

Our work is closely related to that of Allon et al. (2011), who consider an unobservable,

single server queueing system where homogeneous customers with linear waiting costs choose

to join or leave on arrival, after receiving a signal from the service provider. The authors

assume that the service provider sends a deterministic signal at each queue state and focus on

the setting of cheap talk, where the service provider cannot commit to the signaling mechanism.

Essentially, the authors identify equilibria for the setting where the service provider and the

customers choose their strategies simultaneously and study their properties for a range of

settings differing in the alignment of the service provider’s and the customers’ incentives. Yu

et al. (2017b) extend this model to include heterogeneous customers. In contrast to these
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papers, in our model, customers have general waiting costs, and the service provider can

commit to the signaling mechanism. In other words, our model analyzes the Stackelberg

setting where the service provider first selects (and commits to) a possibly randomized

signaling mechanism, and the customers respond knowing the signaling mechanism. Finally,

whereas they consider general objectives for the service provider, we focus on the setting

where the service provider’s goal is to maximize revenue.

Focusing on settings where the service provider has the power to commit, Hassin (1986)

compares the social welfare between an observable queue and an unobservable queue, where

customers have linear waiting costs and are charged revenue-maximizing static prices in each

instance. The author notes that social welfare may be higher in the observable setting but not

always. Guo and Zipkin (2007) study a similar setting where the service provider can commit

to one of three specific signaling mechanisms (no information, total customers in the queue,

or the exact total time needed to wait in the queue). Simhon et al. (2016) study a similar

model under a specific class of signaling mechanisms, where the service provider reveals the

queue length when it is below a threshold and reveals no information otherwise. They show

that no such signaling mechanism can strictly increase the revenue over the full-information

mechanism (in the overloaded regime) or the no-information mechanism (in the underloaded

regime). In contrast, our model and methods do not a priori restrict the class of signaling

mechanisms, and we show that typically the optimal signaling mechanism achieves strictly

higher revenue than the full-information and the no-information mechanism. Furthermore,

our analysis shows in fact that the service provider obtains higher revenue revealing the queue

length when it is large and concealing it when it is short.

Recently, Hassin and Koshman (2017) analyze the case of linear waiting costs and observe

that a threshold signaling mechanism, together with an optimal choice of the fixed price,

achieves the optimal revenue. We obtain the same result for a broader class of customer

waiting costs. Furthermore, we characterize the optimal mechanism for any exogenously
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specified fixed price.

Finally, in our results for linear waiting costs, the expression for the threshold in the

optimal signaling mechanism involves the Lambert-W function. Borgs et al. (2014) obtain

similar expressions involving the Lambert-W function for determining the optimal threshold

in an admission control problem in observable queue.

2.2 Model

Our model consists of a service provider facing a sequence of potential customers who arrive

according to a Poisson process with rate λ > 0. The service provider is capacity constrained,

and consequently, customers seeking to obtain service are put into a queue. Each customer

upon arrival must decide whether to join the queue to obtain service at a fixed price p > 0 or

to leave without obtaining service. We focus on the setting where the queue is unobservable,

i.e., the customers cannot directly see the state of the queue before deciding whether to join

or leave. On the other hand, the service provider can observe the queue and may disclose

information about its state to a customer upon her arrival.

We consider a setting where the queue is served by a single server. The service discipline

in the queue is first-in-first-out (FIFO). Each customer’s service requirement is distributed

independently and identically as an exponential distribution and, without loss of generality,

has unit mean. We restrict our attention to the setting where there is no abandonment: if

the customer joins the queue upon arrival, they remain until service completion. We discuss

different approaches to incorporate abandonment in our model in Section 2.6.2.

We make the assumption that the customers are homogeneous; we later discuss extensions

to heterogeneous customers in Section 2.6.3. In particular, we represent the expected utility

obtained by a customer upon joining the queue by a function u(X), where X denotes the

14



number of customers already in queue upon arrival of the customer. The net expected payoff

obtained by the customer upon choosing to join the queue is then given by h(X, p) , u(X)−p.

We normalize the payoff of leaving without obtaining service to zero.

We require that the function u is non-increasing in X, with u(0) > 0 and limX→∞ u(X) < 0.

The first condition implies that customers incur a cost for waiting (longer) in queue. The

latter two conditions are to avoid trivialities: the condition u(0) > 0 implies that a customer

will prefer to join an empty queue if the price is low enough, whereas the final condition

implies that for any p ≥ 0, there exists an M such that h(M, p) < 0, making the customer

prefer not joining the queue if she knows the queue length is larger than M . Given these

assumptions, we restrict the values of p to the set [0, u(0)], and for all p ≥ 0, let Mp denote

the smallest value of M for which we have h(M, p) < 0.

The arrival rate λ, the service requirement distribution, the customers’ utility function

u(·), and the fixed price p are common knowledge among the customers and the service

provider.

2.2.1 Signaling mechanism

The service provider seeks to maximize her expected revenue and has two controls to achieve

this goal: (1) the fixed price p at which the service is provided and (2) the information shared

with each arriving customer regarding the state of the queue. To formally describe the latter,

we next introduce the notion of a signaling mechanism. A signaling mechanism Σ = (S, σ)

is composed of a set S of possible signals together with a mapping1 σ : N0 × S → [0, 1],

satisfying
∑
s∈S σ(n, s) = 1 for each n ∈ N0. We interpret the mapping σ as follows: when

a customer arrives to the system with X customers already in queue, the service provider

sends a signal s ∈ S to the arriving customer with probability σ(X, s).

1Here, and in the sequel, we let N0 denote the set of non-negative integers.
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To illustrate our definition, we briefly discuss two natural signaling mechanisms that have

been analyzed in the literature and serve as extreme benchmarks for comparison:

1. No-information mechanism: At one extreme, we have the no-information mechanism,

where the service provider reveals no information about the queue state to arriving

customers. This setting can be represented by a signaling mechanism Σ = (S, σ), where

S = {∅} and σ(n, ∅) = 1 for each n ≥ 0. Edelson and Hilderbrand (1975) consider

revenue maximization in unobservable queues (without any possibility of signaling).

2. Fully revealing mechanism: At the other extreme, we consider the fully-revealing

mechanism, where the state of the queue is completely revealed to arriving customers.

This setting can be represented in our model by a signal set S = N0, and σ(n, s) = 1

if s = n and 0 otherwise. The seminal paper by Naor (1969) studies the problem of

revenue maximization in observable queues with strategic customers.

We assume that the service provider can commit to the signaling mechanism publicly,

and that the signaling mechanism Σ = (S, σ) is common knowledge among the customers.

2.2.2 Customer equilibrium

The customers are strategic and Bayesian, and seek to maximize their total expected payoff

given their beliefs. Given a signaling mechanism Σ = (S, σ), a pure strategy for a customer

is a function f : S → A = {0, 1}, that specifies, for each possible signal s ∈ S, an action

f(s) ∈ {0, 1}, where 1 denotes the action of joining the queue and 0 denotes the action

of leaving without obtaining service. Similarly, a mixed strategy is specified by a function

f : S → [0, 1], where f(s) ∈ [0, 1] denotes the probability that the customer will join the

queue upon observing a signal s ∈ S.
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Recall that the service provider publicly commits to a signaling mechanism and seeks

to maximize the expected revenue resulting from the customers’ response. We model the

customers’ response as arising endogenously from an equilibrium. More precisely, we focus on

the setting of a symmetric equilibrium where all customers follow the same (mixed) strategy.

This is a mild assumption; in equilibrium, the customers’ actions could possibly differ only

at those signals under which they are indifferent between joining and leaving. To define

the equilibrium notion, we consider a customer’s decision problem when all other customers

follow a given strategy.

Since customers are Bayesian, to describe a customer’s decision problem, we must describe

her beliefs. In particular, it is sufficient to describe the customer’s prior belief about the

state of the queue upon her arrival before receiving a signal from the service provider. (The

customer’s posterior belief after receiving a signal from the service provider is obtained

via Bayes’ rule.) Note that these prior beliefs are determined endogenously since the state

of the queue upon a customer’s arrival is dependent on the actions of all customers who

arrived earlier. Since customer arrival is Poisson, using the PASTA property (Wolff 1982),

we conclude that a customer upon arrival would see the queue in steady state. Consequently,

in equilibrium, a customer’s prior belief about the state of the queue must equal the queue’s

steady-state distribution.

Formally, given that all customers follow a strategy f and the service provider implements

a signaling mechanism Σ = (S, σ), the queue evolves as a continuous time birth-death chain

whose transition probabilities depend on f and σ. In particular, given there are n customers

already in queue, a new customer enters the queue at rate λ
∑
s∈S σ(n, s)f(s), whereas a

customer in service leaves the queue at rate 1. We restrict our attention to those customer

strategies f for which the queue is stable2. Let π∞(Σ, f) denote the steady state distribution

of the queue under the signaling mechanism Σ and customers’ strategies f . For notational

2We note that in any equilibrium (as defined below), the queue will be stable.
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brevity, when the context is clear, we drop the explicit dependence on Σ and f to denote

the steady state distribution by π∞, and we let X∞ denote a random variable distributed

independently as π∞.

Upon arrival, a customer’s prior belief about the state of the queue is given by π∞. Thus,

after observing a signal s, the customer’s expected payoff is given by EΣ,f [h(X∞, p)|s], where

EΣ,f [·|s] denotes expectation with respect to the customers’ posterior beliefs conditional on

the signaling mechanism Σ, the strategy f , and the observed signal s. From this expression,

we conclude that the customer’s optimal action is to join the queue if EΣ,f [h(X∞, p)|s] > 0,

to leave if EΣ,f [h(X∞, p)|s] < 0, and any mixed action if EΣ,f [h(X∞, p)|s] = 0. This leads to

the following definition of a customer equilibrium:

Definition 2.1. Given a price p and a signaling mechanism Σ, a customer equilibrium is a

strategy f satisfying for each s ∈ S,

f(s) =





1 if EΣ,f [h(X∞, p)|s] > 0;

0 if EΣ,f [h(X∞, p)|s] < 0,

(2.1)

and f(s) ∈ [0, 1] otherwise.

To illustrate, consider the setting where the customers’ utility is linear u(X) = 1−c(X+1)

for some c ∈ (0, 1) and let p ∈ [0, 1 − c]. Under the fully-revealing mechanism, the equilibrium

strategy is trivially given by f(s) = 1 if s < 1−c−p
c

and 0 if s > 1−c−p
c

. (If 1−c−p
c

∈ N0,

then f((1 − c− p)/c) can take any value between 0 and 1.) On the other hand, under the

no-information mechanism, the customer equilibrium strategy f can be computed to be

f(∅) = min{ 1
λ
(1 − c

1−p
), 1}. (See Appendix A.2 for the details.)
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2.2.3 Service provider’s decision problem

Having defined the customer equilibrium, we are now ready to formally specify the service

provider’s decision problem. For a choice of the fixed price p and the signaling mechanism Σ,

consider a customer equilibrium f . In steady state, the queue throughput is given by

Th(Σ, f) , EΣ,f

[
λ
∑

s∈S

σ(X∞, s)f(s)

]
= λ

∞∑

n=0

π∞(n)
∑

s∈S

σ(n, s)f(s).

The preceding equation follows from the fact that customers are arriving according to a

Poisson process with rate λ and, upon arrival, see the queue in steady state. In steady

state, the number of customers already in queue is n with probability π∞(n), in which case

the service provider sends a signal s ∈ S with probability σ(n, s) and the customer joins

the queue with probability f(s). (Note that although the throughput Th(Σ, f) does not

depend on the price p explicitly, there is an implicit dependence on p through the customer

equilibrium f .) Thus, the service provider’s expected revenue in equilibrium is given by

R(p,Σ, f) , p · Th(Σ, f).

The service provider’s decision problem is then to choose a fixed price p and a signaling

mechanism Σ in order to maximize her expected revenue in the resulting customer equilibrium3

f :

max
p

max
Σ

R(p,Σ, f) subject to f satisfying (2.1). (2.2)

Our main goal is to determine the optimal fixed price and to characterize the optimal signaling

mechanism (if they exist) for the decision problem (2.2). As a first step in our analysis, we

begin by studying the inner maximization problem, where the service provider seeks to choose

an optimal signaling mechanism for a given (exogenously specified) fixed price p. For a given

3Note that in this formulation, we have ignored the possibility of the existence of multiple equilibria under
a signaling mechanism. The right formulation would require that the service provider chooses, in addition to
the signaling mechanism, a focal equilibrium f among all possible equilibria. Our results continue to hold
under this formulation; we suppress the technical details for brevity and readability.
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price, the service provider’s problem can be equivalently cast as as throughput maximization

problem, as specified below:

max
Σ

Th(Σ, f) subject to f satisfying (2.1). (2.3)

Subsequently, in Section 2.5, we address the problem of determining the optimal fixed price p.

2.3 Characterization of the signal space

There are two main difficulties in analyzing the decision problem (2.3). First, the space of

possible signaling mechanisms is quite large. In particular, we have imposed no restrictions on

the set S. To make any progress, we must obtain some characterization of the set of possible

signals that an optimal signaling mechanism might use. Second, given a particular signaling

mechanism, one must characterize the customer equilibrium fσ. This involves solving for a

fixed point of an operator implicitly defined by (2.1), and for a general signaling mechanism,

this could be a difficult problem. Hence, we first address these difficulties.

2.3.1 Equilibrium characterization

Towards the goal of characterizing the set of signals in an optimal signaling mechanism,

we start by defining the notion of equivalence between two mechanisms and the respective

customer equilibria.

Definition 2.2. We say two signaling mechanisms Σi = (Si, σi) and corresponding customer

equilibria fi, for i = 1, 2 are equivalent if they induce the same steady-state distribution, i.e.,

if π∞(Σ1, f1) = π∞(Σ2, f2).

We have the following lemma that states that it suffices to consider signaling mechanisms

where the resulting customer equilibrium is pure. We provide the proof in Appendix A.1.
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Lemma 2.1. For any fixed price p, given a signaling mechanism Σ = (S, σ) and a customer

equilibrium f , there exists a signaling mechanism Σ1 = (S1, σ1) with customer equilibrium f1

such that (1) (Σ1, f1) is equivalent to (Σ, f), and (2) f1 is a pure strategy.

Using the preceding lemma, we can further restrict the class of signaling mechanisms and

customer equilibria to consider. We have the following lemma that states that it is enough

for the service provider to consider mechanisms with binary signals with a specific customer

equilibrium. The proof of the lemma uses a revelation-principle style argument (Fudenberg

and Tirole 1991, Bergemann and Morris 2018); we include the proof in Appendix A.1 for the

sake of completeness.

Lemma 2.2. For any fixed price p, given a signaling mechanism Σ = (S, σ) and a customer

equilibrium f , there exists an equivalent signaling mechanism Σ1 = (S1, σ1) and customer

equilibrium f1, where S1 = {0, 1} and f1(s) = s for s ∈ S1.

Summing up the preceding two lemmas, we conclude that in order to determine an

optimal signaling mechanism, it is sufficient to consider signaling mechanisms Σ = (S, σ)

where S = {0, 1}, and for which, the customer equilibrium is given by f(s) = s for s ∈ {0, 1}.

In other words, in the optimal signaling mechanism, the service provider sends a binary signal

( “join” or “leave”) depending on the queue length, and in the resulting equilibrium, each

customer finds it optimal to follow the recommendation. We refer to this customer strategy

as the obedient strategy (Bergemann and Morris 2016a, 2018) and the resulting equilibrium

to be the obedient equilibrium.

Given this reduction, the service provider’s decision problem, for any fixed price p, simplifies

to identifying a mapping σ : N0 ×{0, 1} → [0, 1] (with the restriction that σ(n, 0) = 1−σ(n, 1)
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for each n ∈ N0) that maximizes the throughput:

max
σ

Eσ[λσ(X∞, 1)]

subject to, Eσ[h(X∞, p)|s = 1] ≥ 0,

Eσ[h(X∞, p)|s = 0] ≤ 0.

(2.4)

Here, the two inequalities impose the requirement that the customers find obedience to be

optimal: when the signal s = i is revealed to a customer, choosing action i is indeed an

optimal action for her. We thus refer to the two constraints as obedience constraints. Note

that, since we focus on the obedient equilibrium for the customers, and the signal space is

fixed to be S = {0, 1}, we simplify the notation and denote the expectation by Eσ.

2.3.2 LP formulation

Observe that the preceding optimization problem (2.4) is quite complex: in addition to

having an infinite number of variables {σ(n, i) : n ≥ 0, i = 0, 1}, the constraints are highly

non-linear. This non-linearity implies that optimizing directly would be difficult. In this

section, we provide a reformulation of (2.4) as a linear program. This reformulation paves the

way for analyzing the service provider’s decision problem and for characterizing the structure

of the optimal mechanism.

The main insight behind the reformulation is that instead of optimizing over the signaling

mechanism σ, one can optimize directly over the resulting steady state distribution πσ∞. By

doing so, the preceding non-linear optimization problem simplifies to the following linear

22



program in {πσ∞(n) : n ≥ 0}, albeit with a countable number of variables and constraints:

max
π

∞∑

n=1

πn

subject to,
∞∑

n=1

πnh(n− 1, p) ≥ 0 (2.5a)

∞∑

n=0

h(n, p) (λπn − πn+1) ≤ 0 (2.5b)

λπn − πn+1 ≥ 0, for all n ≥ 0 (2.5c)

∞∑

i=0

πi = 1, πn ≥ 0, for all n ≥ 0.

To obtain this linear program, we first write the expectations in the obedience constraints

of (2.4) as linear functions of the steady state distribution. The constraints (2.5c) are

obtained from the detailed balance conditions πσ∞(n)λσ(n, 1) = πσ∞(n + 1) and using the

fact that σ(n, 1) ∈ [0, 1] for each n ∈ N0. We have the following lemma that relates the two

optimization problems:

Lemma 2.3. For every signaling mechanism σ : N0 × {0, 1} → [0, 1] feasible for (2.4), there

exists a feasible solution {πn : n ≥ 0} to (2.5) with the same objective value. Conversely, let

{πn : n ≥ 0} be feasible for (2.5). Then the signaling mechanism σ : N0 × {0, 1} → [0, 1],

defined as σ(n, 1) = πn+1

λπn
if πn > 0 and σ(n, 1) = 0 otherwise, is feasible for (2.4) and has

the same objective value.

The preceding lemma not only allows us to optimize over the steady state distribution

{πn : n ≥ 0}, but also provides a rule to determine σ(n, 1) from the optimal solution and

hence recover the signaling mechanism. The proof of this lemma is given in Appendix A.1.

With this reformulation of the service provider’s problem, we are now ready to identify an

optimal mechanism.
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2.4 Structure of Optimal Mechanism

Note that the signaling mechanism still has to determine which binary signal to send at each

queue length. In the following, we show that this problem has a simple structure. Towards

that end, we introduce below the class of threshold mechanisms.

Definition 2.3. We define a threshold mechanism σx : N0 ×{0, 1} → [0, 1] for x ∈ R+ ∪{∞}

as follows: For x ∈ R+ we have

σx(n, 1) ,





1 if n < ⌊x⌋;

x− ⌊x⌋ if n = ⌊x⌋;

0 otherwise,

Also, we define σ∞(n, 1) = 1 for all n ≥ 0.

With this definition in place, we have our first main result:

Theorem 2.1. For any fixed price p, there exists a threshold mechanism σx with x ∈ R+∪{∞}

and x ≥ Mp that achieves the optimal revenue.

Proof. The proof of the theorem involves three steps. First, analyzing the constraints of the

linear program (2.5), we show that the optimal signaling mechanism would signal a customer

to join the queue if she would have joined under full-information. With this structure in

place, we then show that any feasible solution that does not have a threshold structure can be

perturbed to obtain another feasible solution corresponding to a threshold mechanism with

equal or higher throughput. Finally, in Lemma A.1, we show that the set of feasible solutions

corresponding to threshold mechanisms forms a compact set under the weak topology. Since

the objective of the linear program (2.5) is continuous under the weak topology, we conclude

that an optimal signaling mechanism with a threshold structure must exist.
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Recall that Mp ∈ N is defined such that h(Mp − 1, p) ≥ 0 and h(Mp, p) < 0. Consider

any feasible solution {πn : n ≥ 0} to the linear program (2.5). We first show that we can

construct another feasible solution with weakly higher throughput by ensuring the (2.5c)

constraints are tight for all n ≤ Mp. Towards that end, we define {π̂n : n ≥ 0} by setting

π̂n =





1
Z
π0λ

n for n ≤ Mp;

1
Z
πn for n > Mp,

where Z , π0
∑Mp

i=0 λ
i +

∑∞
i=Mp+1 πi > 0 is the normalizing constant to ensure

∑∞
n=0 π̂n = 1.

We first show that π̂ is feasible for (2.5). From the feasibility of {πn : n ≥ 0}, it

is straightforward to show that the constraints (2.5c) continue to hold for {π̂n : n ≥ 0}.

Furthermore, we obtain that πn ≤ π0λ
n for all n ≥ 0, and hence π̂n ≥ πn/Z for all n < Mp.

Since h(n− 1, p) ≥ 0 for all n ≤ Mp, this implies that {π̂n : n ≥ 0} continues to satisfy the

obedience constraint (2.5a). To show that π̂ is a feasible solution, it remains to verify that

(2.5b) holds. For this step, note that we have

∞∑

n=0

h(n, p)(λπ̂n − π̂n+1) =
Mp−1∑

n=0

h(n, p)(λπ̂n − π̂n+1) +
∞∑

n=Mp

h(n, p)(λπ̂n − π̂n+1)

= 0 +
∞∑

n=Mp

h(n, p)(λπ̂n − π̂n+1)

≤ 0.

Here, the second equality follows from the definition of π̂ and the inequality follows from the

fact that h(n, p) < 0 for each n ≥ Mp and that π̂ satisfies (2.5c). This proves the feasibility

of π̂.

The difference between the objective values for the two solutions is given by

∞∑

n=1

π̂n −
∞∑

n=1

πn = π0 − π̂0 = π0

(
1 − 1

Z

)
.

Now, since πn ≤ π0λ
n for all n, we obtain that Z = π0

∑Mp

i=0 λ
i +

∑∞
i=Mp+1 πi ≥ ∑∞

n=0 πn = 1.

This implies that the objective value of π̂ is at least that of π. Furthermore, unless πn = λnπ0
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for all n ≤ Mp, we obtain Z > 1, implying that the objective value of π̂ is strictly greater than

that of π. From this, we conclude that in any optimal solution π, we must have πi = λiπ0 for

i ≤ Mp. Henceforth, we restrict ourselves to feasible solutions π satisfying this property.

Consider now a feasible solution π = {πn : n ≥ 0} such that there exists an N > Mp with

πn = λnπ0 for all n < N , 0 < πN < λπN−1 and πN+1 > 0. We consider a perturbation of this

feasible solution and show that it remains feasible and attains the same objective value as

the original feasible solution. Toward this goal, define π̃ = {π̃n : n ≥ 0} as follows

π̃n =





πn for n < N ;

πN + β
∑
i>N πi for n = N ;

(1 − β)πn for n > N ,

for some β ∈ (0, 1] to be chosen later. By construction, the LP objective for π̃ is same as that

for π, and hence it suffices to show that π̃ is feasible. Note that π̃n ≥ 0 and
∑∞
n=0 π̃n = 1, so

π̃ is a valid distribution. Thus, for π̃ to be feasible, we need (2.5a), (2.5b) and (2.5c) to hold.

First, observe that

∞∑

n=1

π̃nh(n− 1, p) −
∞∑

n=1

πnh(n− 1, p) = β
∑

n>N

πnh(N − 1, p) − β
∑

n>N

πnh(n− 1, p)

= h(N − 1, p)β

(∑

n>N

πn

(
1 − h(n− 1, p)

h(N − 1, p)

))

≥ 0.

The inequality follows from the fact that since N > Mp, we have h(N − 1, p) ≤ h(Mp, p) < 0,

and the fact that since h(n, p) is non-increasing in n, we have h(n− 1, p)/h(N − 1, p) ≥ 1 for

n > N . Since π is feasible for the LP, this implies that π̃ satisfies the constraint (2.5a) for all

β ∈ (0, 1].

Next, note that since π̃n+1 = λπ̃n for all n < Mp < N , we obtain that
∑∞
n=0 h(n, p)(λπ̃n −

π̃n+1) =
∑∞
n=Mp

h(n, p)(λπ̃n − π̃n+1). Since h(n, p) < 0 for all n ≥ Mp, the latter expression is

26



non-positive, and (2.5b) holds, if λπ̃n − π̃n+1 ≥ 0 for all n, i.e., if π̃ satisfies (2.5c). Finally, it

is straightforward to verify that π̃ satisfies (2.5c) for all n ≥ 0 if it is satisfied for n = N − 1,

i.e., if λπ̃N−1 − π̃N ≥ 0. For this condition to hold, we need λπN−1 ≥ πN + β
∑
i>N πi, which

holds for any β ∈ (0, 1] satisfying 0 < β ≤ (λπN−1 − πN)/
∑
i>N πi. So, for any such value of

β, we obtain that π̃ is feasible for the linear program.

Note that if (λπN−1 − πN )/
∑
i>N πi ≥ 1, then choosing β = 1 yields π̃n = 0 for all n > N .

On the other hand, if (λπN−1 − πN )/
∑
i>N πi < 1, then choosing β = (λπN−1 − πN )/

∑
i>N πi

yields λπ̃N−1 − π̃N = 0. Thus, we obtain that any {πn : n ≥ 0}, where πn = λnπ0 for all

n < N , 0 < πN < λπN−1 and πN+1 > 0 for some N > Mp, can be perturbed appropriately to

obtain a feasible solution π̃ with equal objective and satisfying either (1) π̃n = λnπ̃0 for all

n < N , 0 < π̃N ≤ λπ̃N−1, and π̃n = 0 for all n > N or (2) π̃n = λnπ̃0 for all n ≤ N . In the

latter case, if 0 < π̃N+1 < λπ̃N , one can perturb π̃ analogously. By induction, this implies

that if the LP optimum is attained, then it is attained by a feasible solution {πn : n ≥ 0} for

which there exists an N ≥ Mp with πn = λnπ0 for all n < N , 0 < πN ≤ λπN−1 and πn = 0 for

all n > N . (Here, N could be infinite.) Hence, we restrict our attention to feasible solutions

of this form.

In Lemma A.1, we show that the set of all such feasible distributions is compact (under the

weak topology). Since the objective is a continuous function of the steady state distribution,

we obtain that an optimal solution of this form exists.

Summarizing, there exists an optimal solution {πn : n ≥ 0} to the LP (2.5) for which there

exists an N ≥ Mp (possibly infinity) such that πn = λnπ0 for all n < N , 0 < πN ≤ λπN−1

and πn = 0 for all n > N . Finally, using Lemma 2.3, this implies that there exists an optimal

signaling mechanism σ for which there exists an N ≥ Mp and a q = πN/(λπN−1) ∈ [0, 1] such

that σ(n, 1) = 1 for all n < N , σ(N, 1) = q and σ(n, 1) = 0 for all n > N . If N = ∞, we

obtain that the mechanism σ = σ∞ is optimal. Otherwise, we obtain that σN+q is an optimal

signaling mechanism. �
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The preceding theorem has an important practical implication: the optimal signaling

mechanism is easy to describe and implement. More precisely, our analysis assumes that the

service provider can publicly announce and commit to a signaling mechanism. Given that

signaling mechanisms are arbitrary mappings over the set of all non-negative integers, this is

a strong assumption for general signaling mechanisms. However, the structure of the optimal

signaling mechanism renders this assumption innocuous. In particular, the service provider

can easily implement the signaling mechanism σx by announcing a priori the value N = ⌊x⌋

below which customers will be deterministically recommended to join the queue, and the

probability q = x− ⌊x⌋ with which they will be recommended to join when the queue length

is exactly N .

We note that our proof implies that in any optimal signaling mechanism (not necessarily

threshold), no customer would be told to leave if they would have joined under full information.

This follows from the fact in any optimal solution π to (2.5), we have πn+1 = λπn for all

n < Mp. Notice that whenever a customer is told to leave, they know the length of the queue

is more than Mp and joining will get them negative utility. This is similar to the results of

Kamenica and Gentzkow (2011) where they showed that in an optimal persuasion mechanism,

whenever an agent is told to take the principal’s least-preferred action, the agent knows with

certainty that it is in her best interest.

2.5 Optimal pricing and signaling

Having determined the structure of the optimal signaling mechanism for any fixed price p,

we next investigate the service provider’s decision problem of how to set p optimally in order

to maximize her revenue.

In order to understand this problem, consider first as a detour the case of optimal state-
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dependent pricing in a fully-observable queue. More precisely, consider the setting where

the arriving customers can observe the queue-length, but the service provider is allowed

to charge them a price dependent on the queue-length. This setting of dynamic pricing

serves as a natural benchmark against which we compare the revenue obtained under the

optimal fixed-price and signaling mechanism. Surprisingly, we find that setting the fixed price

optimally along with using an optimal signaling mechanism suffices to achieve the optimal

revenue in the observable setting. We have the following main theorem.

Theorem 2.2. With the optimal value of the fixed price p and the corresponding optimal

signaling mechanism, the service provider obtains the same revenue as under optimal state-

dependent prices in a fully observable queue.

Before we state the proof, we note an important practical implication of this result. In

many settings, state-dependent pricing is infeasible, either due to operational reasons, such

as price stickiness arising out of menu costs associated with changing prices (Sheshinski and

Weiss 1977), or due to exogenous reasons such maintaining customer expectations about the

price of service (Kalwani et al. 1990). In such settings, however, it may be feasible to make

recommendations to customers based on the state of the system. Our result states that in

such settings, as long as the fixed-price is chosen optimally, the service provider can effectively

use signaling to guarantee the same optimal revenue as with optimal state-dependent pricing.

Proof of Theorem 2.2. Let the optimal state-dependent pricing mechanism set a price p(n)

for service to an arriving customer when the number of customers already in queue is n.

Under our assumption of non-increasing utilities, the prices {p(n) : n ≥ 0} can be shown to

have the following form (Chen and Frank 2001): up to a threshold of the queue length, the

service provider sets prices that extract out all the surplus of the incoming customer, making

those customers indifferent between joining and leaving; beyond this threshold, the service

provider sets a large price, essentially denying entry to any incoming customers. Formally,
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the optimal prices satisfy p(n) = u(n) for all n < κ and p(n) = ∞ for all n ≥ κ, for an

appropriately chosen κ > 0. Let πκ∞ denote the steady state distribution of the queue under

this pricing policy, and let Xκ
∞ denote an (independent) random variable distributed as πκ∞.

Note that under optimal state-dependent prices, the service provider’s expected revenue is

given by λE [I{Xκ
∞ < κ}p(Xκ

∞)] = λE [I{Xκ
∞ < κ}u(Xκ

∞)].

Now, for the setting of an unobservable queue, consider the fixed price p̂ ,

E [u(Xκ
∞)|Xκ

∞ < κ], and threshold signaling mechanism σκ, i.e., the service provider sends

signal 1 (or “join”) if the queue length is strictly less than κ, and 0 (or “leave”) otherwise.

We claim that with this choice of fixed price p̂ and the signaling mechanism σκ, the service

provider achieves the same expected revenue in the obedient equilibrium as under the optimal

state-dependent mechanism.

We start by showing that under the fixed price p̂ and the threshold signaling mechanism

σκ, the obedient strategy forms a customer equilibrium. To see this, observe that if all

customers follow the recommendation, the steady state distribution of the queue-length is

indeed given by πκ∞. By an abuse of notation, we let Xκ
∞ denote the queue-length upon a

particular customer’s arrival. Thus, the expected payoff to the customer for joining the queue

upon receiving the signal s = 1 is given by

E[h(Xκ
∞, p̂)|s = 1] = E[u(Xκ

∞)|s = 1] − p̂ = E[u(Xκ
∞)|Xκ

∞ < κ] − p̂ = 0,

where the second equality follows from the fact that the signaling mechanism σk sends signal

s = 1 if and only if Xκ
∞ < κ. This implies that the resulting steady state distribution satisfies

the first obedience constraint (2.5a). Similarly, the expected payoff to the customer upon

receiving the signal s = 0 is given by

E[h(Xκ
∞, p̂)|s = 0] = E[u(Xκ

∞)|s = 0] − p̂ = u(κ) − p̂ = u(κ) − E[u(Xκ
∞)|Xκ

∞ < κ] ≤ 0,

where the second equality follows from the fact under the steady state the signaling mechanism

sends signal s = 0 if and only if Xκ
∞ = κ, the third equality from the definition of p̂, and the
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inequality holds because u is non-increasing. This implies that the resulting steady state

distribution satisfies the second obedience constraint (2.5b).

Next, observe that the service provider’s expected revenue is given by

λE[σ(Xκ
∞, 1)p̂] = λE [I{Xκ

∞ < κ}p̂] = λE [I{Xκ
∞ < κ} E [u(Xκ

∞)|Xκ
∞ < κ]] = λE [I{Xκ

∞ < κ}u(Xκ
∞)] ,

where the last equality follows from the tower property of conditional expectation. Thus,

we observe that the service provider’s expected revenue is same as that of the optimal

state-dependent pricing mechanism.

Finally, with homogeneous customers, the optimal state-dependent pricing mechanism is

welfare-maximizing (Chen and Frank 2001) with zero customer surplus. Since the optimal

fixed price p̂ and the signaling mechanism σκ achieve this revenue, these values must be

optimal. Thus, we obtain that with the optimal choice of the fixed price and the corresponding

optimal signaling mechanism, the service provider obtains the same revenue as the optimal

state-dependent prices. �

The preceding theorem leads to a natural question: can the service provider increase her

revenue in an unobservable queue through a combination of signaling and pricing? Under

such a mechanism, customers not only receive information about the queue state from the

signal but also from the price. Despite this generality, our result already implies that such

mechanisms cannot improve the revenue. This follows from the fact that, in a fully observable

queue, the optimal state-dependent pricing mechanism is welfare-maximizing and has zero

customer surplus (Chen and Frank 2001). Since customer surplus in any mechanism must be

non-negative, there cannot be any combination of signaling and pricing that achieves strictly

higher revenue than the optimal state-dependent pricing mechanism (or the optimal signaling

mechanism with an optimal fixed-price). However, there exist many mechanisms that achieve

this optimal revenue through a combination of signaling and pricing. Specifically, given any

partition of the set of queue-lengths for which a customer joins under the state-dependent
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pricing mechanism, one can construct a combined signaling-and-pricing mechanism that

achieves the optimal revenue: such a mechanism would reveal to an arriving customer which

set of the partition the queue-length lies in, and charge them the expected utility conditioned

on the queue-length being in that set. Furthermore, as long the prices for different sets of

the partition are different, the prices can themselves act as signals. This discussion suggests

that, in an unobservable queue, the service provider has a flexibility in choosing the number

of prices while optimizing her revenue.

2.6 Extensions

In this section, we discuss a few extensions to our results and our model. First, for the special

case where the customers utility is linear in time spent in queue, we obtain a closed-form

expression for the threshold in the optimal signaling mechanism as a function of the fixed-price

p. Subsequently, we discuss how our model can be extended to include abandonment and

customer heterogeneity.

2.6.1 Linear utility

A commonly studied model for customer utility is one where the customer receives a fixed

value V > 0 from service, and incurs a disutility that is proportional to the time spent while

waiting until service completion.(Naor 1969, Allon et al. 2011, Borgs et al. 2014) Since we

assume that the customers’ service requirements are homogeneous and have unit mean, this

assumption implies that the customer utility u(·) is given by u(X) = V − c(X + 1) for all

X ≥ 0, for some value of c > 0 that denotes the disutility per unit time of waiting. For this

utility model, Theorem 2.1 implies that the linear program 2.5 can be analytically solved,

resulting in a closed-form expression for the threshold in the optimal signaling policy.
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To state our results, we assume, without loss of generality, that V = 1, and, to avoid

trivialities, we let c ∈ (0, 1). Furthermore, let W0(·) and W−1(·) denote the two real branches

of the Lambert-W function, defined as the set of functions that are the inverse of f(X) = XeX .

(See Borgs et al. (2014) for a detailed description.) We have the following theorem.

Theorem 2.3. Suppose u(n) = 1 − c(n+ 1) with c ∈ (0, 1). Then, for each p ∈ [0, 1 − c], the

threshold mechanism σx is optimal for x = N + q, where

N =





⌊
2(1−p)

c
− 1

⌋
if λ = 1;

∞ if λ ≤ 1 − c
1−p

;

⌊
1

log(λ)
(Wi (−κe−κ) + κ)

⌋
otherwise,

with κ =
(

1−p
c

− 1
1−λ

)
log(λ) and where i = 0 when λ > 1 and i = −1 when 1 − c

1−p
< λ < 1.

For all values of λ < ∞, we have

q =

∑
k<N λ

k(1 − p− c(k + 1))

λN(c(N + 1) + p− 1)
∈ [0, 1].

The proof involves first showing that the throughput is increasing in the threshold as long

as the obedient strategy is a customer equilibrium for the corresponding threshold mechanism.

Then, using the equilibrium conditions for the obedient equilibrium, we obtain bounds on

the optimal thresholds. We provide the full details in Appendix A.1.1.

Using this closed form expression, we numerically compare the optimal signaling mechanism

against those of fully-revealing and no-information mechanisms. In Figure 2.1a, we plot

the revenue of the optimal mechanism, along with those of the fully-revealing and the no-

information mechanisms for a range of values of λ, when the customer utility is given by

u(X) = 1 − c(X + 1) with c = 0.2 under a fixed price p = 0.3. As λ increases, the revenue of

the fully-revealing mechanism and the optimal mechanism both converge to 0.3, the value

when throughput is equal to 1; however, for any fixed λ, the optimal mechanism outperforms

the others. Note that, for small arrival rates, the no-information mechanism outperforms
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(a) Revenue for c = 0.2 and p = 0.3.
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(b) Revenue for λ = 0.7 and p = 0.3.
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(c) Optimal revenue for c = 0.2.
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(d) Optimal revenue for λ = 0.7.

Figure 2.1: Comparison of the optimal, the fully-revealing, and the no-information mecha-
nisms.

the fully-revealing one; this is consistent with existing results (Simhon et al. 2016), as in

this region, under no-information mechanism, all customers join the queue, whereas under

fully-revealing mechanism, some customers will not join upon seeing a long queue.

Next, we consider the effect of changing c while fixing the values of the arrival rate

(λ = 0.7) and the fixed-price (p = 0.3) in Figure 2.1b. Notice the revenue for the fully-

revealing mechanism is discontinuous: this is because under full-information, customers join

the queue only if the queue length is strictly less than 1−p−c
c

, implying that the customer

strategy is discontinuous in c. For low values of c, the revenue of the no-information and

the optimal mechanism are both equal to pλ = 0.21, the maximal value, since all customers
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join the queue. As c increases, the revenue of the no-information mechanism goes to zero,

whereas the revenue of fully-revealing and the optimal mechanism goes to 0.4, which arises

when the customers only join the queue if it is empty when they arrive.

Finally, in Figures 2.1c and 2.1d, we compare the revenue under the optimal mechanism

against the revenue of the no-information and the fully-revealing mechanisms, where under

each setting we set the fixed-price optimally. In particular, in Figure 2.1c, we fix c = 0.2 and

vary λ, whereas in Figure 2.1d, we fix λ = 0.7 and vary c. We see that the no-information

outperforms the fully-revealing information for low values of the arrival rate λ, for a given c.

As λ increases, we observe that the revenue of the optimal and the fully-revealing mechanisms

converge, while the no-information mechanism’s revenue is much lower. Similarly, for a

fixed arrival rate, we see that optimal signaling is effective in increasing revenue over the no-

information and the fully-revealing mechanisms for moderate values of c, i.e., when customers

incur moderate disutility for waiting.

2.6.2 Abandonment

Our model assumes that the customers who choose to join the queue stay in queue until

service completion. In many settings, this modeling assumption is unrealistic, and one must

explicitly account for customer abandonment. A standard approach (Garnett et al. 2002)

to incorporate customer abandonment is by modeling each arriving customer to have an

independent and exogenously specified patience time τ , and assuming that the customer will

abandon the queue if she is still waiting to be served at time τ after joining the queue.

Consider the setting where customers’ patience times are distributed independently and

identically as an exponential distribution with rate γ. It is straightforward to show that our

results continue to hold in this setting. Formally, as before, let h(n, p) denote a customers’

payoff upon joining the queue with n customers already in queue, and the fixed price is p.
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(Note that unlike in our original model, this payoff function now incorporates the fact that

the customer may leave without obtaining service.) Then, by a similar argument as before,

the service provider’s decision problem can be written as the following linear program:

max
π

∞∑

n=1

πn

subject to,
∞∑

n=0

(1 + γn)πn+1h(n, p) ≥ 0,

∞∑

n=0

(λπn − (1 + γn)πn+1)h(n, p) ≤ 0,

λπn − (1 + γn)πn+1 ≥ 0, for all n ≥ 0,

∞∑

n=0

πn = 1, πn ≥ 0, for all n ≥ 0.

(Here, we assume that once a customer is in service, she would not abandon the queue;

without this assumption, one obtains a slightly modified linear program.) From each feasible

solution π to this linear program, one can obtain the corresponding signaling mechanism σ

as σ(n, 1) = (1+γn)πn+1

λπn
. For this setting, a similar analysis of the preceding linear program

establishes Theorem 2.1 under same monotonicity conditions on the payoff function h.

Note however that the preceding model assumes that the customers only choose to

abandon the queue when their patience runs out, and never before. When the queue is

observable and the service time distributions are known, this is a fairly mild assumption,

since a customer does not learn new information about her waiting time while she waits in

the queue. However, in an unobservable queue, this assumption is strong and will in fact

not be followed by a fully rational customer. In particular, a rational customer may find it

optimal to abandon the queue before her patience runs out. This is because, since the time

spent waiting in queue provides further information to a customer regarding the queue length,

it is rational for a customer to abandon the queue if she believes that her waiting might

be larger than her remaining patience. Modeling the abandonment decision endogenously

is challenging even in models without signaling (Ata and Peng 2017, Ata et al. 2017), and

incorporating signaling in such models is an interesting direction for future work.
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2.6.3 Heterogeneous types

Another assumption of our model is that the customers are homogeneous. Our model can

be naturally extended to allow for customer heterogeneity in the form of different utility for

joining the queue. Formally, suppose there are K possible customer types i ∈ {1, · · · , K},

where the arrival rate of customers of type i is given by λi. Suppose also that the service

provider observes the type of a customer upon her arrival, and charges a customer of type i a

fixed-price pi for obtaining service. Let
∑K
i=1 λi = Λ. Denote the expected payoff for a customer

of type i upon joining the queue with X customers already in queue as hi(X, pi) , ui(X) − pi,

where each ui(·) is non-increasing with ui(0) > 0 and limX→∞ ui(X) < 0. In this setting, a

signaling mechanism is specified by {σ(n, i, j) : n ≥ 0, i = 1, · · · , K; j = 0, 1}, where σ(n, i, 1)

denotes the probability with which the service provider tells a customer of type i to join the

queue when there are n customers already in queue and σ(n, i, 0) denotes the probability

of telling them not to join. By letting φi,jn = λi

Λ
πnσ(n, i, j), where π = {πn : n ≥ 0} is the

steady-state distribution of the queue, the service provider’s decision problem can be reduced

to the following linear program:

max
φ

∞∑

n=0

K∑

i=1

pi · φi,1n

subject to,
∞∑

n=0

φi,1n hi(n, pi) ≥ 0, for i = 1, 2, . . . , K,

∞∑

n=0

φi,0n hi(n, pi) ≤ 0, for i = 1, 2, . . . , K,

1

λ1

(
φ1,0
n + φ1,1

n

)
=

1

λi

(
φi,0n + φi,1n

)
, for all n ≥ 0, i = 2, 3 . . . , K,

1

λ1

(
φ1,0
n + φ1,1

n

)
=

K∑

i=1

φi,1n−1 for all n ≥ 1,

∞∑

n=0

K∑

i=1

φi,1n + φi,0n = 1

φi,jn ≥ 0 for all n ≥ 0, i = 1, 2, . . . , K, and j = 0, 1.

(2.6)
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Here, the first two inequalities correspond to the obedience constraints for each type of

customer. In particular, the first inequality requires that when a type i customer is told

to join the queue, she finds it optimal to join, whereas the second inequality requires that

the customer finds it optimal not to join the queue if she is told not to join. The remaining

constraints in the linear program arise from the constraints on the steady-state distribution

π. From a feasible solution φ, one can obtain the signaling mechanism as σ(n, i, 1) = φi,1
n

φi,1
n +φi,0

n

and σ(n, i, 0) = φi,0
n

φi,1
n +φi,0

n

. Note that if K = 1, we are back to the case with homogeneous

customers, and the preceding linear program reduces to the linear program (2.5), where

φ1,1
n = πn+1/λ, and φ1,0

n = πn − πn+1/λ for all n.

For the heterogeneous customer type setting, our main result, Theorem 2.1, extends as

follows:

Theorem 2.4. Suppose all the customer types are charged the same fixed-price, i.e., pi = p

for all i = 1, . . . , K. Then, there exists an optimal signaling mechanism that signals each

customer type using a threshold mechanism: σ(n, i, 1) = 1 for n < Ni and σ(n, i, 1) = 0 for

n > Ni for some Ni.

This result is obtained using a similar argument as to our main result: first, we show

that under the optimal mechanism, each customer type is told to join the queue at all

queue-lengths for which they would have joined under full-information; next, we show that

any feasible mechanism satisfying this property but not of a threshold type can be perturbed

appropriately without reducing the revenue. We omit the details for brevity.

On the other hand, if not all customer types are charged the same price, threshold

mechanisms need not be revenue-optimal across all signaling mechanisms. We illustrate this

using the following example: consider a setting with two types of customers (K = 2), where
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each customer type has the following utility function:

u1(n) =





51 n = 0

40 n = 1

−10, 000 n ≥ 2

, u2(n) =





2 n ≤ 1

−8.5 n ≥ 2

.

The type 1 customers are charged a price p1 = 50 for service, whereas the type 2 customers

are charged p2 = 1. The arrival rates of the two types are λ1 = λ2 = 1. Solving the linear

program (2.6), we obtain the optimal signaling mechanism to be

σ(n, 1, 1) =





1 n = 0

1
10

n = 1

0 n ≥ 2

, σ(n, 2, 1) =





0 n = 0

1
10

n = 1

0 n ≥ 2

.

Observe that this is not a threshold mechanism for customers of type 2. One can verify that

no threshold mechanism achieves the same revenue as the preceding mechanism.

Nevertheless, the following theorem shows that if the (fixed) price for each type is set

optimally, the revenue-optimal signaling mechanism is a threshold mechanism. Furthermore,

an analogous result as in Theorem 2.2 holds: the optimal signaling mechanism (together

with optimally set fixed type-dependent prices) achieves the same revenue as the optimal

state-and-type-dependent pricing mechanism. We provide the proof in Appendix A.1.2.

Theorem 2.5. For the optimal choice of fixed prices pi, i = 1, · · · , K, the optimal signaling

mechanism has a threshold structure. Also, the revenue achieved by the service provider under

this mechanism is same as that in the optimal state-and-type dependent pricing mechanism.

Finally, a further extension of our model to heterogeneous customers involves the setting

of private types, where the service provider cannot observe the types of the arriving customers.

These settings in general require a combinatorial number of signals, where each signal

corresponds to a subset of customer types who join the queue after receiving it. In the

39



special case where all customer types are charged the same price p, and the types are ordered,

meaning hi(n, p) ≥ hi+1(n, p) for all i = 1, . . . , K and n ≥ 0, it suffices to consider mechanisms

involving K+1 signals, where the signal i corresponds to all customers with types less than or

equal to i joining the queue. Although we can again formulate the service provider’s decision

problem as a linear program, we note once again that threshold mechanisms need not be

optimal; there may exist signaling mechanisms that obtain higher revenue than threshold

mechanisms.

2.7 Conclusion

We analyze the optimal information sharing problem in the context of an unobservable M/M/1

queue with strategic customers. We first establish that in the optimal signaling mechanism,

the service provider does not fully reveal the queue state, nor completely conceals it: instead,

the optimal signaling mechanism uses binary signals and has a threshold structure. Further,

we show that with the optimal choice of the fixed price, the service provider can effectively

use signaling to achieve the expected revenue achieved by the optimal state-dependent pricing

mechanism.

Throughout this (and the next chapter), we restrict to customers who seek to maximize

some expected utility. This is a common assumption in information design, but there exist

many models of decision making other than expected utility maximizers. In Chapter 4, we

consider customers who have utilities that cannot be expressed in this form. In that chapter,

we revisit this chapter’s queueing model, and, as an example, consider a customer whose

ex-ante disutility from waiting is their expected waiting time plus its variance.

We now proceed with another application of information design. In Chapter 3, we consider

persuasion in online retail, and use a similar linear programming approach to the proof of
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Theorem 2.1 to find the revenue-optimal approach to signaling.
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CHAPTER 3

PERSUASION IN ONLINE RETAIL: EFFICACY OF PUBLIC SIGNALS

How come anything you buy will

go on sale next week?

Erma Bombeck

3.1 Introduction

With the rapid growth of online retail, a number of auxiliary services have arisen that provide

customers with information about price history, product availability, historical demand, etc.,

to help them in the search for a better price. For example, services like Kayak inform a user

whether the price of an airline ticket is likely to fall in the future. Whenever a customer

using such services waits for the price to decrease, without direct access to demand and

inventory information, she risks the product selling out. To alleviate this risk and to induce

customers to purchase earlier at a greater price, online retailers often provide customers with

demand and inventory information. Some retailers, such as Amazon, give a count of the

items remaining when the inventory is low, while others display a “low stock” indicator. This

raises a natural question: how should a retailer credibly communicate inventory and demand

information to customers to maximize its expected revenue?

To study this question, we consider the setting where a retailer seeks to sell their inventory

of an item that will soon drop in price. Common examples of this are fashion (where summer

wear is sold in mass clearance sales after autumn arrives) and theater tickets (where the price

of unsold tickets drops right before a show). In particular, we consider a two period model:

prices are high the first time period and low the second, and customers who arrive at time

1 decide whether to buy the item right away or wait to buy in the next time period. The
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firm sends each customer at time 1 a signal that depends on both the total inventory and

the total demand at time 1. To concentrate on the effect of signaling, we let the prices be

determined exogenously. When a manufacturer sets price restrictions, this can be seen as

the only lever available to an online retail platform like Amazon or Ebay. Each customer is

strategic and Bayesian: before they act, they update their beliefs about the inventory and

the demand based on the firm’s signal.

In general, the firm may send a private signal to each customer, possibly giving them

different information. For example, the firm may send a tailored email message to each

interested customer. However, such private signaling may not always be feasible, or may

be hard to implement. Furthermore, due to lack of transparency, customers might feel

slighted for not receiving valuable information given to other customers. Relatedly, private

signals are also susceptible to “leakage,” where customers share their signals with each other,

leading to unanticipated effects. Given these issues, a firm may consider sharing information

publicly, where all customers receive the same signal. For example, the firm may put a “low

stock” indicator on its website visible to all interested customers. While public signals are

transparent, equitable, and leak-proof, it is unclear whether they are equally effective in

raising the firm’s revenue. Furthermore, from a computational standpoint, it is NP-hard in

general to obtain even a constant factor approximation of the optimal public mechanism

(Dughmi and Xu 2017).

Our primary result is that with homogeneous customers, the optimal signaling mechanism

is indeed public. The optimal mechanism sends all customers a common binary signal (e.g.,

“buy now” and “wait”, or “in-stock” and “low-stock” ) recommending all of them to take

the same action. We establish this result by first formulating the firm’s problem as an LP,

and showing that any feasible solution can be altered to a public one without decreasing the

revenue. The latter result relies on two intermediate lemmas characterizing the nature of

competition among the customers. Furthermore, using this result, we show that the problem
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of finding the optimal signaling mechanism can be posed as a fractional knapsack problem,

yielding an efficient linear time algorithm.

Our numerical investigations show that the optimal signaling mechanism achieves a

substantial increase in revenue, often getting close to the setting where all time 1 customers

are compelled to buy immediately (i.e., where there is no clearance period). Although

our analytical result does not extend in the presence of customer heterogeneity, we demon-

strate numerically that simple public signals continue to obtain a significant fraction of the

revenue achieved through private signaling, with their performance improving when the

customers become increasingly differentiated. (We discuss results for customer heterogeneity

in Section 3.5.)

Our analysis assumes that the firm commits to sharing information in a way it chooses in

advance. While the question of how a firm may achieve such commitment power is beyond our

scope, we provide two justification for this assumption. First, without credible information

sharing, the firm cannot increase its revenue beyond the setting of no information sharing

(Allon and Bassamboo 2011): if a firm says all items have low inventory, the customers will

simply ignore the warning altogether. Because even committing to share full information

often achieves higher revenue than no information sharing, a firm gains significantly from

committing even to a suboptimal mechanism. Second, from a practical perspective, retailers

are typically loath to mislead customers due to potential reputation loss. In contrast, by

committing, they stand to gain through trust and reputation effects.

3.1.1 Literature review

Inventory communication in online retail has received substantial attention, both from a

theoretical (Allon and Bassamboo 2011, Aydinliyim et al. 2017, Cui and Shin 2018) and

empirical perspective (Peinkofer et al. 2016, Cui et al. 2018). Our work builds on the two-
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period model of Allon and Bassamboo (2011), who analyze it under “cheap-talk” i.e., the

firm cannot commit to a signaling mechanism. The authors show the retailer cannot increase

revenue over the no-information mechanism. As mentioned earlier, we study signaling with

commitment and show that the firm can obtain a substantial increase in revenue from public

mechanisms. Aydinliyim et al. (2017) consider signaling and pricing in a two-period model

with commitment, but restrict the signaling mechanisms to masking (simply stating “in

stock”) or sharing the exact inventory. They find sufficient conditions for masking or sharing

being the optimal choice.

Contemporary and independent to our work, Drakopoulos et al. (2018) study pricing and

signaling under commitment in a two-period model with a (fixed) continuum of heterogeneous

customers, where the inventory takes one of two values. Specifically, under high stock, all

customer demand is met, whereas under low stock, a known fraction of the demand can be

satisfied. The authors study the interplay between pricing and signaling in this setting and

find that private signaling outperforms sharing information publicly. In contrast, we consider

a model with homogeneous customers, fixed prices, and an arbitrary (joint) distribution of

inventory and demand, and find that public signaling mechanisms are optimal. Moreover,

in our setting the customers’ beliefs are size-biased due to the demand being unknown to

the customers, a phenomenon observed in other settings with a random number of agents

(McAfee and McMillan 1987). Aviv et al. (2018) consider how responsive pricing can impact

a two-period retail model with heterogeneous customers. When customers are myopic, they

find that responsive pricing leads to higher revenue. However, when customers are strategic,

they find that frequently, fixed announced prices perform better. Jiang et al. (2016) consider

information sharing between a retailer and a market-demand observing manufacturer. They

show the retailer prefers no information be shared, since this forces the manufacturer to

charge lower wholesale prices when demand is low. This is unlike our results, where because

information is the only lever available to the firm, the uninformed customer prefers any

information about demand and supply over none. Cui et al. (2018) empirically show the
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effect of the demand and supply signaling we consider in this chapter. They show this by

generating increased revenue when they manipulate Amazon.com’s supply information to

indicate lower stock and higher quality.

Our work adopts the approach of Bayesian persuasion (Kamenica and Gentzkow 2011,

Bergemann and Morris 2018). Recent work has applied this approach to study crowdsourcing

(Papanastasiou et al. 2017, Kremer et al. 2014), queueing (Lingenbrink and Iyer 2018a), content

sharing in networks (Candogan and Drakopoulos 2017) and disaster management (Alizamir

et al. 2018). Our work extends this literature by assuming a random agent population, which

causes agents’ beliefs to be size-biased towards larger values of demand. Rayo and Segal

(2010) consider a setting where a sender chooses how to signal a prospect, which has two

parameters: the profit to the sender and the relevance to a Bayesian heterogeneous receiver.

Unlike our model, receivers have no externalities for their decisions, and choose to interact

with the prospect if they believe the relevance to be above a threshold. Like our results, they

find that the sender’s preferred signaling will pool profitable prospects with less profitable

but more relevant prospects.

Taneva (2019) considers a game with two homogeneous agents and one principal where the

agents play a two-state two-action game with payoffs dependent on the unknown state. The

principal can send a signal to the players to convey the state. She finds settings where public

signaling performs worse than private signaling, despite the homogeneity of the agents. The

homogeneity of our model, then, does not immediately suggest public signaling’s optimality.

Dughmi and Xu (2017) study signaling in a game with no externalities: a customer’s utility

is not dependent on the actions of the other customers. In the case of private signaling, they

find a (1 − 1/e)-approximation algorithm for the optimal private signaling mechanism. For

public signaling, they show it is, in general, NP-hard to approximate the optimal public

signaling mechanism by any constant factor. In contrast to this work, in our model, there are

externalities among the customers: if more customers buy earlier, then a customer’s utility
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for waiting decreases. They also allow for customer heterogeneity in their utility, while we

restrict customer utility to be homogeneous until we relax this in Section 3.5. For further

information on approximation of optimal public and private signaling, we refer the reader to

the survey Dughmi (2017).

3.2 Model

We consider a two-period retailing model similar to the one in Allon and Bassamboo (2011),

where a single firm seeks to sell its limited supply of a product over periods t = 1, 2. The

total inventory of the product (at time 1) is given by Q1, and there is no new inventory

arriving at time 2. The price of the product at time t is exogenously fixed at pt > 0. We

are interested in a setting where the second period acts as a clearance or a sale period, in

which the firm seeks to liquidate its total inventory. Consequently, we assume the price in

the second period is lower, i.e., p1 > p2
1.

The firm sees the arrival of Nt customers at time t ∈ {1, 2}. The customers who arrive

at time t = 1 share a value v > p1 for the product2; the potential customers who arrive at

time t = 2 may have different valuations of the product, but all value the product over the

second period price, p2. We call the customers who attempt to purchase the item interested

customers, and let Dt denote the number of interested customers at time t ∈ {1, 2}. Because

of all customers value the item over the second period price, all customers still in the system

at time t = 2 will be customers at time t = 2. On the other hand, customers at time 1 may

choose to delay their purchase to time 2 at a waiting cost of c ≥ 0.

At any time t, if there are more interested customers than there are items available,

the firm uniformly selects a random subset to sell all the inventory. Letting Q2 denote the

1Note that if p1 ≤ p2, a customer’s optimal action is to buy at time 1 regardless of the quantity or the
demand. Thus signaling cannot raise the revenue in this setting.

2We consider customer heterogeneity in Section 3.5.
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remaining inventory at time 2, we have D2 = N1 + N2 − D1 and Q2 = (Q1 − D1)
+. Then,

the probability an interested customer at time t receives the product is given by min
{
Qt

Dt
, 1
}

.

Since the decision of the customers at time 2 is trivial, we henceforth let the term “customers”

refer to those at time 1 whenever the context is clear.

The firm’s revenue is simply R(Q1, N1, N2, D1) ,
∑
i=1,2 pi min{Qi, Di}, which can be

simplified to

R(Q1, N1, N2, D1) , p2 min{Q1, N1 +N2} + (p1 − p2) min{Q1, D1}.

To describe customers’ utility more precisely, we fix a customer at time 1, and let D̂ ≤ N1 − 1

denote the number of other interested customers at time 1. Then, if the customer seeks to

buy at time 1, her utility is given by u1(Q1, D̂) = min
{

Q1

D̂+1
, 1
}

(v − p1) > 0. On the other

hand, if the customer chooses to wait until time 2, her utility is given by u2(Q1, N1, N2, D̂) =

min
{

(Q1−D̂)+

N1−D̂+N2

, 1
}

(v − p2) − c. Given this basic model, we now describe the belief structure

and the decision problems of the firm and the customers.

Information structure: There are three exogenous random variables present in the

system: the number of potential first and second period customers, N1 and N2, respectively,

and the supply, Q1. The firm knows its own supply, Q1, and can observe the initial demand,

N1. N1 can be thought of the customers who subscribe to a firm’s email offers or who have

viewed the item’s page in the past. The number of potential customers in the second-period,

N2, is unknown to the firm. In contrast, customers do not (a priori) know the initial inventory

Q1 and the total number of customers (N1, N2). Formally, we let Φ denote the firm’s prior

belief over (Q1, N1, N2), with Φ(q1, n1, n2) = P(Q1 = q1, N1 = n1, N2 = n2) denoting the joint

distribution. We allow for general dependencies between the inventory level and the demand

in the two periods. We slightly abuse notation and let Φ(q1, n1) = P(Q1 = q1, N1 = n1)

denote the marginal over (Q1, N1). (For technical reasons, we assume that N1 has a finite

support.)
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Let ΦC(·) denote a customer’s belief prior to receiving any information from the firm.

The relationship between Φ and ΦC is subtle: a customer, of course, knows that N1 ≥ 1, but

her belief is not simply Φ conditioned on N1 ≥ 1. The following lemma3 establishes that the

customers’ belief ΦC ascribes more weight to larger values of N1:

Lemma 3.1. For each (q1, n1, n2), we have

ΦC(q1, n1, n2) =
n1Φ(q1, n1, n2)∑

q̂1,n̂1,n̂2
n̂1Φ(q̂1, n̂1, n̂2)

.

In particular, we have for all functions g(·),

EC [g(Q1, N1, N2)] =
E[N1g(Q1, N1, N2)]

E[N1]
,

where E[·] and EC [·] represent expectations with respect to Φ and ΦC respectively.

A customer’s belief is then biased towards larger values of N1. Intuitively, this bias in

a customer’s belief arises because each customer conditions on the fact that she is present

in the market, an event that is more likely when the demand N1 is larger. Such size-bias

is common in games where the number of players is random and unknown (McAfee and

McMillan 1987). A well-known example of such size-bias is the friendship paradox, where

in a random graph of friendships, people observe a size-biased distribution of their friend’s

number of friends, and observe they have more friends on average than they do (Feld 1991).

The firm seeks to maximize its expected revenue by getting more customers to purchase

at time 1. On the other hand, customers seek to maximize their expected utility by choosing

whether to purchase at time 1 at a high price or to wait until time 2 and risk a stock-out. A

customer’s action depends crucially on her beliefs about (Q1, N1, N2, D1). Since the firm has

more information, it seeks to persuade the customers towards buying at time 1 by sharing

this information through a signaling mechanism, as we formally describe next.

3All proofs are provided in the appendix.
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Signaling mechanisms: Let θ = (Q1, N1) denote the information available to the

firm, and Θ denote the set of all possible values of θ. A signaling mechanism S = (S, σ)

consists of two quantities. First, the mechanism fixes a set S of signals the firm may possibly

send to a customer. Let sj ∈ S denote the signal sent by the firm to customer j, and let

s = (s1, · · · , sN1
) ∈ SN1 denote the signal profile. (We assume that a customer j does not

observe the signal sk for k , j.) Then, the mechanism fixes a mapping4 σ : Θ × S∞ → [0, 1]

such that for each θ ∈ Θ the firm sends the signal profile s ∈ SN1 with probability σ(θ, s).

We let Σ denote the set of all signaling mechanisms.

An important subclass of signaling mechanisms is the class Σpub of public signaling

mechanisms, where, rather than privately sending a signal to each customer, the firm instead

announces the signal publicly to all customers. Formally, in a public signaling mechanism

S = (S, σ), for each θ ∈ Θ and s ∈ SN1 we have σ(θ, s) > 0 only if si = sj for all i, j ≤ N1.

We assume that the firm commits to a signaling mechanism S, which is common knowledge

among the customers, prior to observing Q1 and N1. Formally, the model operates in the

following sequence:

1. the firm publicly commits to a signaling mechanism, S,

2. the firm observes the realizations of Q1 and N1 and signals to customers according to

S,

3. the N1 first-period customers each choose to buy at price p1 or wait, and then finally

4. the N2 second-period customers arrive and the remaining inventory is sold to the

remaining customers at price p2.

Each such choice of a signaling mechanism then induces a game of incomplete information

among customers, and the firm seeks to maximize the expected revenue in a resulting Bayesian

equilibrium, which we describe formally next.

4We require the mapping σ to satisfy σ(θ, s) = 0 when s < SN1 and
∑

s∈S∞ σ(θ, s) = 1.
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Equilibrium: Given a signaling mechanism S = (S, σ), a strategy for customer i is a

function fi : S → [0, 1], where fi(s) denotes the probability customer i chooses to buy at time

1 upon receiving the signal s. Let f = (f1, · · · , fN1
) denote a strategy profile. Each customer

i’s utility depends on the number D̂−i of other customers who elect to buy at time 1. Given

(Q1, N1, D̂−i), let h(Q1, N1, D̂−i) denote the incremental expected utility of customer i for

buying at time 1 over waiting until time 2:

h(Q1, N1, D̂−i) , u1(Q1, D̂−i) − EC

[
u2(Q1, N1, N2, D̂−i) | Q1, N1, D̂−i

]

where the expectation is over the number N2 of customers arriving at time 2. Given a

signaling mechanism S, a strategy profile f constitutes an equilibrium if each customer’s

strategy maximizes her expected utility, assuming all others follow theirs:

fi(s) =





1 if E
S,f
C [h(Q1, N1, D̂−i)|si = s] > 0;

0 if E
S,f
C [h(Q1, N1, D̂−i)|si = s] < 0,

(3.1)

where E
S,f
C [·] (and analogously ES,f [·]) denotes the expectation induced by the signaling

mechanism S, the strategy profile f , and the belief ΦC (resp., Φ).

Firm’s decision problem: The firm seeks to maximize her expected revenue by per-

suading customers to buy at time 1. Let r(Q1, N1, D1) = E[R(Q1, N1, N2, D1) | Q1, N1, D1]

denote the firm’s expected revenue when D1 customers buy at time 1.

Given a signaling mechanism S and customer equilibrium f , the expected revenue to

the firm is given by R(S, f) = ES,f [r(Q1, N1, D1)]. The revenue-optimal (private) signaling

mechanism is then the solution to the following optimization problem:

max
S∈Σ

ES,f [r(Q1, N1, D1)] subject to f satisfying (3.1). (3.2)

In order to find the optimal public signaling mechanism, one approach would be to analyze a

similar optimization problem, where the maximization is performed over the set of public

signals Σpub. However, as we discuss below, this direct approach is challenging. Instead, we
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take the indirect approach of analyzing problem (3.2), characterizing the structure of its

optimal solution, and establishing that the optimal mechanism is public.

Despite customers being homogeneous, it is not immediate that the optimal signaling

mechanism is public. In fact, we can find settings where private signaling is necessary

to generate optimal revenue with homogeneous customers. We include an example in

Appendix B.3.

3.3 Formulation of the firm’s decision problem

In this section, we simplify the firm’s decision problem and formulate it as a linear program

over a smaller decision space. As a step towards that formulation, we first show that the

firm can focus on a subclass of signaling mechanisms. In the following, when there is no

ambiguity, we drop the subscript from Q1, N1, and D1.

The following lemma, which follows from a revelation-principle style argument (Bergemann

and Morris 2018), states that for the problem of finding the optimal signaling mechanism,

the firm can restrict its attention to symmetric signaling mechanisms that use binary signals,

denoting recommendations to buy at time 1 (si = 1) or to wait until time 2 (si = 0), and

for which the equilibrium action for each customer i is to follow the recommendation. Using

standard terminology, we refer to such signaling mechanisms as symmetric direct mechanisms.

Lemma 3.2. Consider any signaling mechanism S = (S, σ) with equilibrium f . There exists

a private signaling mechanism U = (U, υ) with equilibrium g such that

1. U = {0, 1}, with gi(0) = 0 and gi(1) = 1 for each i;

2. υ is symmetric: υ(Q,N, s) = υ(Q,N, s′) whenever s
′ is a permutation of s.

3. The firm’s revenue under (U , g) is equal to that under (S, f).
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We emphasize that the equivalent mechanism U in Lemma 3.2 need not be public, even

if the mechanism S is. In particular, this implies that for the firm’s problem of finding the

optimal public mechanism, the reduction to direct mechanisms does not hold. It is for this

reason that the problem of finding optimal public signaling mechanisms is, in general, difficult

(Dughmi and Xu 2017). Nevertheless, by directly analyzing the decision problem (3.2), we

show in Section 3.4 that the optimal signaling mechanism is indeed public.

Note that in such an equilibrium, due to the underlying symmetry, the number D̂−i of

customers other than customer i who choose to buy at time 1 has the same distribution for

each i. Henceforth, we drop the subscript on D̂−i and let D̂ denote the number of other

customers buying at time 1 from a fixed customers’ perspective. This symmetry presents a

further simplification: the firm’s problem reduces to identifying, for each (Q,N), the number

of customers D ∈ {0, · · · , N} to recommend buying now. Subsequently, the firm selects a

subset of D customers uniformly at random, and sends them the signal s = 1, whereas the

rest receive the signal s = 0. Abusing the notation slightly, we let σ(Q,N,D) denote the

probability that, given inventory Q and demand N , the signaling mechanism σ recommends

D customers to buy now.

The preceding simplifications allow us to represent the firm’s problem (3.2) as a linear

program. Formally, let π(q, n, d) = Φ(q, n)σ(q, n, d) denote the (prior) joint probability that

the firm has inventory Q = q, with demand N = n and the firm recommends D1 = d

customers to buy now. Then, using Lemma 3.1 and the fact that for any customer i we have

P(si = 1|Q,N,D) = D/N for all (Q,N,D), we obtain the following linear programming
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formulation in π of (3.2).

max
π

∑

(q,n)∈Θ

n∑

d=0

r(q, n, d) · π(q, n, d)

subject to,
∑

(q,n)∈Θ

n∑

d=1

d · h(q, n, d− 1) · π(q, n, d) ≥ 0, (3.3a)

∑

(q,n)∈Θ

n−1∑

d=0

(n− d) · h(q, n, d) · π(q, n, d) ≤ 0, (3.3b)

n∑

d=0

π(q, n, d) = Φ(q, n), for all (q, n) ∈ Θ, (3.3c)

π(q, n, d) ≥ 0, for all d ∈ {0, · · · , n} and (q, n) ∈ Θ. (3.3d)

Here, the constraints (3.3a) and (3.3b) capture the two cases in the definition (3.1). A

feasible solution π corresponds to the symmetric direct signaling mechanism σ given by

σ(q, n, d) = π(q, n, d)/Φ(q, n). A detailed derivation of (3.3) is provided in Appendix B.2.

3.4 Optimality of public signaling

Observe that if for each q, n we have σ(q, n, d) = 0 for all d < {0, n}, then the direct

mechanism σ always recommends either all customers to buy or all of them to wait. Thus,

this mechanism can be implemented publicly by announcing the recommendation publicly to

all customers. (As mentioned earlier, the converse does not hold: not all public mechanisms

can be represented this way.) Our main result of this section shows that the optimal solution

to (3.3) satisfies this condition and hence is a public mechanism:

Theorem 3.1. There exists an optimal signaling mechanism σ that is public: σ(q, n, 0) +

σ(q, n, n) = 1 for all q, n. In addition, this public signaling mechanism has σ(q, n, n) = 1 for

all q, n such that h(q, n, n− 1) ≥ 0.

This theorem is theorem is proven in two steps:
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1. First, we show that any optimal mechanism will tell all customers to buy for all states

(Q,N) where customers would buy under full-information.

2. Then, we show that any mechanism where D < {0, N} customers are asked to buy with

non-zero probability can be manipulated to weakly increase revenue.

This approach rests on two critical lemmas that describe the nature of the competition

among the customers. In fact, Theorem 3.1 applies for any instance of (3.3), assuming r is

monotonically increasing in d and h satisfies these lemmas. To prove the first step of the

theorem, we make use of this first lemma, which states that if a customer prefers to buy now

when some number of other customers buy now, then she continues to prefer buying now if

all other customers buy now.

Lemma 3.3. For any (q, n), if there exists a d ∈ {1, · · · , n− 1} such that h(q, n, d− 1) ≥ 0,

then h(q, n, n− 1) ≥ 0.

We note that the condition in Lemma 3.3 is weaker than strategic complementarity (Morris

and Shin 2003): instead of having a customer’s utility for taking an action increase as more

customers take that action, the customer’s preferred action of buying now remains unchanged

if all customers choose that action. Also, this condition is weaker than the notion of single

crossing (Morris and Shin 2003), since we do not require a customer’s optimal action to

remain unchanged as more customers buy now, just that it remains optimal to buy now when

all customers do.

In a symmetric signaling mechanism, the higher the probability that a customer is asked

to buy now, the more likely it is that other customers are also asked to buy now, implying

more competition. This then induces a trade-off for the customer: does a customer prefer

lower competition upon receiving a recommendation to buy, but with a higher likelihood

of not receiving such recommendation, or does she prefer higher likelihood of receiving a
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recommendation to buy, albeit with more competition? In order to prove the second step of

the theorem, we use the following lemma, which specifies how customers make this trade-off.

Lemma 3.4. The incremental utility function h satisfies the following properties:

(3.4.1) For any (q, n) with h(q, n, n− 1) ≥ 0, we have

d

n
· h(q, n, d− 1) ≤ h(q, n, n− 1).

(3.4.2) For any (q, n) with h(q, n, n− 1) < 0, we have

d

n
· h(q, n, d− 1) ≤

(
r(q, n, d) − r(q, n, 0)

r(q, n, n) − r(q, n, 0)

)
· h(q, n, n− 1).

Note that for (Q,N) = (q, n) with h(q, n, n− 1) ≥ 0, each customer would prefer to buy

now if all other customers were buying now. In such a setting, property (3.4.1) states that a

customer receives higher expected utility when all customers are asked to buy now than when

a random d of them are asked to buy now. Thus, customers prefer higher likelihood of being

asked to buy now, even if that induces more competition. For values of (Q,N) = (q, n) where

h(q, n, n− 1) < 0, customers prefer waiting until time 2, even if all other customers buy now.

In this setting, even though property (3.4.1) no longer holds, a weaker property (3.4.2) holds.

The proof of Theorem 3.1 uses Lemma 3.3 and Lemma 3.4 to show that any feasible

solution to (3.3) can be altered to one with a public structure (i.e., π(q, n, d) = 0 for d < {0, n})

without decreasing the objective. More specifically, the first step of the proof shows that

σ(q, n, n) = 1 when h(q, n, n − 1) ≥ 0, and the second step shows that any solution where

σ(q, n, d) > 0 for d < {0, n} can be weakly improved to another where σ(q, n, d) = 0. Full

details are given in Appendix B.1.

This structural form of the optimal solution also leads to a simple algorithm that computes

the optimal mechanism in O(|Θ|) time, assuming r(q, n, n) and h(q, n, n− 1) for (q, n) ∈ Θ
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are already computed or can be computed in time O(|Θ|). This algorithm is obtained by

reformulating the linear program as a fractional knapsack problem, as we describe below.

Let S be the set of pairs (q, n) such that h(q, n, n − 1) < 0. Theorem 3.1 implies

σ(q, n, n) = 1 for all (q, n) ∈ Θ \ S and σ(q, n, n) ∈ [0, 1] for all (q, n) ∈ S. This guarantees

(3.3b) holds and allows us to rewrite (3.3a) as

∑

(q,n)∈S

n|h(q, n, n− 1)| · Φ(q, n) · σ(q, n, n) ≤
∑

(q,n)∈Θ\S

nh(q, n, n− 1) · Φ(q, n).

Thus, (3.3a) can be seen as a fractional knapsack constraint, where the knapsack capacity

is W =
∑

(q,n)∈Θ\S nh(q, n, n− 1)Φ(q, n), the items are the pairs (q, n) ∈ S, and the weight

and value of the item (q, n) are respectively given by wq,n = n|h(q, n, n − 1)|Φ(q, n) and

vq,n = r(q, n, n), respectively. The amount of each item (q, n) in the optimal solution to this

fractional knapsack problem gives the value of σ(q, n, n) in the optimal signaling mechanism.

Given the capacity W , the weights wq,n, and the values vq,n, the optimal solution to the

fractional knapsack problem can be found in time linear in the number of items (Korte and

Vygen 2012). Since this algorithm requires finding the values (q, n) ∈ Θ \ S and computing

W , which takes O(|Θ|) time, the optimal signaling mechanism can be found in time O(|Θ|).

Finally, under additional assumptions on the distribution of the demand and the inventory,

Theorem 3.2 allows us to obtain further structural results on the optimal public mechanism.

In particular, when the demand in the two periods are conditionally independent given the

inventory, the optimal signaling mechanism has a threshold structure, as defined below.

Theorem 3.2. Suppose the demands N and N2 are conditionally independent, given the

inventory Q. Then, there exists an optimal signaling mechanism, σ, that has a threshold

structure: for each q there exists an Nq ∈ N and xq ∈ (0, 1] such that σ(q, n, n) = 1 if n > Nq,

σ(q, n, 0) = 1 if n < Nq and σ(q, n, n) = xq and σ(q, n, 0) = 1 − xq if n = Nq.

The proof is given in Appendix B.1.
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3.4.1 Revenue comparison

To support and quantify our analytical results, we numerically compare the revenue generated

by the optimal mechanism against three benchmarks. The first benchmark (“no − info”)

is the signaling mechanism that provides no information to the customer; all customers

act based solely on their beliefs Φb. The second benchmark (“full − info”) is the signaling

mechanism that reveals to the customers all the relevant information, namely the inventory

level Q and number of customers N . Finally, as a third benchmark (“all − buy”), we consider

the revenue when all N customers buy at time 1, irrespective of whether it is in their best

interest to do so. Unlike the first two benchmarks, the final benchmark may not be achievable

through a signaling mechanism. Despite this, it provides a useful metric to evaluate the

revenue increase through signaling.

For our numerical computations, we assume that there is no new demand at time 2, i.e.,

N2 = 0. Furthermore, we assume that the inventory level Q and the number of customer

N are independent: Φ(q, n) = P(Q = q,N = n) = P∆(q) · Pλ(n) where P∆ denotes the

uniform distribution over {0, 1, · · · ,∆ − 1} and Pλ denotes the Poisson distribution with

mean λ > 0. Note that for a fixed λ, as ∆ increases, the inventory level is higher, and

consequently customers are more likely to wait until time 2 to buy. Similarly, for a fixed ∆

as λ increases, the demand increases and the customers are more likely to buy at time 1. For

our analysis, we let v = 1, p1 = 0.9, p2 = 0.5, and c = 0.1. We begin with a brief discussion of

the no-information and the full-information benchmarks.

In the no-information setting, there may be multiple equilibria, depending on the parame-

ters. For high inventory (large ∆) compared to demand, the only equilibrium will be for all

customers to wait to purchase the product. For low inventory, the only equilibrium will be

for all customers to buy now. For moderate inventory, both may be equilibria, along with an

equilibria where customers randomize their decision. When there are multiple options, we
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(b) Revenue for ∆ = 20.

Figure 3.1: Comparing signaling mechanisms.

plot the revenue of the revenue-maximizing equilibria. In Figure 3.1a, the no-information

revenue has a discontinuity precisely when all customers buying now stops being an equilibria.

Under full-information benchmark, (Q,N) is revealed to all the customers. Note that,

just as in the no-information mechanism, there may be multiple equilibria under the

full-information mechanism. For example, there will be at least two equilibria whenever

h(Q,N,N − 1) ≥ 0 but h(Q,N, 0) < 0, one where all customers buy at time t − 1 and

another where all buy at time 2. Hereafter, to obtain meaningful comparisons, we focus

on the equilibria with the highest expected revenue for the firm. As in the no-information

setting, for low values of ∆, the full-information mechanism produces near-optimal revenue.

For higher values of ∆, the revenue approaches 5, which corresponds to the case where all

customers wait until time 2 to buy at price p2 = 0.5.

In Figure 3.1, we compare the revenue achieved by our three mechanisms5. When the

inventory level is low relative to the demand, we see that the optimal signaling mechanism

is to provide no information; all customers already prefer to buy now, and signaling any

information can only induce customers to wait and thus reduce revenue. On the other hand,

5While the full-information and no-information mechanisms may possess multiple equilibria, we focus on
the equilibrium with the highest revenue.
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Table 3.1: Efficacy of public signaling.

λ ∆ Rno−info Rfull−info ROPT Rall−buy Mno−info Mfull−info

5 10 1.85 2.32 2.79 3.33 63% 46%
5 20 2.20 2.45 2.71 3.96 28% 16%
5 30 2.31 2.48 2.64 4.15 18% 9%
5 50 2.39 2.49 2.59 4.30 10% 5%
10 20 3.74 4.73 5.73 6.74 66% 49%
10 30 4.17 4.83 5.50 7.50 39% 24%
10 50 4.50 4.90 5.30 8.10 22% 12%
20 30 6.56 9.14 11.71 11.81 98% 96%
20 50 8.00 9.60 11.20 14.40 49% 33%
30 50 10.50 14.09 17.69 18.89 85% 74%

when the inventory level is moderate or high relative to the demand, we observe that the

optimal public signaling mechanism achieves substantially higher expected revenue than the

no-information and full-information mechanisms.

To measure the efficacy of signaling, in Table 3.1 we compare the revenue achieved by the

optimal signaling mechanism against the “all − buy” benchmark. To make this comparison,

we introduce two metrics, Mno−info and Mfull−info. Let Rno−info, Rfull−info, and ROPT denote

respectively the expected revenue under the no-information, the full-information, and the

optimal mechanisms, and let Rall−buy denote that in the “all − buy” setting. We define the

metrics Mno−info ,
ROPT−Rno−info

Rall−buy−Rno−info
and Mfull−info ,

ROPT−Rfull−info

Rall−buy−Rfull−info
. Note that from the definition,

we have ROPT = MiRall−buy + (1 −Mi)Ri for i ∈ {no − info, full − info}. Thus, Mi measures

how much of the difference between Rall−buy and Ri can be captured through signaling. Note

that we have only included values where Rno−info , Rall−buy; if Rno−info = Rall−buy, all customers

will buy under no-information and optimal signaling cannot increase revenue. Hence we will

focus on situations where Rno−info < Rall−buy.

From Table 3.1, we observe that signaling can lead to values of Mfull−info as high as 96%.

Similarly, the values of Mno−info can be as high as 98%. This suggests that optimal signaling

can be effective in yielding revenues close to Rall−buy. We also observe that signaling is

most effective in raising revenue over full or no information mechanism when the maximum
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inventory ∆ is not too large relative to the mean demand λ, i.e., when the customers actually

face a substantial stock-out risk.

3.5 Heterogeneous Customers

We briefly consider the efficacy of signaling in the setting of customer heterogeneity. Specif-

ically, we consider the setting where there are two types of customer: high-valued and

low-valued, who value the product at values vH and vL, respectively. We assume that both

vH and vL are larger than p1 so that all customers could be persuaded to buy in the first

period. Pricing is agnostic to the types of customers; this is natural when sales are done on

a public website but signaling can be done privately (for example, over email). We begin

by assuming the firm can view each customers’ type accurately and commits to a signaling

mechanism that may depend on the types of customers. After, we consider the case where

the firm only observes the total number of customers present in the first period. The question

remains: how should the firm signal to optimize her revenue?

3.5.1 Observed types

Formally, we introduce a linear program similar to (3.3) that optimizes revenue over signaling

mechanisms in this heterogeneous setting. We must first establish variables comparable to

those in (3.3): Let NH and NL denote the number of high- and low-valued customers in the

system, and let Φ denote the joint probability over Q,NH , NL. We let DH and DL denote the

number of high- and low-valued customers, respectively, who buy at time 1 and let hH and

hL denote their incremental expected utility when they buy at time 1. We let N = NH +NL,
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D = DH +DL and D̂ = D̂H + D̂L. More concretely, for each customer type i,

hi(Q,N, D̂) = min

{
Q

D̂ + 1
, 1

}
(vi − p1) − min

{
(Q− D̂)+

N − D̂
, 1

}
(vi − p2) + c.

With this, the linear program can be expressed as

max
π

∑

q,nH ,nL,dH ,dL

r(q, nH + nL, dH + dL)π(q, nH , nL, dH , dL)

subject to,
∑

q,nH ,nL,dH ,dL

dHhH(q, nH + nL, dH + dL − 1)π(q, nH , nL, dH , dL) ≥ 0

∑

q,nH ,nL,dH ,dL

dLhL(q, nH + nL, dH + dL − 1)π(q, nH , nL, dH , dL) ≥ 0

∑

q,nH ,nL,dH ,dL

(nH − dH)hH(q, nH + nL, dH + dL)π(q, nH , nL, dH , dL) ≤ 0

∑

q,nH ,nL,dH ,dL

(nL − dL)hL(q, nH + nL, dH + dL)π(q, nH , nL, dH , dL) ≤ 0

∑

dH ,dL

π(q, nH , nL, dH , dL) = Φ(q, nH , nL)

π(q, nH , nL, dH , dL) ≥ 0, for all q, nH , nL, dH , dL.

Each feasible solution to this LP corresponds to a private signaling mechanism σ, where

the probability of asking dH high-type and dL low-type customers to buy, when the state is

(q, nH , nL), is given by σ(q, nH , nL, dH , dL) = π(q,nH ,nL,dH ,dL)
Φ(q,nH ,nL)

. We denote the optimal revenue

achievable by a private signaling mechanism by Rpri.

Although private signaling is the most general form of signaling mechanisms, such private

signaling may be difficult to logistically implement. Because of this, we now consider three

subclasses of signaling mechanisms, which are more restrictive than private signals, but may

be more practically desirable. In each of these classes, we continue to restrict the firm to signal

pure actions (or action profiles) and only consider those mechanisms under which obedience

is an equilibrium. To highlight these restrictions, we call such signals recommendations.

The least restrictive class among the three is the class of type-based recommendations, where

the same recommendation is privately sent to all customers of the same type, but customers
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do not observe the signals sent to customers of a different type. Such mechanisms arise, for

example, when targeted emails are sent to different email lists consisting of different customer

types. Note that type-based recommendations are still private mechanisms, since the signals

are not announced publicly to all customers. On the other hand, public recommendations

announce publicly which customer types should buy and which types should wait. Specifically,

under public recommendations, each customer is aware of the actions recommended to all

customer types. Such mechanisms arise when all communication reaches both types of

customer, like when this information is communicated on a public-facing website. Most

restrictively, blind public recommendations require the firm to recommend the same action to

all customer types. This could occur when the firm is limited to a “low stock” signal on its

website. We let the expected revenue from the optimal type-based recommendation, public

recommendation, and blind public recommendation mechanisms be denoted by Rtype, Rpub

and Rblind, respectively. Through a simple argument, the optimal revenues can be shown to

satisfy the following ordering.

Proposition 1. The optimal revenues satisfy Rpri ≥ Rtype ≥ Rpub ≥ Rblind.

Proof of Proposition 1. Any type-based recommendation mechanism can be viewed as a

private mechanism, so Rpri ≥ Rtype. Similarly, every public blind recommendation can be

viewed as a public recommendation where it is never the case that one type of customers

is suggested an action that another type is not: hence, Rpub ≥ Rblind. Finally, consider any

public recommendation mechanism. Since the equilibrium is obedient, a customer type follows

her recommendation irrespective of what the other customer type is recommended. This

implies that the customer type would follow her recommendation even if she is not informed of

the other customer types’ recommendation. Hence, a public recommendation mechanism and

the obedient equilibrium can be implemented as a type-based recommendation mechanism,

with the same revenue, yielding Rtype ≥ Rpub. �
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3.5.2 Unobserved types

We now consider the setting where the firm cannot observe the types of individual customers.

Instead, the firm must signal according to their beliefs about the number of each customer

type. Let N denote the total number of customers arrived who appear in the first period. For

simplicity, we let each given customer have a high-type independently and with probability

γ.6 The firm then must send a signal to each customer without knowledge of their type.

By the same argument as in the proof of Lemma 3.2, customers need not play a mixed

strategy in equilibrium. Further, given any signaling mechanism S = (S, σ), there exists

a symmetric signaling mechanism U = (U, υ) that achieves the same revenue such that

U = {0, 1, 2} where high-type customers play strategy gH(u) = I{u ≥ 1} and low-type

customers play strategy I{u ≥ 2}. This follows from a very similar argument to that in

Lemma 3.2.

With this, we can, once more, construct a linear program. The decision variables will be

of the form σ(Q,N,D2, D1), which gives the probability of sending D2 customers the signal

2 and D1 customers the signal 1. Unlike in previous settings, given a choice of D2 and D1, it

is unclear how many customers will attempt to buy in the first period: the customers who

receive D1 will buy if and only if they are of high-type. Hence, in the expression of the linear

program, we let DH ≤ D1 denote the number of customers sent the signal D1 who are of

6The distribution of total number of high-type customers given N is a binomial with parameters N and γ
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high-type and choose to buy now.

max
π

∑

q,n,d2,d1

π(q, n, d2, d1)
d1∑

dH=0

(
d1

dH

)
γdH (1 − γ)d1−dHr(q, n, d2 + dH)

subject to,
∑

q,n,d2,d1

π(q, n, d2, d1)
d1∑

dH=0

(
d1

dH

)
γdH (1 − γ)d1−dHd1hH(q, n, d2 + dH − 1) ≥ 0

∑

q,n,d2,d1

π(q, n, d2, d1)
d1∑

dH=0

(
d1

dH

)
γdH (1 − γ)d1−dHd2hL(q, n, d2 + dH − 1) ≥ 0

∑

q,n,d2,d1

π(q, n, d2, d1)
d1∑

dH=0

(
d1

dH

)
γdH (1 − γ)d1−dHd1hL(q, n, d2 + dH − 1) ≤ 0

∑

q,n,d2,d1

π(q, n, d2, d1)
d1∑

dH=0

(
d1

dH

)
γdH (1 − γ)d1−dH (n− d2 − d1)hH(q, n, d2 + dH − 1) ≤ 0

∑

d2,d1

π(q, n, d2, d1) = Φ(q, n)

π(q, n, d2, d1) ≥ 0, for all q, n, d2, d1.

Like before, each feasible solution to this LP corresponds to a private signaling mechanism σ,

where the probability of asking d2 customers to buy now and asking d1 customers to buy

only if they are high-type, when the state is (q, n), is given by σ(q, n, d2, d1) = π(q,n,d2,d1)
Φ(q,n)

.

We denote the optimal revenue achievable by a private mechanism by Runobs. We will also

consider the optimal revenue when the firm may only send the same recommendation to all

customers in the below, and denote it Runobs−pub.

3.5.3 Numeric comparison

Note that, when vH = vL, our results for the homogeneous customers types, specifically

Theorem 3.1, imply that all the inequalities above are equalities. Below, through numerical

computations, we seek to understand the performance of these mechanisms when vH , vL.

In Figure 3.2, we plot the ratio of Rtype, Rpub Rblind, Runobs and Runobs−pub to Rpri to see

how closely to private signaling each subclass performs. We focus first on Figure 3.2a, where
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(a) ∆ = 5, vL = 1, p1 = 0.8, p2 = 0.5, and N = 2, 3, 4.

Figure 3.2: Revenue ratios.

we fix ∆ = 5, vL = 1, p1 = 0.8, p2 = 0.5, c = 0, and let the number of total customers

be distributed uniformly over {1, 2, 3, . . . , N}, with each customer being high-type with

probability probability 1
2
. With these variables defined, we vary vH (note that we allow values

where vH < 1 = vL).

As Figure 3.2a shows, when vH , vL, private signaling performs better than each of the

other classes of signaling mechanisms. In particular, unlike the case of vH = vL, public

recommendations do not generate the optimal revenue. Nor is it true that the optimal signaling

mechanism recommends the same action to all customers of a type: the optimal signaling

mechanism achieves strictly better revenue than the optimal type-based recommendation

mechanism. In practical terms, the firm cannot generate the optimal revenue with even a

conservative definition of a “public” mechanism: the firm must recommend different actions

to customers of the same type. The poor performance of Runobs and Runobs−pub show that

observing a customer’s type provides a significant revenue advantage.

However, we observe that the both the type-based and the public recommendation

mechanism perform reasonably well for most values of vH . In fact, for large values of vH ,

both of these recommendations achieves revenue close to the optimal (private) signaling

mechanisms. This could arise from type H customers becoming increasingly indifferent

upon hearing that only they (and not type L customers) are asked to buy. Conversely, for

high values of vH , blind public recommendations do poorly because the requirement that
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recommendations are incentive compatible for both types to follow becomes very restrictive.

In fact, blind public mechanisms are outperformed by unobserving mechanisms for large vH .

Note that all three of these classes of mechanisms perform closer to optimal for larger values

of N .

Beyond these plots, we find that for typical parameters, public recommendations generates

85-95% of the revenue of private signaling. In fact, in our numeric search, the worst ratio we

could find between public recommendations and private signaling was 66%. These results

suggest that even under customer heterogeneity, public recommendations are effective in

raising the firm’s revenue.

In each of Figures 3.2b, 3.2c, 3.2d and 3.2e, we modify the parameters used in Figure 3.2a:

In Figure 3.2b, we let ∆ = 7. In Figures 3.2c and 3.2d, we let p1 equal 0.7 and 0.9, respectively.

Finally, in Figure 3.2e, we let the number of customer (N) be uniform over {1, . . . , N} and

let γ ∈ {1
4
, 1

2
, 3

4
}, instead of restricting γ = 1

2
.

3.6 Discussion

We consider inventory signaling with commitment and establish that the optimal mechanism

is public. Moreover, we show that with commitment the firm achieves significantly higher

revenue over no information sharing, unlike the setting with cheap talk. Our analytical result

relies on the assumption that customers are homogeneous. When customers are heterogeneous,

simple public direct mechanisms are no longer optimal in general: it is not hard to construct

examples where private signals outperform public direct mechanisms. However, our numerical

investigations show that such mechanisms continue to perform close to optimal when customer

types are sufficiently differentiated. When there are heterogeneous customers, we find private

signaling outperforms public signaling, but public signaling performs close to optimal when
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(b) ∆ = 7, vL = 1, p1 = 0.8, p2 = 0.5, and N = 2, 3, 4.
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(c) ∆ = 5, vL = 1, p1 = 0.7, p2 = 0.5, and N = 2, 3, 4.
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(d) ∆ = 5, vL = 1, p1 = 0.9, p2 = 0.5, and N = 2, 3, 4.

Figure 3.2: Revenue ratios.

customer types are sufficiently differentiated.

Our model assumes that the price in the second period is fixed. However, the firm may

wish to set a lower price when remaining quantity is higher, to further encourage customers

to buy. One might instead consider a setting where the price in the second period is a

function of the remaining supply after time 1, i.e., p2 , p2(Q−D). In the case where p2(·) is

non-increasing, convex, log-concave and N2 = 0, our results can be extended.

Theorem 3.3. If N2 = 0 and the second round price p2(·) is:

• decreasing: p2(n) ≥ p2(n+ 1),
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(e) ∆ = 5, vL = 1, p1 = 0.9, p2 = 0.5, and H, L ∈ {2, 3, 4}.

Figure 3.2: Revenue ratios.

• convex: ∆p2(n) ≤ ∆p2(n+ 1),

• and concave: ∆p2(n)
p2(n)

≥ ∆p2(n+1)
p2(n+1)

,

the optimal signaling mechanism is public.

It remains an open question whether the optimal signaling mechanism is public in the

case of a more complex pricing function p2(·) or a non-zero demand N2.

Our model further assumes that the quantity, Q, is an observed exogenous random variable.

This models the settings like Fulfilled by Amazon, where Amazon does not control the supply,

but simply signals inventory based on it. We can extend our results to settings where the

firm has control over the supply, and can set it strategically.
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Theorem 3.4. Suppose N is independent of Q, and the firm can choose the distribution of

Q.

(3.4.1) If the firm chooses a distribution for Q prior to observing N1, the optimal signaling

mechanism is public.

(3.4.2) If the firm chooses a distribution for Q after observing N1, the optimal signaling

mechanism is public.

In our analysis, the firm is careful to treat the customers as Bayesian and to let their

beliefs be a posterior formed by the firm’s prior updated with the event that they are present

in the system. When the firm does not do this, and assumes customers share their prior

instead of having a size-biased version of it, a couple undesirable outcomes may occur,

which are now described. Suppose customers each have a payoff-irrelevant feature that is

communicated to (or even generated by) the firm. The firm could then choose the optimal

manner of signaling with a linear program much like the one given in Section 3.5, but with

non size-biased incentive compatibility constraints7 and with vH = vL. First, signaling

according to this errant description of customer beliefs may lead to a mechanism that is not

incentive-compatible: while the “buy now” signal leads to zero customer surplus for the firm’s

imagined customer, a real customer’s would receive negative surplus because their prior puts

more weight on larger values of N . Hence, not all customers would follow their signals, since

doing so would not be an equilibrium. Further, we find examples where the optimal signaling

mechanism signals differently for each type, which raises issues of fairness and equality.

The reader should note that while we limit our focus to signaling in online retail, our

results and methods apply far more broadly. Indeed, consider a symmetric game with many

agents, action set {0, 1} and where the principal’s utility is monotonically increasing in

the number of customers who choose action 1. If customers’ incremental utility satisfies

7Which each divide the inequalities by NH or NL, depending on the constraint
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Lemmas 3.3 and 3.4, then Theorem 3.1 applies, and the optimal signaling mechanism is

public.

We now proceed to Chapter 4, where we consider customers

71



CHAPTER 4

PERSUADING RISK-CONSCIOUS AGENTS: A GEOMETRIC APPROACH

If no one ever took risks,

Michaelangelo would have painted

the Sistine floor.

Neil Simon

4.1 Introduction

Given the inherent informational asymmetries in various online marketplaces between the

platform’s operators and its users, information design can potentially play a important role in

marketplace design. Starting from the seminal papers of Rayo and Segal (2010) and Kamenica

and Gentzkow (2011), the methodology of Bayesian persuasion and information design has

received a lot of recent attention from the academic community. A number of papers have ap-

plied Bayesian persuasion to various application contexts, such as engagement/misinformation

in social networks (Candogan and Drakopoulos 2017), queueing systems (Lingenbrink and

Iyer 2018a), and online retail (Lingenbrink and Iyer 2018b, Drakopoulos et al. 2018).

In most of the previous work, the standard assumption is that the agent being persuaded is

an expected utility maximizer. Although this assumption is well-supported from a theoretical

perspective via axiomatic characterizations (Machina 1995), it is conventionally accepted that

human behavior is not adequately explained by the central tenets of the theory. In particular,

there is a long line of work in theoretical economics literature that studies systematic biases in

human behavior that have been well-documented empirically (Kahneman and Tversky 1972,

Tversky and Kahneman 1992, Rabin 1998, Genesove 2001). Owing to this disparity between

human behavior and the expected utility model, the methodology of Bayesian persuasion
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may not satisfactorily apply to information design problems in real marketplaces and other

practical settings.

Motivated by this concern, our main goal in this chapter is to extend the methodology of

Bayesian persuasion to settings where the receiver may not be an expected utility maximizer.

Specifically, we allow for general models of the receiver’s utility under uncertainty, where

the receiver’s utility is a general function of their beliefs. We term such receivers as risk-

conscious.1 The only assumption we make on the receiver’s utility is that it is continuous

in the receiver’s belief. With this assumption, we study the sender’s persuasion problem of

optimally sharing information about payoff-relevant uncertainty with the receiver to affect

the latter’s actions.

When agents are expected utility maximizers, a revelation-principle style argument is

often invoked to reduce the set of possible messages (i.e., signals) the sender might send to

the set of actions available to the receiver. This reduction simplifies the sender’s optimization

problem substantially, and the resulting problem can be written as a linear program with one

obedience constraint corresponding to each receiver action. In contrast, with risk-conscious

agents, due to the non-linearity of the receiver’s utility, we note that the revelation-principle

style argument fails to hold. Because of this, one is forced to consider signaling schemes

where the set of signals could be as large as the set of all beliefs for the agent. In turn, this

renders the usual approach to finding the optimal signaling scheme ineffective.

The main contribution of this chapter is in overcoming this technical challenge by adopting

a more direct geometric approach. In particular, for general persuasion settings, we show that

the sender’s problem can be reduced to solving a convex program in variables that denote the

joint probability of the underlying state and the receiver’s actions, and whose optimal solution

can be decomposed to obtain the optimal signaling scheme. Using this characterization, and

1We emphasize that this is different from risk-aversion modeled as expectation of a concave function. Any
such utility function must necessarily be linear in the beliefs.
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results from convex analysis, we further show that the number of signals in the optimal

signaling scheme is at most the product of the number of states and the number of actions

available to the receiver.

We formulate a convex program with domain the convex hull of the set of beliefs where

each fixed action is optimal for the receiver. For general persuasion settings, this set might be

quite complex. To understand the implications of our model, we study a specific persuasion

setting, namely binary persuasion, where the receiver’s actions are binary a ∈ {0, 1}, and

the sender always prefers that the receiver choose action 1 over 0. Under a mild convexity

assumption on the receiver’s utility function, we show that the convex optimization problem

obtained in fact reduces to a linear program whose solution can be efficiently computed.

Furthermore, by analyzing this linear program, we obtain a canonical construction to identify

the set of signals that the optimal signaling scheme adopts in any binary persuasion setting.

This canonical set of signals involves a combination of pure signals, which fully reveal the

underlying state, and binary signals, which induce in the receiver uncertainty between two

pure states. Finally, we show that in contrast to expected utility maximizing receivers, a

hesitant risk-conscious receiver can sometimes be fully persuaded to choose a = 1, even if the

optimal action is a = 0 under her prior beliefs.

To illustrate our methodology, we consider persuasion in a setting with endogenous

priors. In particular, we analyze the model of a queueing system introduced in Lingenbrink

and Iyer (2018a), where the service provider seeks to persuade arriving customers to join

an unobservable single server queue to wait for service. Inspired by the literature on the

psychology of waiting in queues (Maister et al. 1984), we extend their model to allow for

customers with general risk-conscious utility. We show that our theoretical results carry

over to this setting, despite the state space being infinite and the endogeneity of the prior.

We investigate the special case where the customer has a mean-stdev utility (Nikolova 2010,

Nikolova and Stier-Moses 2014, Cominetti and Torrico 2016), where her utility for joining
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the queue is the sum of her mean waiting time and a multiple of its standard deviation. We

numerically find that the optimal signaling scheme has an interesting “sandwich” structure

that induces an ordering among the various “join” signals (i.e., signals for which the customer’s

optimal action is to wait for service) in terms of the variance of the resulting waiting times.

4.1.1 Literature Review

Our results contribute to the study of Bayesian persuasion (Kamenica and Gentzkow 2011,

Rayo and Segal 2010, Bergemann and Morris 2018, 2016a, Taneva 2019, Doval and Ely

2016). Our work particularly takes influence from Kamenica and Gentzkow (2011), where

the sender’s choice of an optimal signaling scheme is considered geometrically: the optimal

signaling scheme can be viewed as a Bayes-plausible distribution of beliefs. Additionally,

our work uses a reduction to a linear program similar to that done in Kolotilin et al. (2016).

For a review on the general methods of Bayesian persuasion and information design, see

Kamenica (2018). For a methodological approach to Bayesian persuasion in finite settings, see

Bergemann and Morris (2018) and Taneva (2019). Bayesian persuasion has been applied to

many operational settings, such as where the sender seeks to persuade the receiver to engage

in an online platforms (Candogan and Drakopoulos 2017), prepare for a potential disaster

(Alizamir et al. 2018), join a queue (Lingenbrink and Iyer 2018a), fairly price-discriminate

(Bergemann et al. 2015), make a purchase with limited inventory (Lingenbrink and Iyer 2018b,

Drakopoulos et al. 2018), or participate in a matching platform (Romanyuk and Smolin 2018),

in addition to many other settings.

In Bayesian persuasion, the receiver is generally treated as an expected utility maximizer

and has some function over states of which she is maximizing the expectation. This does

not cover cases where the receiver’s utility function cannot be expressed as an expectation of

the state. Machina (1995) outlined the limitation of this treatment, and showed that these
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models assume a “linearity in the probabilities.” In our work, we consider a risk-conscious

customer who may neither be risk-neutral or have this linearity in probabilities.

This form of utility function is closely related to the notion of risk measure in financial

mathematics (Föllmer and Schied 2011). In finance, apart from expected return, an investor

might also care about measures that are non-linear functions of the distribution such as

standard deviation of return (Markowitz 1952), value at risk (Jorion 2006), and expected

shortfall (Carlo Acerbi 2002). Similarly, our risk-conscious agent’s utility can involve non-

linear functions of the distribution such as variability of payoff. Nevertheless, there are

differences. To be a good measure of financial risk, a risk measure in finance should be

coherent, that is, it should satisfy a number of properties that make sense in the context

of portfolio management. Many coherent risk measures (Wang 1996, Ahmadi-Javid 2012)

do not have an interpretation as natural descriptions of human behavior. Conversely, and

perhaps more importantly, utilities do not have to be coherent to empirically capture aspects

of human decision-making. Prospect theory (Kahneman and Tversky 1979, Tversky and

Kahneman 1992), the most widely used model in behavioral economics, is not coherent.

Finally, in this chapter we apply our results to a specific Bayesian persuasion problem:

signaling in an M/M/1 queue with risk-conscious customers. Maister et al. (1984) suggested

people do not treat wait-time in a queue in a linear fashion, and hence it is a setting our

results have practical importance. We adapt the model from Lingenbrink and Iyer (2018a)

and use the mean-standard deviation risk measure used in Nikolova and Stier-Moses (2015)

to benchmark our results against the no-information and full-information signaling schemes.

Note that in this setting, the state space is infinite, unlike our other results. And, as Gentzkow

and Kamenica (2016) suggested, our standard approach is difficult with an infinite state

space, since it may involve calculating a concave closure on the infinite-dimensional space of

distributions over the state space. However, our results do hold in this setting.
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4.2 Model

In the following, we present the model of Bayesian persuasion with risk-conscious agents.

Our development of the model follows closely to that of the standard Bayesian persuasion

setting Kamenica and Gentzkow (2011), Kamenica (2018).

4.2.1 Setup

We consider a persuasion problem with one sender and one receiver. Let X be a payoff-

relevant random variable with support on a known set X . We assume that neither the

receiver nor the sender observes X. However, as we describe below, the sender has more

information about X than the receiver, and seeks to use this information to influence the

receiver’s actions.

Formally, we assume that the distribution of X depends on the state of the world ω̄,

which is in the finite set Ω, and is observed by the sender but not the receiver. We denote the

distribution of X, conditional on ω̄ = ω, by Fω. The distributions {Fω : ω ∈ Ω} are commonly

known between the sender and the receiver, and both share a common prior µ∗ ∈ ∆(Ω)2

about the state of the world ω̄. For each µ ∈ ∆(Ω), we let Fµ be the distribution of X if ω̄ is

distributed as µ, and let Xµ denote a variable distributed as Fµ. It follows immediately that

Fµ =
∑
ω µ(ω)Fω.

As in the standard Bayesian persuasion setting, we assume that the receiver is Bayesian

and that the sender can commit to a signaling scheme to affect receiver’s choice of an action

(which is described below in detail). A signaling scheme (S, π) consists of a signal space S

and a joint distribution π ∈ ∆(Ω × S) such that the marginal of π over Ω equals µ∗: for

2Throughout, for any set S, we let ∆(S) denote the set of probability distributions over S. When S is
finite, we consider ∆(S) as a subset of R|S|, endowed with the Euclidean topology.
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each ω ∈ Ω, π(ω, S) = µ∗(ω). Specifically, we assume that, if the realized state is ω̄ = ω,

the sender draws a signal s̄ ∈ S according to the conditional distribution π(·|ω̄ = ω), and

conveys it to the receiver. For simplicity of notation, we denote a signaling scheme (S, π)

by the joint distribution π, and let πω ∈ ∆(S) denote the conditional distribution of s̄ given

ω̄ = ω. Throughout, we assume that the sender’s commits to a signaling scheme prior to

observing the state ω̄, and that the sender’s choice π of the signaling scheme is common

knowledge among the sender and the receiver.

As mentioned above, we assume that the receiver is Bayesian. Given the sender’s signaling

scheme π, upon observing the signal s̄ = s, the receiver updates her belief about the state

using Bayes’ rule (whenever possible) from her prior µ0 to posterior µs(·) ∈ ∆(Ω). In

particular, we have for all ω ∈ Ω,

µs(ω) =
π(ω, s)

∑
ω′∈Ω π(ω′, s)

, (4.1)

whenever the denominator on the right-hand side is positive.3 Note that this implies that

upon receiving the signal s̄ = s, the receiver believes that the payoff-relevant variable X is

distributed as Fµs
.

4.2.2 Actions, strategy and utility

Upon observing the signal s̄, the receiver chooses an action a ∈ A, where the set of actions A

is assumed to be finite. Given a signaling scheme π, the receiver’s strategy a(·) specifies an

action4 a(s) for each realization s ∈ S of the signal s̄.

We let v(ω, a) denote the sender’s utility in state ω̄ = ω when the receiver chooses the

action a ∈ A. Furthermore, we assume that the sender is an expected utility maximizer.

3We let µs ∈ ∆(Ω) be arbitrary if the denominator is zero.
4Although our definition implies a pure strategy, we can easily incorporate mixed strategies where the

receiver chooses an action at random. We suppress this technicality for the sake of readability.
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(One can represent the utility function v(ω, a) as an expectation of a utility function v̂(X, a)

over the payoff-relevant variable X and the action a, conditional on ω̄ = ω; we suppress the

details for brevity.)

Our point of departure from the standard framework is in the definition of the receiver’s

utility. Specifically, we relax the assumption that the receiver is an expected utility maximizer;

as we describe next, our setup allows for more general models of receiver’s utility over the

uncertain outcome X. We refer to such receivers as being risk-conscious.

Formally, for any belief µ ∈ ∆ of the receiver, we assume that the receiver’s utility upon

taking an action a ∈ A is given by ρ̂(Fµ, a) ∈ R. For notational simplicity, we define the

utility function ρ : ∆(Ω) ×A → R as ρ(µ, a) , ρ̂(Fµ, a). Given a belief µ, we assume that the

receiver chooses an action a ∈ A that achieves the highest utility ρ(µ, a).

Note that a receiver is an expected utility maximizer if and only if, for each a ∈ A, the

utility function ρ(µ, a) is linear5 in µ. In particular, there exists a function u : X ×Ω×A → R

such that ρ(µ, a) = E [u(X, ω̄, a)|ω̄ ∼ µ] for all µ ∈ ∆(Ω) and a ∈ A, if and only if the

receiver is an expected utility maximizer (with vNM utility function u). Our setup therefore

includes as a special case the standard Bayesian persuasion framework with an expected

utility maximizing receiver. However, the generality of our setting allows us to capture a

much wider range of receiver behavior.

As an illustration, consider the setting of a customer deciding whether or not to wait

for service in a queue. The receiver’s utility depends on her unknown wait time X, and

suppose the queue-operator observes some correlated feature ω (congestion, server availability,

etc). A natural model Nikolova (2010), Nikolova and Stier-Moses (2014), Cominetti and

Torrico (2016) for a risk-conscious customer posits that the customer only waits for service if,

5Note that if ρ(µ, a) is a utility function of an agent, then so is g(ρ(µ, a)) for any increasing function
g : R→ R. Thus, this linearity holds only up to an increasing transformation. We suppress such (irrelevant)
transformations for the sake of clarity.
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given her beliefs, the mean of her waiting time plus a multiple of its standard deviation is

below a threshold. (Such a behavioural model may arise from the customer’s requirement for

service reliability, or from her desire to plan her day subsequent to service completion.) This

model can be captured in our setting by letting A = {0, 1} and assuming, for example, that

ρ(µ, 1) = τ −
(
E[Xµ] + β

√
Var(Xµ)

)
and ρ(µ, 0) = 0. It is straightforward to check that

ρ(µ, 1) is not linear in µ.

Throughout this chapter, we make the following assumption on ρ:

Assumption 4.1. For each a ∈ A, the utility function ρ(·, a) is continuous.6

4.2.3 Persuasion game

We are now ready to describe the sender’s persuasion problem. First, we require that for any

choice of the signaling scheme π, the receiver’s strategy maximizes her utility: for each s ∈ S,

we have

a(s) ∈ arg max
a∈A

ρ(µs, a). (4.2)

We call any strategy that satisfies (4.2) an optimal strategy for the receiver. Given an optimal

strategy a(·), the sender’s expected utility for choosing a signaling scheme π is given by7

E[v(ω̄, a(s̄))|(ω̄, s̄) ∼ π].

The sender seeks to choose a signaling scheme π that maximizes her expected utility, assuming

that the receiver responds with an optimal strategy.8 Thus, the sender’s persuasion problem

can be posed as

6Here, continuity is with respect to the Euclidean topology on ∆(Ω).
7We use the notation E[f(Y )|Y ∼ µ] for the expectation of f(Y ) where Y is distributed as µ.
8When the receiver has multiple optimal strategies, we assume that the sender chooses her most preferred

one; the literature refers to this as the sender-preferred subgame-perfect equilibrium Kamenica and Gentzkow
(2011) with a strategy satisfying (4.2).
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max
π∈∆(Ω×S)

E[v(ω̄, a(s̄))|(ω̄, s̄) ∼ π]

subject to, a(s) ∈ arg max
a∈A

ρ(µs, a), for all s ∈ S,

π(ω, S) = µ∗(ω), for all ω ∈ Ω.

(4.3)

Our main goal in this chapter is to find and characterize the sender’s optimal signaling

scheme to the persuasion problem (4.3). Note that this problem, as posed, is challenging,

as it requires first choosing an optimal set of signals S, and a joint distribution π over

Ω × S. Without an explicit bound on the cardinality of set S, the persuasion problem seems

intractable. In the next section, we reframe the problem to obtain a tractable formulation.

4.3 Towards a tractable formulation

In Bayesian persuasion literature, the receiver is treated as an expected utility maximizer,

and a revelation-principle style argument is frequently used to restrict attention to signaling

schemes to ones where the signal space S satisfies |S| = |A|. Before we discuss our approach

for general risk-conscious agents, we provide a more detailed discussion of this argument, and

discuss why it fails in our setting.

The revelation-principle style argument rests on the following observation: when the

receiver is an expected utility maximizer, if two signals s1 and s2 both lead to the same

optimal action a(s1) = a(s2) = a, then a is still an optimal action for the receiver if the

signaling scheme reveals only that s̄ ∈ {s1, s2} whenever it was supposed to reveal s1 or s2.

This property is straightforward to show by using the linearity of the utility function ρ(µ, a)

for expected utility maximizers. One can then use this property to coalesce all signals that

lead to the same optimal action for the receiver into an action recommendation. Such a

coalesced signaling scheme has at most |A| signals, and moreover, the agent’s optimal strategy

is obedient, i.e., it is optimal for the agent to follow the action recommendation.
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However, when the receiver is risk-conscious, the preceding argument may no longer hold.

This is because, when signals with same optimal action are coalesced, the resulting posterior

of the receiver on the coalesced signal changes, and without linearity, the receiver’s optimal

action may change (Nikolova 2010). Since the receiver’s actions may change, it no longer

suffices to only consider signaling schemes with action recommendations.

Despite this difficulty, a version of the preceding observation, which we term coalescence,

continues to hold with a risk-conscious receiver. To see this, observe that if two signals s̄ = s1

and s̄ = s2 lead to the same posterior µ ∈ ∆(Ω) for the receiver, then the receiver’s posterior

is still µ if the signaling scheme reveals only that s̄ ∈ {s1, s2} whenever it was supposed to

reveal s1 or s2. This coalescence property follows immediately from the fact that the receiver’s

posterior beliefs are expectations and expectations are linear. Thus, using the same argument

as before, the coalescence property allows us to coalesce all signals that lead to the same

posterior belief of the receiver into a belief recommendation. In such a coalesced signaling

scheme, we can take the signal space S to be ∆(Ω), the set of posteriors. Furthermore, in

such a scheme, if the receiver is recommended a belief µ, her posterior belief is indeed µ.

Summarizing the preceding discussion, we can write the sender’s persuasion problem (4.3)

as

max
π∈∆(Ω×∆(Ω))

E[v(ω̄, a(s̄))|(ω̄, s̄) ∼ π]

subject to, a(s) ∈ arg max
a∈A

ρ(µs, a), for all s ∈ ∆(Ω),

π(ω,∆(Ω)) = µ∗(ω), for each ω ∈ Ω,

µs = s, for all s ∈ ∆(Ω).

(4.4)

Although we have characterized the set of signals, this is still a challenging problem because

of the size of the set ∆(Ω × ∆(Ω)). To make further progress, we use the notion of Bayes-

plausibility introduced by Kamenica and Gentzkow (2011). We state the following result,

without proof, from Kamenica and Gentzkow (2011):

Lemma 4.1 (Bayes-plausibility Kamenica and Gentzkow (2011)). A signaling scheme π ∈
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∆(Ω × ∆(Ω)) satisfies the condition µs = s for almost all s ∈ ∆(Ω), only if the measure

η(·) = π(Ω, ·) ∈ ∆(∆(Ω)) is Bayes-plausible, i.e., only if the following condition holds:

E[s̄(ω)|s̄ ∼ η] = µ∗(ω), for each ω ∈ Ω.

Conversely, for any Bayes-plausible measure η, the signaling scheme defined as π(ω, ds) =

s(ω)η(ds) satisfies µs = s for all s ∈ ∆(Ω).

The preceding lemma allows us to optimize over the space of Bayes-plausible measures

η ∈ ∆(∆(Ω)). These are probability measures over the set of posteriors ∆(Ω) with the property

that the mean of the distribution of the induced posteriors equals the prior. Furthemore,

observe that for any Bayes-plausible measure η, the sender’s expected utility under the

corresponding signaling scheme π(ω, ds) = s(ω)η(ds) can be written as

E[v(ω̄, a(s̄))|(ω̄, s̄) ∼ π] = E
[
E [v(ω̄, a(s̄))|ω̄ ∼ s̄]

∣∣∣ s̄ ∼ η
]

= E


∑

ω∈Ω

s̄(ω)v(ω, a(s̄))
∣∣∣∣ s̄ ∼ η


 .

Thus the sender’s expected utility can be written as a function of the receiver’s strategy and

the probability measure η. Taken together, we obtain an intermediate reformulation of the

sender’s problem:

max
η∈∆(∆(Ω))

∑

ω∈Ω

E
[
s̄(ω)v(ω, a(s̄))

∣∣∣ s̄ ∼ η
]

subject to, a(s) ∈ arg max
a∈A

ρ(µs, a),

E[s̄(ω)|s̄ ∼ η] = µ∗(ω), for each ω ∈ Ω.

(4.5)

To state our first result, we need a definition and some notation. First, define the following

sets:

Pa ,

{
µ ∈ ∆(Ω) : a ∈ arg max

a′∈A
ρ(µ, a)

}
, for each a ∈ A.

The set Pa denotes the set of posteriors for which the action a ∈ A is optimal for the receiver.

Note that, by the continuity of ρ(·, a), the set Pa is closed (and hence, compact) for each
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a ∈ A. Morever, we have ∪a∈APa = ∆(Ω) and if µ ∈ Pa ∪ Pa′ , then both actions a and a′ are

optimal for the receiver with posterior µ. Next, we need some notation: for any set A ∈ Rm,

let Conv(A) denote the convex hull of A, defined as:

Conv(A) =



y : y =

j∑

i=1

λixi, for some j ≥ 1, λi ≥ 0, xi ∈ A for all 1 ≤ i ≤ j and
j∑

i=1

λi = 1





Then, we have the following lemma, which essentially states that corresponding to each Bayes’

plausible measure, there exists a real ba and a vector ma for each action a such that the

sender’s utility under η can be written as a bi-linear function of ma and ba. Thus, the lemma

allows us to directly optimize over ma and ba, instead of over Bayes-plausible measures η.

Lemma 4.2. For any Bayes-plausible measure η ∈ ∆(∆(Ω)) and optimal receiver strategy

a(·), there exists {(ba,ma)}a∈A, with ba ≥ 0 and ma ∈ Conv(Pa) for each a ∈ A, such that

∑

a∈A

bama = µ∗, (4.6)

E
[
s̄(ω)v(ω, a(s̄))

∣∣∣s̄ ∼ η
]

=
∑

a∈A

bama(ω)v(ω, a) for each ω ∈ Ω. (4.7)

Conversely, for any {(ba,ma) : ba ≥ 0 and ma ∈ Conv(Pa) for each a ∈ A} satisfying (4.6),

there exists a Bayes-plausible measure η and an optimal receiver strategy a(·) such that (4.7)

holds.

Before proving the lemma, we provide some interpretation for the quantities ma and ba.

For each a, the quantity ba denote the probability that the receiver plays action a under the

optimal strategy, when the sender uses the Bayes-plausible measure η. Similarly, ma denotes

the distribution of the state ω̄, conditioned on the receiver choosing action a. Note that ma

may not correspond to any actual posterior that the receiver holds about the state. However,

as we show in the following proof, each ma corresponds to the mean of all posteriors that the

receiver holds conditioned on her playing action a. Figure 4.1 gives some geometric intuition

for these quantities, as well as the distributions η0 and η1 introduced in the following proof.
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with support on Pa, and Pa is closed and compact. Finally, note that for each ω ∈ Ω,

∑

a∈A

bama(ω)v(ω, a) =
∑

a∈A

ba E[s̄(ω)|s̄ ∼ ηa]v(ω, a)

=
∑

a∈A

ba E[s̄(ω)v(ω, a(s̄))|s̄ ∼ ηa]

= E
[
s̄(ω)v(ω, a(s̄))

∣∣∣s̄ ∼ η
]
,

where the first equality follows from the fact that a(s̄) = a when s̄ ∼ ηa, and the second

equality follows from the fact that
∑
a∈A baηa = η.

Conversely, suppose we have {(ba,ma)}a∈A with ba ∈ [0, 1] and ma ∈ Conv(Pa) with

∑
a∈A bama = µ∗. By the definition of the convex hull, ma ∈ Conv(Pa) implies the existence

of {(µai , λ
a
i ) : i = 1, · · · , ja} such that µai ∈ Pa and λai ≥ 0 for each i ≤ ja with

∑ja
i=1 λ

a
i = 1

and ma =
∑ja
i=1 λ

a
iµ

a
i . Define η ∈ ∆(∆(Ω)) to be the discrete distribution that selects the

posterior µai with probability baλ
a
i . Then, we have for all ω ∈ Ω,

E[µ̄(ω)|µ̄ ∼ η] =
∑

a∈A

ja∑

i=1

baλ
a
iµ

a
i (ω) =

∑

a∈A

ba




ja∑

i=1

λaiµ
a
i (ω)


 =

∑

a∈A

bama(ω) = µ∗(ω).

This proves the Bayes-plausibility of η. Finally, define the strategy a(·) : ∆(Ω) → A so that

a(µai ) = a for each i ≤ ja and a ∈ A, and for other values of µ, let a(µ) be an arbitrary

element in arg maxa∈A ρ(µ, a). Since µai ∈ Pa, it is straightforward to verify that the strategy

a(·) is optimal. Finally, we have

∑

a∈A

bama(ω)v(ω, a) =
∑

a∈A

ba

ja∑

i=1

λaiµ
a
i (ω)v(ω, a)

=
∑

a∈A

ja∑

i=1

(baλ
a
i ) · µai (ω) · v(ω, a(µai ))

=
∑

a∈A

ja∑

i=1

η(µai ) · µai (ω) · v(ω, a(µai ))

= E [s̄(ω)v(ω.s̄)|s̄ ∼ η] .

Here, the first equation follows from the fact that ma =
∑ja
i=1 µ

a
i λ

a
i , the second equation

follows from the fact that a(µai ) = a, and the third equation follows from the definition of η.

This completes the proof of the lemma. �
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Using the preceding lemma, we can now reframe the sender’s persuasion problem as

max
{ba,ma:a∈A}

∑

ω∈Ω

∑

a∈A

bama(ω)v(ω, a)

subject to,
∑

a∈A

bama = µ∗,

ma ∈ Conv(Pa), ba ∈ [0, 1] for each a ∈ A.

(4.8)

Note that the preceding problem is extremely simple when compared to (4.5); the optimization

is over |A|(1+|Ω|) real variables, and the variables ma belong to a convex set in R|Ω|. Although

this is not yet a convex program because of the bilinear equality constraint, we can convert

it into one by letting ta(ω) = ma(ω)ba, and noticing that ba ∈ [0, 1] and ma ∈ Conv(Pa) if

and only if ta ∈ Conv(P̂a) where9 P̂a = Pa ∪ {0}. Using these expressions, we obtain the

following main theorem:

Theorem 4.1. The sender’s persuasion problem (4.3) can be optimized by solving the following

convex optimization problem:

max
{ta:a∈A}

∑

ω∈Ω

∑

a∈A

ta(ω)v(ω, a)

subject to,
∑

a∈A

ta(ω) = µ∗(ω), for each ω ∈ Ω.

ta ∈ Conv(P̂a), for each a ∈ A.

(4.9)

Proof. Any feasible ta ∈ Conv(P̂a) can be written as ta = bama+(1−ba)0, for some ba ∈ [0, 1]

and ma ∈ Conv(Pa). Then, from Lemma 4.2, we obtain a corresponding Bayes-plausible

η and an optimal strategy for the receiver a(s), for which the sender’s utility equals the

objective of (4.9). �

Recall that the variable ma denotes the mean posterior of the receiver, conditional on her

choosing action a. Furthermore, ba denotes the probability that the receiver chooses action a.

Together this implies that ta(ω) = bama(ω) denotes the joint probability that the receiver

9Here, 0 ∈ R|Ω| is the vector of all zeros.
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takes action a and the realized state is ω̄ = ω. Thus, the reformulated problem (4.9) directly

optimizes the joint probability distribution of the state and the receiver’s actions.

Next, we describe how to get an optimal signaling scheme π from the optimal solution

ta to the problem (4.9). As in the proof of Theorem 4.1, for each a ∈ A, let ma ∈ Conv(Pa)

be such that ta = bama for some ba ∈ [0, 1]. (Note that for ta , 0, the corresponding

ma is uniquely defined.) As in the proof of Lemma 4.2, there exists {µai : i = 1, · · · , ja}

and {λai : i = 1, · · · , ja} for some ja ≥ 1, such that µai ∈ Pa, λ
a
i ≥ 0,

∑
a∈A λ

a
i = 1, and

ma =
∑ja
i=1 λ

a
iµ

a
i . An optimal signaling scheme π is then given by the (discrete) distribution

over ∆(Ω × ∆(Ω)) that chooses (ω̄, s̄) = (ω, µai ) with probability baλ
a
iµ

a
i (ω). Note that

conditional on ω̄ = ω, the optimal signaling scheme π makes the belief recommendation µai

to the receiver with probability

π(s̄ = µai |ω̄ = ω) =
baλ

a
iµ

a
i (ω)

∑
a′∈A ba′λa

′

i µ
a′

i (ω)
.

We note that that in general, the representation of ma as a convex combination of µai ∈ Pa

need not be unique. Since the preceding construction works for any convex decomposition of

ma, we conclude that there may exist multiple optimal signaling schemes for the receiver.

The preceding characterization also allows us to bound the size of the set of signals the

sender needs to use to optimally persuade the receiver:

Theorem 4.2. There exists an optimal signaling scheme π ∈ ∆(Ω × S), where the set S

satisfies |S| ≤ |A| · |Ω|. Specifically, for any a ∈ A, the signaling scheme sends at most |Ω|

signals for which the receiver’s optimal action is a.

Proof. Observe that the set Conv(Pa) ⊆ ∆(Ω) lies in an affine space of dimension R|Ω|−1.

This follows from the fact that ∆(Ω) ⊆ {x ∈ R|Ω| :
∑
ω∈Ω x(ω) = 1}. Since the optimal

ma ∈ Conv(Pa), using Caratheodory’s theorem (Bárány and Onn 1995), it follows that ma

can be written as a convex combination of at most |Ω| points in Pa. That is, there exist
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{µai : i = 1, · · · , ja} and {λai : i = 1, · · · , ja} for some ja ≤ |Ω|, such that µai ∈ Pa, λ
a
i ≥ 0,

∑
a∈A λ

a
i = 1, and ma =

∑ja
i=1 λ

a
iµ

a
i .

As detailed in the paragraph preceding the theorem statement, one can then construct an

optimal signaling scheme using such a convex combination that sends ja ≤ |Ω| signals for

which the receiver’s optimal action is a, for each a ∈ A. Hence, the total number of signals is

at most |Ω| · |A|. �

Remark 4.1. The preceding result can be strengthened as follows: For any set A ∈ R|Ω|,

let Cara(A) denote the minimum value of j such that any point x ∈ Conv(A) can be written

as a convex combination of at most j points in A. Using the same arguments as in the

proof of Theorem 4.2, we can show the existence of an optimal signaling scheme with at

most
∑
a∈A Cara(Pa) signals. Theorem 4.2 follows from Caratheodory’s theorem which states

Cara(A) ≤ dim(A) for any set A, where dim(A) is dimension of the smallest affine space

containing A. Finally, note that Cara(A) = 1 for any convex set A. Thus, in the case of

expected utility maximizing agents, where all sets Pa are convex, we conclude that at most |A|

signals suffice to obtain an optimal signaling scheme.

Finally, we briefly remark on the complexity of finding the optimal solution to the

problem (4.9). Since the optimization problem is convex in the variables {ta}a∈A, this

complexity rests on whether there exists an efficient characterization of the set Conv(P̂a) for

each a ∈ A. Observe that this set is fully determined by the model primitives: in particular,

the utility functions ρ(·, a) for each a ∈ A. Thus, whether an efficient characterization of the

set Conv(P̂a) exists depends solely on the properties of the receiver’s utility functions ρ(·, a)

for each a. In the next section, we show that under some natural convexity properties on the

utility function, one can replace the sets Conv(P̂a) by the convex hull of a finite number of

pre-specified points. Using this, the sender’s persuasion problem can be reduced to a linear

program.
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4.4 Binary persuasion

We now focus on a specific setting that is of practical importance. In this setting, the

receiver’s action space is binary, A = {0, 1} and the sender’s utility is always weakly higher

when the receiver takes action 1: v(ω, 1) ≥ v(ω, 0) for all ω ∈ Ω. This model matches settings

where, independent of the state, the sender seeks to persuade the receiver to engage with

social media platforms (Candogan and Drakopoulos 2017), to join a queue (Lingenbrink and

Iyer 2018a), or purchase a product (Lingenbrink and Iyer 2018b, Drakopoulos et al. 2018).

In the following, we define the receiver’s differential utility ρ̄(·) function as the difference

in the utility between choosing action 1 and action 0:

ρ̄(µ) = ρ(µ, 1) − ρ(µ, 0).

Note that action a = 1 is optimal for the receiver at belief µ if and only if ρ̄(µ) ≥ 0.

4.4.1 Geometry of the convex program

We see in the previous section that we can find the optimal signaling scheme as the solution

to a convex program. However, the convex program had variables in Conv(Pa ∪ {0}), for

each action a. In this section, we show how this space can be reduced if we make a further

assumption about the receiver utility.

Assumption 4.2. The differential utility function, ρ̄(µ), is convex.

When ρ(µ, 1) is convex and ρ(µ, 0) is concave, this assumption holds. Of special note is

letting ρ(µ, 0) = 0, which is a common way of handling a receiver taking an outside option

instead of making the sender-preferred action. Then, Assumption 4.2 requires that ρ(µ, 1) is

convex. Intuitively, convexity of ρ̄ means that the receiver dislikes uncertainty: the utility
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any ω0 ∈ K0 ∩Kc
1 and ω1 ∈ K1, we define

χ(ω0, ω1) = γ(ω0, ω1)ω0 + (1 − γ(ω0, ω1))ω1,

denote the belief over ω0 and ω1 for which the receiver is indifferent. Let K01 to be the set of

these beliefs:

K01 = {χ(ω0, ω1) ∈ ∆(Ω) for some ω0 ∈ K0 ∩Kc
1, ω1 ∈ K1}. (4.10)

With these definitions, we can state the main theorem of this section.

Theorem 4.3. When ρ̄ satisfies Assumption 4.2. the sender’s persuasion problem can be

optimized by solving the following linear program:

max
t0,t1

∑

ω∈Ω

(v(ω, 1) − v(ω, 0))t1(ω)

subject to, t0 ∈ Conv(K0 ∪K01 ∪ {0}),

t1 ∈ Conv(K1 ∪K01 ∪ {0}),

t0(ω) + t1(ω) = µ∗(ω) for each ω ∈ Ω.

(4.11)

To prove this reduction to a linear program, we require two lemmas that describe the

geometry of ∆(Ω). The first lemma shows that the set of beliefs, ∆(Ω), can be viewed as the

union of two regions, each of which is the convex hull of a finite set of points. Its proof is

given in Appendix C.1.1 and, unlike the theorem or the following lemma, does not require

Assumption 4.2.

Lemma 4.3. ∆(Ω) = Conv(K0 ∪K01) ∪ Conv(K1 ∪K01).

Figure 4.3 provides some geometric intuition for this lemma. Clearly, Conv(K0 ∪K01) ∪

Conv(K1 ∪K01) is equal to ∆(Ω) in this setting. However, it is generally not the case that

the intersection Conv(K0 ∪K01) ∩ Conv(K1 ∪K01) = Conv(K01) is a hyperplane. Figure C.1

in Appendix C.1.2 gives an example where |K0| > 1 and dim(Conv(K01)) = dim(∆(Ω)).
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Thus, to prove the result, it suffices to show that optimal solution of each program is a

feasible for the other.

First, consider any optimal solution to (4.11). Since Conv(K0 ∪K01 ∪ {0}) ⊂ Conv(P̂0)

and Conv(K1 ∪K01 ∪ {0}) ⊂ Conv(P̂1), it is a feasible solution to (4.9).

Now, consider any optimal solution to (4.9), {t0, t1}, where t0 = b0m0 + (1 − b0)0 and

t1 = b1m1 + (1 − b1)0, where m0 ∈ Conv(P0), m1 ∈ Conv(P1) and b0, b1 ∈ [0, 1]. By

Lemma 4.4, m1 ∈ Conv(K1 ∪ K01) and hence t1 ∈ Conv(K1 ∪ K01 ∪ {0}). By Lemma 4.3,

m0 ∈ Conv(K0∪K01)∪Conv(K1∪K01). Supposem0 ∈ Conv(K1∪K01) and b0 , 0. Thus, t0 , 0

and the solution has objective value less than 1. Further, µ∗ = b0m0 + b1m1 ∈ Conv(K1 ∪K01)

and the solution t̂ to (4.9), where t̂0 = 0 and t̂1 = t0 + t1 achieves revenue 1. This contradicts

the optimality of t. Thus, if m0 ∈ Conv(K1 ∪ K01), then b0 = 0 and t0 = 0. Hence, we

conclude either b0 = 0 or µ0 ∈ Conv(K0 ∪K01), and thus t0 ∈ Conv(K0 ∪K01 ∪ {0}), and the

solution is a feasible solution of (4.11). �

4.4.2 Structural Characterizations

The formulation of linear program (4.3) allows the optimal signaling scheme to be found

much easier. Further specification of a Bayesian persuasion problem may allow that linear

program to be further reduced. Additionally, Theorem 4.3 provides several implications about

the structure of the optimal signaling scheme.

Theorem 4.3 suggests there is a canonical set of signals that any optimal signaling scheme

will use: K1 ∪ K0 ∪ K01 (when µ∗
< P1, K0 ∪ K01). To see this, recall that (4.3) restricted

t0 and t1 to Conv(K0 ∪K01 ∪ {0}) and Conv(K1 ∪K01 ∪ {0}), respectively. Then, the mean

posteriors m0 and m1 are in Conv(K0 ∪K01}) and Conv(K1 ∪K01), respectively. This implies

that m0 can be fully expressed as the mean of signals in K1 ∪K01, and similarly m1 can be
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The signaling scheme that induces posterior s1 with probability γ and s2 with probability

1 − γ is Bayes-plausible, and thus is a valid signaling scheme. Under this signaling scheme,

at both s1 and s2, the receiver strictly prefers a = 1. Hence, the sender can fully persuade

the receiver with the receiver strictly preferring a = 1 under both posteriors, even though she

would have chosen a = 0 under her prior µ∗. Furthermore, this differs from Proposition 5

of ? which states that with an expected utility maximizing receiver, whenever the receiver

takes a = 1, then the receiver is indifferent between at least two actions.

4.5 Signaling in Queues

To illustrate our methodology, we now apply our methods to setting of an unobservable

M/M/1 queue where arriving customers must choose between joining or balking after being

sent a signal by the principal. Customers frequently treat uncertain wait times as worse than

longer, certain wait times, as empirically shown by Maister et al. (1984). Hence the question

of how to best persuade customers to join a queue is an good application of our results.

4.5.1 Queueing Model

Like in Lingenbrink and Iyer (2018a), a service provider sees potential customers who arrive

according to a Poisson process of rate λ. The service provider is limited on the rate they can

provide service (they have a single server that takes time exponentially distributed at rate

1), so customers who arrive when the server is busy may wait in a first-in first-out queue to

attain service. Upon arrival, each customer decides whether to wait in the queue or leave

the system without obtaining service. We consider the case where customers cannot observe

the queue length before making their decision. Instead, the service provider can observe the

length and communicate this information to arriving customers. For this setting, the set
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of states are the set of possible queue lengths, and the customer’s payoff-relevant random

variable is their wait time. The service provider aims to maximize throughput through the

system.

There are two key differences between the settings we have considered and this M/M/1

queue setting: an endogenous prior and an infinite set of states Ω. The endogenous prior

changes the constraint t0(ω) + t1(ω) = µ∗(ω) for all ω in the convex optimization program

(4.9) to λt1(ω) = t0(ω + 1) + t1(ω + 1) for all ω.

Unlike the model we have used, the set of non-negative numbers is not finite. The proof

provided of Lemma 4.3 depended on the finiteness of Ω. However, with the additional

structure that the queue setting provides (notably that K1 is finite), we can prove the result

regardless. In fact, we can prove an analogous theorem to Theorem 4.3. The full argument is

given in Appendix C.1.3.

We can show a very similar result to Lingenbrink and Iyer (2018a). The optimal signaling

scheme has a very specific form.

Theorem 4.4. If Assumption 4.2 is satisfied and K1 is finite, the optimal signaling scheme

is a threshold mechanism: there exists a x = m+ ǫ such that

t1(n) =





λnt if 0 ≤ n ≤ m− 1,

ǫλmt if n = m,

0 if n ≥ m+ 1,

t0(0) = 0 and t0(n) = λt1(n − 1) − t1(n) for n ≥ 1. In particular, the customer joins with

probability 1 if n ≤ m, ǫ if n = m+ 1, and 0 if n ≥ m+ 2.

The proof of this theorem is given in Appendix C.1.4. Below, we give numerical results

for a specific receiver utility function.
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Figure 4.5: Optimal Signaling Mechanisms.

4.5.2 Numerical Examples

In this section, we give numerical examples of the optimal signaling schemes for M/M/1

queues and their associated optimal throughputs. We model customers as having utility

given by the mean-stdev risk measure. That is, for some β > 0, let the differential utility

function be

ρ̄(µ) = τ −
(

Eµ[X] + β
√

Varµ[X]
)

(4.12)

where X is a customer’s waiting time and µ is their posterior over ω. We first show that this

differential utility function satisfies Assumption 4.2.

Lemma 4.5. ρ̄(µ) is convex in µ.

The proof is given in Appendix C.1.5. With this lemma, Theorem 4.4 applies.

Figure 4.5 shows the optimal signaling mechanisms for (λ, β, τ) = (1.5, 0.5, 4.5) and

(1.25, 0.25, 3.5) respectively. Each vertical bar shows the probability of sending particular

signals conditional on queue length. For example, in Figure 4.5a, there are 4 join signals,

Join1, Join2, Join3, Join4 and one Leave signal. When the queue length is 4, the queue sends
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Figure 4.6: Comparison of the optimal, the fully-revealing, and the no-information mecha-
nisms.

Join1 with probability 0.233, Join2 with probability 0.185, and Leave with probability 0.582.

Other signal probabilities conditional on queue length can be read from the plot analogously.

We can see from Figure 4.5 that the optimal mechanism is a threshold mechanism: in

both examples, when the queue length is at most 3 the customer always joins, when the queue

length is 4 the customer joins with probability in [0, 1] and when the queue length is higher

than 4 the customer never joins. We formalize and prove this observation in Theorem 4.4.

Figure 4.5 also suggests that under the optimal signaling mechanism, the join signals

have a “sandwich” structure. Namely, the join signals can be ordered Join1, . . . , JoinJ such

that for each j ∈ [J ], the posterior under Joinj puts weight on at most two queue lengths

aj, bj, aj ≤ bj, such that a1 ≤ · · · ≤ aJ and b1 ≥ · · · ≥ bJ . Moreover, the signals are ordered

by riskiness: E[X|Join1] ≤ · · · ≤ E[X|JoinJ ] and Var(X|Join1) ≥ · · · ≥ Var(X|JoinJ) such

that E[X|Joinj] + β
√

Var(X|Joinj) = τ for all j ∈ [J ]. Join1 is the most risky signal with

lowest expected waiting time and highest variability, and JoinJ is the least risky signal with

highest expected waiting time and lowest variability, but all join signals give the customer

the same utility equal to her outside option.
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For completeness, we compare the queue throughput under the optimal signaling mecha-

nism with throughputs under two benchmarks: fully-revealing mechanism, where the queue

operator reveals the queue length exactly to each arriving customer, and no-information,

where the queue operator reveals no information to each arriving customer. The throughputs

under fully-revealing and no-information mechanisms can be computed analytically; the

details are given in Proposition C.1 in Appendix C.1.6.

We can see in Figure 4.6 that under all mechanisms, as β increases, the throughput

decreases: when customers are more risk-conscious, they are less likely to be satisfied with

the queue and join relative to their outside option. Up to a point, persuasion can increase

throughput above what can be achieved under fully-revealing or no-information mechanisms,

but when the risk-consciousness parameter β is high enough, no customer wants to join

the queue under any mechanism because the uncertainty from its own service time alone is

unacceptable, and persuasion no longer increases the sender’s utility.

4.6 Discussion

We consider a general Bayesian persuasion with risk-conscious agents. We find that, unlike

the case with an expected utility maximizing receiver, the sender often requires multiple

signals to persuade the receiver to take an action. We show that the optimal signaling scheme

can be found as the solution of a convex program and give a bound on the number of signals

necessary. In the setting where the receiver can choose only two actions where one of which

is always preferred by the sender, we find that this convex program can be expressed as a

linear program under a mild convexity assumption on the receiver utility. Finally, we consider

signaling in queues and obtain a characterization of the structure of the optimal signaling

scheme.
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In the section on binary persuasion, our results depended on the assumption that ρ̄(µ) =

ρ(µ, 1) − ρ(µ, 0) is convex. Finding the optimal signaling scheme under other forms of ρ̄

remains an interesting problem. A natural question would be when the function is concave,

modeling instances where the sender is persuading the receiver to take a risky action, and the

receiver is risk-seeking. Note that, a concave ρ̄ implies a convex P1. This implies the optimal

signaling scheme need only send one signal to encourage customers to take action a = 1.

However, it is difficult to reduce this problem to a linear program like we did with convex ρ̄;

P1 is convex but is not in general the convex hull of a finite (or countable) set of points.

In this chapter, we considered let the “receiver” be a single agent who was not an expected

utility maximizer. We might also let the “receiver” be a group of agents, each with separate

(possibly expected) utilities. In this context, any a ∈ A denotes an equilibrium among the

group of agents: a = (a1, a2, . . .) where ai is the action taken by agent i. The set Pa then

denotes when equilibrium a is preferred by the group of agents. Then, we can view this as

the sender publicly signaling to the group of agents to convince them to frequently play the

sender-preferred equilibrium.

While we do not treat the receiver as necessarily being an expected utility maximizer, we

do treat the sender as one. An interesting direction for further research would be to see what

occurs when this modeling assumption is relaxed.
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CHAPTER 5

CONCLUSION

Ninety percent of selling is

conviction, and 10 percent is

persuasion.

Shiv Khera

This thesis applies information design and Bayesian persuasion to settings common to

operations research: service systems and online markets. In addition to the directions

mentioned at the end of the individual chapters, there are several more general directions

that would be fruitful for future research.

While each of the three chapters looked at how a firm could maximize revenue in a setting,

firms often care about the utility of its customers. A fully egalitarian utility, that seeks

to maximize the sum of the utilities of the customers, makes the optimal mechanism fully

revealing the state information, since more information only helps customers in a mechanism.

(CITE?). Something in between, with a firm caring about a combination of revenue and

egalitarian utility, may lead to more interesting results.

Additionally, while our results hold in a setting where this service exists in a vacuum,

outside options may exist and may be performing a similar information design calculus. For

example, if one platform acts to restrict information to maximize revenue and finds a solution

with zero customer surplus, it would be easy for another to respond with a mechanism that

gives a small customer surplus and attract more customers. This has been studied (?), but

Treating information design as a game between two competitors could lead to interesting

results.

The results presented in these chapters depend on the assumption that the firm could
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commit to a manner of signaling. Realistically, there exist firms that operate in bad faith

and may signal differently than they promised. How might these firms be discovered, and

how would a credible firm signal to avoid looking like one? One might consider a repeated

game where a firm has a fixed probability of having the ability to commit. During each

repetition of the game, the firm observes the hidden state of the game, a new customer

arrives, and the firm signals to a new customer an action recommendation based on the state.

The committing firm can commit to a manner of signaling, but the non-committing firm

cannot and must choose a strategy that is subgame-perfect. After each occurrence of the

game, the recommendation of the firm and the realization of the state is revealed, and future

customers will have a new belief on the probability the firm can commit. How can a credible

firm simultaneously establish their credibility and generate the maximum revenue?
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APPENDIX A

APPENDIX TO CHAPTER 2

A.1 Proofs

In this section, we provide the proofs of the results in the main body of the chapter. We start

with the proofs of the lemmas in Section 2.3.

Proof of Lemma 2.1. Given a signaling mechanism Σ = (S, σ) and customer equilibrium f ,

consider a new signaling mechanism Σ1 = (S1, σ1), where S1 = S ×{0, 1}, and σ1 : N0 ×S1 →

[0, 1] is given by

σ1(n, s, 1) = σ(n, s)f(s)

σ1(n, s, 0) = σ(n, s)(1 − f(s)).

Now consider the strategy f1 under the signaling mechanism Σ1, where f1(s, 1) = 1 and

f1(s, 0) = 0. We begin by showing that the strategy f1 constitutes a customer equilibrium

under Σ1. First, note that the steady state distribution of the queue under (Σ1, f1) is same

as that under (Σ, f). This follows from the fact that the queue has the same transition prob-

abilities at each state under the two settings. Denote this common steady state distribution

by π∞. From this, we obtain

EΣ1,f1 [h(X∞, p)|(s, 1)] =
∞∑

n=0

π∞(n|s, 1)h(n, p)

=
∞∑

n=0

π∞(n|s)h(n, p)

= EΣ,f [h(X∞, p)|s].

Here, π∞(n|s, 1) and π∞(n|s) denote the conditional probability that there are n customers

in the queue upon seeing a signal (s, 1) and s respectively in the two signaling mechanisms.

110



The second equality follows from the fact that the choice of the second component in σ1 is

independent of the number of customers in the queue.

Note that under Σ1, a customer sees the signal (s, 1) only if f(s) > 0, which implies, from

the fact that f is a customer equilibrium under σ, that EΣ,f [h(X∞, p)|s] ≥ 0. This implies

that EΣ1,f1 [h(X∞, p)|(s, 1)] ≥ 0, and indeed f1(s, 1) = 1 is an optimal action. Similarly, we

obtain that if the customer observes the signal (s, 0) then f1(s, 0) = 0 is indeed an optimal

action. Together, we obtain that the strategy f1 is a customer equilibrium under Σ1.

The proof then follows from the fact that f1 is a pure strategy. �

Proof of Lemma 2.2. From Lemma 2.1, without loss of generality, assume that the customer

equilibrium f is pure. Let S i = {s ∈ S : f(s) = i} for i = 0, 1. Define σ1 : N× {0, 1} → [0, 1]

as follows

σ1(n, i) =
∑

s∈Si

σ(n, s), for i = 0, 1.

Now consider the strategy f1 under the signaling mechanism σ1, where f1(i) = i for i = 0, 1.

By similar argument as in Lemma 2.1, it follows that the steady state distribution under (Σ, f)

is same as that under (Σ1, f1). Denote this steady state distribution by π∞. Thus, it follows

that the two settings are equivalent, if we show that f1 is indeed a customer equilibrium

under Σ1. This follows directly by observing that π∞(n|i = 1) = π∞(n|s ∈ S1), and hence

EΣ1,f1 [h(X∞, p)|i = 1] = EΣ,f [h(X∞, p)|s ∈ S1]

=
∞∑

n=0

π∞(n|s ∈ S1)h(n, p)

=
∑

s∈S1

π∞(s)

π∞(S1)

∞∑

n=0

π∞(n|s)h(n, p)

=
1

π∞(S1)

∑

s∈S1

π∞(s) EΣ,f [h(X∞, p)|s]

≥ 0,
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since EΣ,f [h(X∞, p)|s] ≥ 0 for all s ∈ S1. Here, π∞(s) denotes the probability in steady

state of seeing signal s upon arrival, and π∞(S1) denotes the probability of seeing a signal in

S1. The third equation follows from the law of total probability. From this, we obtain that

f1(1) = 1 is an optimal action on observing a signal 1 under σ1. Similarly, we obtain that

f(0) = 0 is an optimal action on observing 0 under σ1. Together, this implies that f1 is a

customer equilibrium under Σ1 and the result follows. �

Proof of Lemma 2.3. We begin by showing that for any signaling mechanism σ : N0 × S →

[0, 1] feasible for (2.4), there exists a feasible solution π = {πn : n ≥ 0} to the linear program

(2.5) with the same objective value. Note that the steady state distribution πσ∞ of the queue

under σ in the obedient equilibrium satisfies the following detailed balance equation,

πσ∞(n)λσ(n, 1) = πσ∞(n+ 1),

implying that

πσ∞(n) = λn



n−1∏

j=0

σ(j, 1)


 πσ∞(0), (A1)

with πσ∞(0) given by

πσ∞(0) =




∞∑

n=0

λn



n−1∏

j=0

σ(j, 1)






−1

. (A2)

Define π as πn = πσ∞(n) for all n ≥ 0. Clearly πn ≥ 0 for all n ≥ 0 and
∑∞
n=0 πn = 1.

Similarly, using the detailed balance equation, we obtain for any n ≥ 0,

λπn − πn+1 = λπσ∞(n) − πσ∞(n+ 1) ≥ λπσ∞(n, 1)σ(n, 1) − πσ∞(n+ 1) = 0.

Thus, to show feasibility of π, we must verify that (2.5a) and (2.5b) hold. To see this, observe
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that

Eσ[h(X∞, p)I{s = 1}] =
∞∑

n=0

πσ∞(n, s = 1)h(n, p)

=
∞∑

n=0

πσ∞(n)σ(n, 1)h(n, p)

=
1

λ

∞∑

n=0

πσ∞(n+ 1)h(n, p)

=
1

λ

∞∑

n=0

πn+1h(n, p)

=
1

λ

∞∑

n=1

πnh(n− 1, p). (A3)

Here, the third equality follows from the detailed balance condition. Since σ is feasible for

(2.4), we have E[h(X∞, p)|s = 1] ≥ 0. From this, we conclude that
∑∞
n=1 πnh(n− 1, p) ≥ 0,

and hence (2.5a) holds. Similarly, we have

Eσ[h(X∞, p)I{s = 0}] =
∞∑

n=0

πσ∞(n, s = 0)h(n, p)

=
∞∑

n=0

πσ∞(n)(1 − σ(n, 1))h(n, p)

=
∞∑

n=0

(
πσ∞(n) − 1

λ
πσ∞(n+ 1)

)
h(n, p)

=
1

λ

∞∑

n=0

(λπn − πn+1)h(n, p). (A4)

Again, we have used the detailed balance condition in the third equality. Since σ is feasible for

(2.4), we have Eσ[h(X∞, p)|s = 0] ≤ 0. From this and the preceding equalities, we conclude

that (2.5b) holds. Finally, observe that

Eσ[λσ(X∞, 1)] =
∞∑

n=0

λπσ∞(n)σ(n, 1) =
∞∑

n=0

πσ∞(n+ 1) =
∞∑

n=1

πn. (A5)

Thus, we obtain that π is feasible for (2.5), with the same objective value as σ in (2.4).

Next, consider any feasible solution π = {πn : n ≥ 0} for (2.5). We show that there exists

a signaling mechanism σ feasible for (2.4) that attains the same objective value as π. Define

113



σ : N0 × {0, 1} → [0, 1] as

σ(n, 1) =





πn+1

λπn
if πn > 0;

0 otherwise.

In order to verify that the obedience constraints hold for σ, we first compute the steady state

distribution πσ∞ when all customers follow the obedient strategy. Using (A1) and (A2), we

get πσ∞(n) = πn for all n ≥ 0. Thus, from (A3) and (A4) and from the fact that π is feasible

for (2.5), we obtain that Eσ[h(X∞, p)I{s = 1}] ≥ 0 and Eσ[h(X∞, p)I{s = 0}] ≤ 0. After

conditioning on the appropriate event, we obtain that σ satisfies the obedience constraints.

Finally, using (A5), we conclude that σ achieves the same objective value in (2.4) as π in the

linear program (2.5). �

The following lemma is used in the proof of Theorem 2.1 to show that the maximum in

the linear program (2.5) is attained.

Lemma A.1. Let D denote the set of all feasible solutions {πn : n ≥ 0} to (2.5) of the

following form: there exists an N ≥ Mp, such that πn = λπn−1 for all n < N , 0 < πN ≤ λπN−1

and πn = 0 for n > N . (Note N can equal ∞.) Then, the set D is compact under the weak

topology.

Proof. We will show that the set of distributions D is tight. The result then follows from

Prokhorov’s theorem. To show tightness, we prove that for any ǫ > 0, there exists an N such

that for any π ∈ D, we have
∑
n>N πn < ǫ.

Fix an ǫ > 0. First note that if λ < 1, then for any feasible solution π, we have

πn ≤ λnπ0 ≤ λn. Hence, we obtain that for all large enough N ,
∑
n>N πn ≤ ∑

n>N λ
n <

λN/(1 − λ) < ǫ. Thus, for the rest of the proof, suppose λ ≥ 1.

Let N be the first positive integer such that
∑N−1
n=1 λ

nh(n − 1, p) < 0 (since h(n, p) ≤

h(Mp, p) < 0 for all n ≥ Mp, there must be such a value of N). Note that for λ ≥ 1 and for
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π ∈ D, there must be an m < ∞ such that πm < λπm−1. For a feasible π ∈ D, let L be such

that πn = λnπ0 for all n < L, 0 ≤ πL < λπL−1 and πn = 0 for all n > L. If L > N , we have

∞∑

n=1

πnh(n− 1, p) = π0

L−1∑

n=1

λnh(n− 1, p) + h(L− 1, p)πL ≤ π0

N−1∑

n=1

λnh(n− 1, p) < 0,

contradicting the fact that π ∈ D. Thus, for all π ∈ D, we have L ≤ N . and hence

∑
n>N πn = 0 < ǫ. Thus, by Prokhorov’s theorem, the set D is compact. �

The following simple lemma states that the throughput is increasing in the threshold, and

is used in the proof of Theorem 2.3.

Lemma A.2. The throughput of the threshold signaling mechanism σx is monotonically

increasing in x ∈ R+.

Proof. Note that for x = N + q with N ∈ N0 and q ∈ [0, 1], we have πx∞(0) =
(∑N

i=0 λ
i + λN+1q

)−1
, where {πx∞(n) : n ≥ 0} denotes the steady state distribution of

the queue under the signaling mechanism σx. This follows from the fact that under σx, there

are at most N + 1 customers in the queue, with a new customer joining the queue with

probability 1 if the number of customers already in the queue is strictly less than N , and

joining with probability q if the number of customers is equal to N , and balking otherwise.

Thus, πx∞(0) is strictly decreasing in x = N + q. The result then follows from the fact that

throughput satisfies Th(σx) = λ(1 − πx∞(0)). �

A.1.1 Proof of Theorem 2.3

We now present the proof of Theorem 2.3, obtaining analytical expression for the optimal

threshold in the case of linear utility.

Proof of Theorem 2.3. Consider a threshold mechanism σx with x ≥ Mp. We seek to find
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the largest value of x for which the obedient strategy is a customer equilibrium. Then, by

Lemma A.2 and Theorem 2.1, we obtain the threshold mechanism σx is optimal.

To begin, note that since x ≥ Mp, if a customer observes a signal s = 0, then the number

of customers in the queue is at least ⌊x⌋ = Mp, and hence the expected payoff on joining the

queue is at most h(Mp, p) ≤ 0. Hence, leaving on seeing signal s = 0 is indeed optimal.

We have for x = N + q ≥ Mp,

πx∞(n|s = 1) =
λnI{n < N} + qλNI{n = N}

∑
k<N λk + qλN

This implies,

Eσx

[h(X∞, p)|s = 1] =

∑
k<N λ

k(1 − p− c(k + 1)) + qλN(1 − p− c(N + 1))
∑
k<N λk + qλN

Thus, for joining the queue to be optimal for a customer on seeing a signal s = 1, we must

have

∑

k<N

λk(1 − p− c(k + 1)) + qλN(1 − p− c(N + 1)) ≥ 0. (A6)

We consider the following two cases separately:

Case 1: λ = 1. In this case, the equation (A6) becomes

(1 − p− c)N − c

2
N(N − 1) + q(1 − p− c(N + 1)) ≥ 0. (A7)

We first consider the case where q = 0 to find the largest N that satisfies this equation. The

largest such value of N is

N∗ =

⌊
2(1 − p)

c
− 1

⌋
.

Unless the expression inside the floor-operator on the right hand side is an integer, we have

(1 − p− c)N − c
2
N(N − 1) > 0, implying we can set q > 0 and not violate (A7). The largest

value of q = q∗ that can be set is for which (A7) is an equality. (Note that q∗ cannot be equal
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to 1, by definition of N∗.) From this, we obtain the following expression for q∗:

q∗ =
(1 − p− c)N∗ − c

2
N∗(N∗ − 1)

c(N∗ + 1) + p− 1

Case 2: λ , 1. We, again, first consider the case where q = 0 and and seek the largest

value of N that satisfies (A6). For any value N that satisfies (A6), upon adding up the

summations, we obtain

(1 − p)
1 − λN

1 − λ
− c

(
1 − λN

1 − λ
+
λ−NλN + (N − 1)λN+1

(1 − λ)2

)
≥ 0,

which on simplifying yields,

(1 − p− c)(1 − λ)

λc
(1 − λN) ≥ 1 −NλN−1 + (N − 1)λN .

Let α = (1−p−c)(1−λ)
λc

and β = 1−λ
λ

. Then, we obtain after some algebra,

(Nβ + 1 − α)λN ≥ 1 − α. (A8)

Note that if α ≥ 1, implying that λ ≤ 1 − c
1−p

, then the right-hand side is non-negative for all

N ≥ 1. Thus, all values of N ≥ Mp satisfy this equation, and hence we obtain N∗ = ∞. In

other words, the optimal signaling mechanism always signals the customer to join the queue.

Suppose now that α < 1. Then, multiplying both sides of (A8) by
(
λ

1

β

)1−α
> 0 gives us

(Nβ + 1 − α)
(
λ

1

β

)Nβ+1−α
≥ (1 − α)

(
λ

1

β

)1−α
.

Let ψ = Nβ + 1 − α and γ = λ1/β. Note that for all λ , 1, we have γ < 1. The preceding

equation can be written as (1 − α)γ1−α ≤ ψγψ. After multiplying both sides by log(1/γ) > 0

and some algebra, we obtain

ψ log

(
1

γ

)
exp

(
−ψ log

(
1

γ

))
≥ (1 − α) log

(
1

γ

)
exp

(
−(1 − α) log

(
1

γ

))
. (A9)

For x > 0, let H(x) be the function defined implicitly by H(x) exp(−H(x)) = x exp(−x)

with H(x) , x for x , 1. Observe that if x > 1, then H(x) < 1 and if x < 1, then H(x) > 1,

with H(1) = 1.
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Note that if λ > 1, then β < 0, α < 0, which implies 1 − α ≥ 1. Further, we obtain that

for λ > 1, γ ≤ e−1, which implies log(1/γ) ≥ 1. Hence z = (1 − α) log(1/γ) ≥ 1. On the

other hand, if 1 − c
1−p

< λ < 1, then β > 0, 1 − α ∈ [0, 1], and furthermore log(1/γ) ≤ 1.

Hence, z = (1 − α) log(1/γ) ≤ 1. Using these facts, and the definition of H(·), we obtain

from (A9),

H

(
(1 − α) log

(
1

γ

))
≤ ψ log

(
1

γ

)
≤ (1 − α) log

(
1

γ

)
, if λ > 1;

(1 − α) log

(
1

γ

)
≤ ψ log

(
1

γ

)
≤ H

(
(1 − α) log

(
1

γ

))
, if λ < 1.

Using the fact that ψ = Nβ + 1 − α, and noting that β < 0 if λ > 1 and β > 0 if λ < 1, we

get

N ≤ 1

β log
(

1
γ

)
(
H

(
(1 − α) log

(
1

γ

))
− (1 − α) log

(
1

γ

))
.

Since N∗ is the largest such value of N , we have

N∗ =

 1

β log
(

1
γ

)
(
H

(
(1 − α) log

(
1

γ

))
− (1 − α) log

(
1

γ

)) .

Using the definition of the Lambert-W function and its two branches W0 and W−1 (see

Borgs et al. (2014)), it can be shown that for x > 0, we have H(x) = −Wi(xe
−x), where

i = 0 if x > 1 and i = −1 if x < 1. Upon letting κ = (1 − α) log
(

1
γ

)
= (1−p

c
− 1

1−λ
) log(λ),

we obtain

N∗ =

⌊
1

log(λ)

(
Wi

(
−κe−κ

)
+ κ

)⌋
,

where i = 0 if λ > 1 and i = −1 if 1 − c
1−p

< λ < 1.

Finally, observe that unless the expression inside the floor-operator in the expression for

N∗ is an integer, we have
∑
k<N∗ λ

k(1 − c(k+ 1)) > 0, and we can set q > 0 without violating

(A6). The largest value of q = q∗ that can be set is for which (A6) is an equality. (Note that

q∗ cannot be equal to 1, by definition of N∗.) From this, we obtain

q∗ =

∑
k<N∗ λk(1 − p− c(k + 1))

λN∗(c(N∗ + 1) + p− 1)
.
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This completes the proof. �

A.1.2 Proof of Theorem 2.5

In this subsection, we prove Theorem 2.5. The proof follows a similar structure to that of

Theorem 2.2: we use the structure of the optimal state-and-type-dependent pricing mechanism

in a fully observable queue to construct a threshold signaling mechanism (with fixed prices)

that attains the same revenue. As the first step, we analyze the optimal state-and-type-

dependent prices in a fully observable queue, where the service provider sets a price pi(n) for

customer type i and queue-length n. We have the following lemma.

Lemma A.3. The optimal state-and-type-dependent pricing mechanism in a fully observable

queue satisfies

pi(n) =





ui(n) if n < κi;

∞ if n ≥ κi,

(A10)

for some κ = (κ1, . . . , κK) ∈ NK0 . Furthermore, this mechanism is welfare-optimal.

Proof of Lemma A.3. We begin by formulating the pricing problem in a fully observable

queue as an infinite-horizon Markov decision process (MDP) with average rewards. We

consider the embedded discrete time chain with states as follows. For each n ≥ 0 and

i ∈ {1, . . . , K}, let (n, i) denote the state where there are n customers already in the queue

and a customer of type i has arrived. Similarly, for n ≥ 0, let (n, 0) denote the state after

a customer has departed leaving n customers in the queue. Note that the service provider

must choose a price pi(n) ≥ 0 at state (n, i) for n ≥ 0 and i ∈ {1, . . . , K}. (At state (n, 0),

the service provider chooses a dummy action.)

First, note that since limX→∞ ui(X) < 0 for all i, there exists an N such that the ui(n) < 0

for all i and n > N . Since pi(n) > ui(n) for all n > N and each i, no customer will join
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the queue when there are at least N customers already in the queue. Thus, it follows that

the MDP is unichain (Puterman 1994) and the optimal prices can be found by solving the

Bellman equation. Let V denote the average revenue under the optimal pricing mechanism,

and let g(n, i) denote the bias (Puterman 1994) of each state (n, i).

The Bellman equation for the pricing problem can then be written as follows: for each

n ≥ 0 and i ∈ {1, . . . , K}, we have

V + g(n, i) = max
pi(n)≥0


I{pi(n) ≤ ui(n)}


pi(n) +

K∑

j=1

λj
1 + Λ

g(n+ 1, j) +
1

1 + Λ
g(n, 0)




+I{pi(n) > ui(n)}



K∑

j=1

λj
1n + Λ

g(n, j) +
1n

1n + Λ
g(n− 1, 0)




 , (A11)

and

V + g(n, 0) =
K∑

j=1

λj
1n + Λ

g(n, j) +
1n

1n + Λ
g(n− 1, 0). (A12)

Here, we define 1n , I{n > 0} and recall that Λ =
∑K
j=1 λj. The first equation follows from

the fact that if pi(n) ≤ ui(n), a customer of type i will join the queue at state (n, i), yielding

an immediate revenue of pi(n). Subsequently, the queue state transitions to (n+ 1, j) with

probability λj/(1 + Λ) for j ∈ {1, . . . , K}, and to state (n, 0) with probability 1/(1 + Λ). On

the other hand, if pi(n) > ui(n), then the customer does not join the queue at state (n, i),

yielding no immediate revenue and similar subsequent transitions. The second equation

follows from the fact that the service provider has a single dummy action at state (n, 0) that

yields no immediate revenue.

From the Bellman equation, it follows that one can always restrict to pi(n) ∈ {ui(n),∞}:

the price pi(n) = ∞ performs equally as well as any pi(n) > ui(n), and any pi(n) < ui(n) is

strictly dominated by pi(n) = ui(n). Using this, we can write (A11) as

V + g(n, i) = max


ui(n) +

K∑

j=1

λj
1 + Λ

g(n+ 1, j) +
1

1 + Λ
g(n, 0) ,

K∑

j=1

λj
1n + Λ

g(n, j) +
1n

1n + Λ
g(n− 1, 0)


 , (A13)
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where the optimal price is ui(n) if the first term attains the maximum, and ∞ otherwise.

Thus, it remains to show that the optimal pricing mechanism has a threshold structure, i.e.,

pi(n) < ∞ implies pi(m) < ∞ for all m < n.

Substituting (A12) into (A13) and after simplifying, we obtain

g(n, i) = max {ui(n) + g(n+ 1, 0), g(n, 0)} = g(n, 0) + (ui(n) − η(n))+ ,

where η(n) , g(n, 0) − g(n+ 1, 0) for all n. Substituting this expression back into (A12) and

simplifying, we obtain the following equation that holds for all n ≥ 0:

V =
K∑

i=1

λi
1n + Λ

(ui(n) − η(n))+ +
1n

1n + Λ
η(n− 1). (A14)

Note that pi(n) < ∞ if and only if ui(n) ≥ η(n). Thus, to show that the optimal prices have

a threshold structure, we must show that if ui(n) ≥ η(n) for some n, then ui(m) ≥ η(m)

for all m < n. Since ui(n) is non-increasing in n for each i, it suffices to show that η(n) is

non-decreasing in n. We prove this latter statement by induction.

First, note that since limX→∞ ui(X) < 0 for all i ∈ {1, . . . , K}, there exists an N > 0

such that ui(n) < 0 for each i and n > N . By our earlier argument, this implies that optimal

prices satisfy pi(n) = ∞ for all i and n > N , which in turn implies ui(n) < η(n) for all i and

n > N . Then, using (A14), we obtain η(n) = V (1 + Λ) for all n ≥ N . Hence, η(n) ≥ η(n− 1)

for all n > N .

Now suppose η(n) ≥ η(n − 1) for some n ≥ 2. Note that since ui(n) ≤ ui(n − 1), this

implies that (ui(n) − η(n))+ ≤ (ui(n− 1) − η(n− 1))+. From (A14) and using the fact that

n ≥ 2, we obtain

V =
K∑

i=1

λi
1 + Λ

(ui(n) − η(n))+ +
1

1 + Λ
η(n− 1)

≤
K∑

i=1

λi
1 + Λ

(ui(n− 1) − η(n− 1))+ +
1

1 + Λ
η(n− 1)

= V − 1

1 + Λ
η(n− 2) +

1

1 + Λ
η(n− 1).
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Thus, we have η(n− 1) ≥ η(n− 2). This completes the induction step, and we conclude that

η(n) is non-decreasing in n. Thus, if ui(n) ≥ η(n) for some n, then ui(m) ≥ η(m) for all

m < n, and hence the optimal prices have a threshold structure.

Finally, it is straightforward to show that the problem of welfare optimization (where the

service provider performs admission control to maximize social welfare) can be written as a

dynamic program with the same Bellman equation, given by (A12) and (A13). This implies

that the optimal state-and-type-dependent pricing mechanisms is also welfare optimal. �

We conclude with the proof of Theorem 2.5.

Proof of Theorem 2.5. From Lemma A.3, let κ = (κ1, · · · , κK) denote the thresholds in

the optimal state-and-type-dependent pricing mechanism. Let Xκ
i denote the steady state

distribution of the queue under this pricing mechanism.

For the unobservable queue, consider the signaling mechanism σ, where σ(n, i, 1) = I{n <

κi} for each i ∈ {1, · · · , K}, and the fixed (type-dependent) prices pi = E [u(Xκ
∞)|Xκ

∞ < κi].

Using the same argument as in the proof of Theorem 2.2, it is straightforward to show that,

for this setting, obedience is an equilibrium, and that under the obedient equilibrium, the

service provider’s revenue is same as that of the optimal state-and-type-dependent pricing

mechanism.

Finally, since the latter mechanism is welfare-optimal and has zero customer surplus, we

conclude that the mechanism σ and the prices pi together constitute the optimal fixed price

and signaling mechanism. �
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A.2 Comparison of the fully-revealing and the no-information

mechanisms

In this section, we briefly compare the fully-revealing and no-information mechanisms in the

case of linear expected utility u(X) = 1 − c(X + 1) and a fixed price p. Observe that for

p > 1 − c, no customer will join the queue to obtain service, and hence the service provider’s

revenue is zero. We restrict our attention to p ∈ [0, 1 − c].

For the fully revealing mechanism, we find the throughput to be

Thfull = λ

(
1 − λMp

1 − λMp+1

)
,

where Mp =
⌈

1−c−p
c

⌉
. The optimal revenue for the full-information signal is given by

Rfull = max
p

(
λ− λMp+1

1 − λMp+1

)
p.

In the case of the no-information mechanism, a customer strategy is a probability q with

which a customer joins the queue. We can view the queue as a thinned M/M/1 queue with

arrival rate qλ. Recall that the stationary distribution for such a queue is qλ
1−qλ

.

Note that q = 0 is not an equilibrium for p < 1 − c: if so, joining the queue would have

utility 1 − c− p > 0. We see that q = 1 is an equilibrium if and only if the utility for joining

the queue (1 − p − c( λ
1−λ

+ 1)) is at least that of not (0), or, equivalently, if λ ≤ 1 − c
1−p

.

Otherwise, if λ > 1 − c
1−p

, we must have a mixed strategy equilibrium q ∈ (0, 1). For this

to be an equilibrium, the utility for joining the queue (1 − p− c( qλ
1−qλ

+ 1)) must equal the

utility for not joining the queue (0), so that a mixed strategy is optimal. This is equivalent to

q = 1
λ

(
1 − c

1−p

)
. Putting these cases together, we get that for any p ∈ [0, 1 − c], the customer

equilibrium f is given by q = min{ 1
λ
(1− c

1−p
), 1}, with the corresponding throughput given by

Thno−info = min{1 − c
1−p

, λ}. Maximizing the revenue p · Thno−info over values of p ∈ [0, 1 − c],
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we obtain the optimal price p∗ to be

p∗ =





1 − c
1−λ

if λ ≤ 1 − √
c;

1 − √
c otherwise,

with corresponding revenue given by

Rno−info =





λ− cλ
1−λ

if λ ≤ 1 − √
c;

(1 − √
c)

2
otherwise.

From the preceding discussion, we observe that for values where λ < 1 − c
1−p

, we have

Thfull < Thno−info, implying that sharing no information about the queue with customers

achieves higher throughput than revealing the number of customers in the queue. On the

other hand, observe that when p = 1 − c− ǫ for small enough ǫ > 0, we have Mp = 1, and

hence,

lim
λ→∞

Rfull ≥ lim
λ→∞

(1 − c− ǫ)

(
λ− λ2

1 − λ2

)
= 1 − c− ǫ.

However, since
√
c > c+ ǫ for small enough c, we have

lim
λ→∞

Rno−info = (1 − √
c)2 = 1 − 2

√
c+ c < 1 − c− ǫ.

Thus, in this limiting regime, we have that revealing the number of customers in the queue

obtains a higher revenue than not revealing, as seen for large values of λ in Figure 2.1c.
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APPENDIX B

APPENDIX TO CHAPTER 3

B.1 Proofs from Sections 3.3 and 3.4

Proof of Lemma 3.1. We consider the following abstraction: there are N1,max agents (each

with the same prior as the firm’s) from which a set of N1 customers is drawn independently

and uniformly. Intuitively, a customer has one piece of information to update her prior, that

she is present at time 1, which has a higher likelihood when N1 is larger.

To see this concretely, fix a focal agent and let B be the event that the focal agent is

present at time 1. By Bayes rule,

ΦC(q, n1, n2) = P(Q = q,N1 = n1, N2 = n2|B)

=
P(B|Q = q,N1 = n1, N2 = n2) P(Q = q,N1 = n1, N2 = n2)∑

q̂,n̂1,n̂2
P(B|Q = q̂, N1 = n̂1, N2 = n̂2) P(Q = q̂, N1 = n̂1, N2 = n̂2)

(A1)

By definition, P(Q = q,N1 = n1, N2 = n2) = Φ(q, n1, n2). Also, if there are n1 customers

present, the probability the focal agent is one of them is n1

N1,max
, so P(B|Q = q,N1 = n1, N2 =

n2) = n1

N1,max
. Substituting these values in (A1) and canceling the common factor N1,max

yields the lemma statement. �

Proof of Lemma 3.2. Consider a signaling mechanism S = (S, σ) and customer equilibrium

f . We prove this lemma by first showing we can find a signaling mechanism U = (U, υ)

and customer equilibrium g that achieves the same revenue where g is pure. Then we will

construct a signaling mechanism where, further, the signals are binary. Finally, we will

construct a signaling mechanism that is additionally symmetric.

Given a signaling mechanism S = (S, σ) and customer equilibrium f , consider a new

signaling mechanism U = (U, υ), where U = S × {0, 1}. Any t ∈ UN1 can be represented as
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{s, r} where s ∈ SN1 and r ∈ {0, 1}N1 . Then, σ1 is given by

σ1(Q,N1, {s, r}) = σ(Q,N1, s)
N1∏

i=0

(I(ri = 0)(1 − fi(si)) + I(ri = 1)fi(si)) .

Notice that this signaling mechanism is identical to S, but to each customer receiving a signal

s, we are also providing the results of an independent coin flip with odds fi(s). Now consider

the strategy profile g under the signaling mechanism U , where gi(s, 1) = 1 and gi(s, 0) = 0.

We will show g is an customer equilibrium.

First, we will consider the utility of customer i for each action. Assume all other customers

behave as they would under S, so that the expected utility for each action is the same as

before. If our customer is given the signal (s, 1), then fi(s) > 0. Thus, it must be the case

that EC [h(Q,N1, D̂−i)|si = s] ≥ 0, and it is optimal for customer i to buy now. If, instead,

customer i received (s, 0) then fi(s) < 1 and EC [h(Q,N1, D̂−i)|si = s] ≤ 0, so it is optimal

for customer i to wait. Hence, it is optimal for our customer to follow strategy gi and g is an

equilibrium to U .

Given the partial signal s, the probability of customer i choosing to buy now is equal to

what it was under S. Since the partial signals s are sent according to the same mechanism,

S and U achieve the same expected revenue. Also, gi is pure for all i, as desired.

Next, consider a signaling mechanism S = (S, σ) and customer equilibrium f where f

is pure. Let Si,j = {s ∈ S|fi(s) = j} for j = 0, 1 and i ≤ N1. We define a new signaling

mechanism U = (U, υ) where U = {0, 1} and for any t ∈ {0, 1}N1 ,

υ(Q,N1, t) =
∑

s∈SN1

I(sj ∈ Sj,tj
for all j)σ(Q,N1, s).

Notice that upon receiving the signal j, a customer knows their signal under S was in Si,j,

and hence their optimal action is taking action i as they would have under S, assuming all

other players make the same decision they did before. Hence, g is an equilibrium. By how

we defined υ, it achieves the same revenue.
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Finally, consider a signaling mechanism S = ({0, 1}, σ) and customer equilibrium f where

f is pure. We construct a new signaling mechanism, U = ({0, 1}, υ), that does the following:

First it shuffles the labels on customers, then it uses the signaling mechanism S. Let P (t) be

the set of permutations of the tuple t. Then υ is

υ(Q,N1, t) =

∑
s∈P (t) σ(Q,N1, t)

|P (t)| .

It follows that υ(Q,N1, t) ≥ 0 and
∑

t∈{0,1}N1 υ(Q,N1, t) = 1. Next, we see that upon

receiving signal j, it is optimal for customer i to choose action j: no matter which customer i

was relabeled to, it was optimal for that customer to follow action j. Hence, g is an equilibria.

Finally, note that the probability of asking D total customers to join (for any D) is the

same in both settings: we simply shuffled the probability of sending signals with the same D.

Hence, the expected revenue is identical. �

Proof of Lemma 3.3. If q < n, we see that h(q, n, n − 1) = (v − p1)
q
n

+ c > 0. If instead

q ≥ n, then

h(q, n, d− 1) = (v − p1) + c− E

[
min

{
Q− d+ 1

N1 +N2 − d+ 1
, 1

}
(v − p2)

∣∣∣∣∣Q = q,N1 = n

]

≤ (v − p1) + c− E

[
min

{
Q− d

N1 +N2 − d
, 1

}
(v − p2)

∣∣∣∣∣Q = q,N1 = n

]
= h(q, n, d)

and thus h(q, n, d− 1) ≥ 0 implies h(q, n, n− 1) ≥ 0, as desired. �

Proof of Lemma 3.4. We first assume h(q, n, n − 1) ≥ 0. If h(q, n, d − 1) ≤ 0, then

Lemma (3.4.1) holds. If not, suppose h(q, n, d − 1) ≥ 0. We would like to show that

dh(q, n, d− 1) ≤ (d+ 1)h(q, n, d) holds for all d where h(q, n, d− 1) ≥ 0. This would imply

that dh(q, n, d− 1) ≤ nh(q, n, n− 1), as desired.
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Now, suppose q > d. Then, like in the proof of Lemma 3.3,

h(q, n, d− 1) = (v − p1) + c− E

[
min

{
Q− d+ 1

N1 +N2 − d+ 1
, 1

}
(v − p2)

∣∣∣∣∣Q = q,N1 = n

]

≤ (v − p1) + c− E

[
min

{
Q− d

N1 +N2 − d
, 1

}
(v − p2)

∣∣∣∣∣Q = q,N1 = n

]
= h(q, n, d).

Hence, dh(q, n, d− 1) ≤ (d+ 1)h(q, n, d). If d ≥ q, then

dh(q, n, d− 1) = d
(

(v − p1)
q

d
+ c

)
≤ (d+ 1)

(
(v − p1)

q

d+ 1
+ c

)
= (d+ 1)h(q, n, d),

Thus dh(q, n, d− 1) ≤ (d+ 1)h(q, n, d) and dh(q, n, d− 1) ≤ nh(q, n, n− 1), as desired.

Now suppose h(q, n, n− 1) < 0. If q < n, we see that h(q, n, n− 1) = (v − p1)
q
n

+ c > 0,

which is a contradiction. Thus q ≥ n. For any d, we have

h(q, n, d− 1) = (v − p1) + c− E

[
min

{
Q− d+ 1

N1 +N2 − d+ 1
, 1

}
(v − p2))

∣∣∣∣∣Q = q,N1 = n

]

≤ (v − p1) + c− E

[
min

{
Q− d

N1 +N2 − d
, 1

}
(v − p2)

∣∣∣∣∣Q = q,N1 = n

]
= h(q, n, d).

which implies h(q, n, d− 1) ≤ h(q, n, n− 1).

Thus, r(q,n,d)−r(q,n,0)
r(q,n,n)−r(q,n,0)

= d
n

and

dh(q, n, d− 1) ≤
(
r(q, n, d) − r(q, n, 0)

r(q, n, n) − r(q, n, 0)

)
nh(q, n, n− 1)

and hence Lemma (3.4.2) holds. �

Proof of Theorem 3.1. Consider any solution, π, to (3.3). In this proof, we construct a new

solution, π̂ that has a weakly higher payoff for the seller and π̂(q, n, d) = 0 whenever (and

hence σ̂(q̂, n̂, d̂) = 0) whenever h(q, n, n− 1) ≥ 0. Consider the following solution π̂:

π̂(q, n, d) =





0 h(q, n, n− 1) ≥ 0, d , n

Φ(q, n) h(q, n, n− 1) ≥ 0, d = n

π(q, n, d) else
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It follows that this solution satisfies (3.3d) and (3.3c). We consider (3.3a): Consider any

q, n such that h(q, n, n − 1) ≥ 0. By Lemma (3.4.1), dh(q, n, n − 1) ≤ nh(q, n, d − 1) for

all d ≤ n. Since π̂(q, n, n) =
∑n
d=0 π(q, n, d), the change to the left-hand-side of (3.3a) is

∑
(q,n)∈Θ

∑n
d=1 π(q, n, d)(nh(q, n, n− 1) − dh(q, n, n− 1)) ≥ 0, and so (3.3a) is satisfied by π̂.

We next consider (3.3b): We claim each nonzero term in the constraints sum is negative. If

for some n, q, d, (n − d)h(q, n, d)π̂(q, n, d) > 0, then d < n and h(q, n, d) ≥ 0. However, if

h(q, n, d) ≥ 0, then by Lemma 3.3, h(q, n, n − 1) ≥ 0 and π̂(q, n, d) = 0. Hence, (3.3b) is

satisfied by π̂. The change to the objective is
∑

(q,n)∈Θ

∑n
d=0 π(q, n, d)(r(q, n, n)−r(q, n, n)) ≥ 0,

and π̂ is a weakly better solution.

We restrict our attention to π where this transformation is applied. So if π(q, n, d) > 0

and h(q, n, n− 1) ≥ 0, then d = n. The constraint (3.3b) is non-binding, and we can restrict

our attention to the remaining constraints.

Next, suppose h(q̂, n̂, n̂ − 1) < 0, which implies h(q̂, n̂, d) < 0 for all d < n̂ − 1 by

Lemma 3.3. Let γ = r(q̂,n̂,d̂)−r(q̂,n̂,0)
r(q̂,n̂,n̂)−r(q̂,n̂,0)

. Notice that γ ∈ [0, 1]. We then define the solution

π̂(q, n, d) =





0 (q, n, d) = (q̂, n̂, d̂)

π(q̂, n̂, n̂) + γπ(q̂, n̂, d̂) (q, n, d) = (q̂, n̂, n̂)

π(q̂, n̂, 0) + (1 − γ)π(q̂, n̂, d̂) (q, n, d) = (q̂, n̂, 0)

π(q, n, d) else

It follows that this solution satisfies (3.3d) and (3.3c). The change to the left-hand-side of

(3.3a) is π(q̂, n̂, d̂)(γn̂h(q̂, n̂, n̂− 1) − d̂h(q̂, n̂, d̂− 1)) ≥ 0 by Lemma (3.4.2). The change in

objective is

γr(q̂, n̂, n̂)+(1−γ)r(q̂, n̂, 0)−r(q̂, n̂, d̂) = γ(r(q̂, n̂, n̂)−r(q̂, n̂, 0))−(r(q̂, n̂, d̂)−r(q̂, n̂, 0)) = 0,

and hence π̂ has weakly higher utility. �

The proof of Theorem 3.2 depends on Lemma B.1, which states that the gain in firm
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utility from switching from telling n customers to join to telling m customers to join is greater

in magnitude than any decrease in customer utility from the switch.

Lemma B.1. Suppose conditioned on Q, the demands N1 and N2 are independent of each

other. Then for any q and n < m such that h(q, n, n − 1) < 0 and h(q,m,m − 1) < 0, we

have

mh(q,m,m− 1)

nh(q, n, n− 1)
≤ r(q,m,m− 1) − r(q,m, 0)

r(q, n, n− 1) − r(q, n, 0)
(A2)

We now provide the proofs of Theorem 3.2 and Lemma B.1.

Proof of Theorem 3.2. By Theorem 3.1, the optimal signaling mechanism is a solution to the

following linear program:

max
π(q,n,n),π(q,n,0)

∑

q,n

r(q, n, n)π(q, n, n) (A3a)

s.t.
∑

q,n

nh(q, n, n− 1)π(q, n, n) ≥ 0 (A3b)

π(q, n, n) + π(q, n, 0) = Φ(q, n) for all q, n (A3c)

π(q, n, 0) = 0 for all (q, n) s.t. h(q, n, n− 1) ≥ 0 (A3d)

π(q, n, n), π(q, n, 0) ≥ 0 for all q, n (A3e)

Consider any solution π to (A3). Suppose π(q̂, n̂, n̂) > 0 and π(q̂, m̂, 0) > 0 for h(q̂, n̂, n̂−

1) < 0, h(q̂, m̂, m̂− 1) < 0 and n̂ < m̂. We can construct a solution π̂ with higher objective.

We define

π̂(q, n, n) =





π(q̂, n̂, n̂) − ρmin
(

1
ρ
π(q̂, n̂, n̂), π(q̂, m̂, 0)

)
(q, n) = (q̂, n̂)

π(q̂, m̂,m) + min
(

1
ρ
π(q̂, n̂, n̂), π(q̂, m̂, 0)

)
(q, n) = (q̂, m̂)

π(q, n, n) else
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and

π̂(q, n, 0) =





π(q̂, n̂, 0) + ρmin
(

1
ρ
π(q̂, n̂, n̂), π(q̂, m̂, 0)

)
(q, n) = (q̂, n̂)

π(q̂, m̂, 0) − min
(

1
ρ
π(q̂, n̂, n̂), π(q̂, m̂, 0)

)
(q, n) = (q̂, m̂)

π(q, n, n) else

for

ρ =
n̂h(q̂, n̂, n̂− 1)

m̂h(q̂, m̂, m̂− 1)
≤ r(q̂, n̂, n̂) − r(q̂, n̂, 0)

r(q̂, m̂, m̂) − r(q̂, m̂, 0)
,

by Lemma B.1. We see that by construction, π̂ satisfies (A3e) and (A3c). The change to the

left-hand-side of (A3b) is

min

(
1

ρ
π(q̂, n̂, n̂), π(q̂, m̂, 0)

)
(m̂h(q̂, m̂, m̂− 1) − ρn̂h(q̂, n̂, n̂− 1)) = 0,

so π̂ satisfies (A3b) and is a feasible solution for (A3). The change in utility is

min

(
1

ρ
π(q̂, n̂, n̂), π(q̂, m̂, 0)

)
(r(q̂, m̂, m̂) − r(q̂, m̂, 0) − ρ(r(q̂, n̂, n̂) − r(q̂, n̂, 0))) ≥ 0,

and thus π̂ is a weakly better solution. Note that either π̂(q̂, n̂, n̂) = 0 or π̂(q̂, m̂, 0) = 0. We

conclude that for any optimal π, if π(q̂, n̂, n̂) > 0, then π(q̂, m̂, 0) = 0 for all m > n where

h(q̂, m̂, m̂−1) < 0 and h(q̂, n̂, n̂−1). Recalling that π(q, n, d) = σ(q, n, d)Φ(q, n), this implies

that for any q, the optimal signaling mechanism σ has a threshold structure. �

Proof of Lemma B.1. From the proofs above, if h(q, n, n − 1) < 0, then q ≥ n. Thus,

r(q,m,m−1)−r(q,m,0)
r(q,n,n−1)−r(q,n,0)

= m
n

. Next

h(q,m,m− 1) = (v − p1) + c− E

[
min

{
(Q−N1 + 1)

N2 + 1
, 1

}
(v − p2)

∣∣∣∣∣Q = q,N1 = m

]

= (v − p1) + c− E

[
min

{
(Q−m+ 1)

N2 + 1
, 1

}
(v − p2)

∣∣∣∣∣Q = q

]
,

where the second equality follows from the fact that N1 and N2 are independent conditioned

on Q. By expanding and recalling that h(q, n, n− 1) < 0, we see that (A2) is equivalent to

h(q,m,m− 1) − h(q, n, n− 1) ≥ 0.
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We see that, letting f2(n) = P(N2 = n|Q = q),

h(q,m,m− 1) − h(q, n, n− 1) =

= −(v − p2) E

[
min

{
(Q−m+ 1)

N2 + 1
, 1

}
− min

{
(Q− n+ 1)

N2 + 1
, 1

}∣∣∣∣∣Q = q

]

= −(v − p2)
∞∑

n2=0

f2(n2)

(
min

{
(q −m+ 1)

n2 + 1
, 1

}
− min

{
(q − n+ 1)

n2 + 1
, 1

})

= −(v − p2)




q−n∑

n2=q−m+1

f2(n2)
(
q −m+ 1

n2 + 1
− 1

)
+

∞∑

n2=q−n+1

f2(n2)
−m+ n

n2 + 1




= (v − p2)




q−n∑

n2=q−m+1

f2(n2)
(

1 − q −m+ 1

n2 + 1

)
+

∞∑

n2=q−n+1

f2(n2)
m− n

n2 + 1


 ≥ 0,

as desired. �

B.2 Construction of linear program

From Lemmas 3.1 and 3.2, the seller’s decision problem (3.2) simplifies to finding a symmetric

σ : Θ × {0, 1}∞ → [0, 1] that maximizes the expected revenue subject to the requirement that

obedience is an equilibrium:

max
σ∈Σ

Eσ [r(Q,N,D)]

subject to, Eσ
[
Nh(Q,N, D̂)I{s = 1}

]
≥ 0,

Eσ
[
Nh(Q,N, D̂)I{s = 0}

]
≤ 0.

(A4)

Note that for any N and D, the probability a particular customer is asked to buy now is

given by D/N , i.e., P(s = 1|Q,N,D) = D/N . Using this, it follows that

Eσ
[
Nh(Q,N, D̂)I{s = 1}

]
= Eσ [Nh(Q,N,D − 1)I{s = 1}]

= Eσ [Nh(Q,N,D − 1) P (s = 1|Q,N,D)]

= Eσ
[
Nh(Q,N,D − 1)

D

N

]

=
∑

q,n

n∑

d=0

Φ(q, n)σ(q, n, d)h(q, n, d− 1)d. (A5)
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Here, in the first equality, we have used the fact that on the event s = 1, the number of other

customers asked to buy now is given by D̂ = D − 1. Similarly, using the fact that D̂ = D on

the event that s = 0, we have

Eσ
[
Nh(Q,N, D̂)I{s = 0}

]
=
∑

q,n

n∑

d=0

Φ(q, n)σ(q, n, d)h(q, n, d) (n− d) . (A6)

Finally, note that the objective of (A4) can be written as

E [r(Q,N,D)] =
∑

q,n

n∑

d=0

r(q, n, d)Φ(q, n)σ(q, n, d). (A7)

Using (A5), (A6) and (A7), and after making a variable substitution where π(q, n, d) ,

Φ(q, n)σ(q, n, d), we can write (A4) as,

max
π

∑

q,n,d

r(q, n, d)π(q, n, d)

subject to,
∑

q,n

n∑

d=1

dh(q, n, d− 1)π(q, n, d) ≥ 0 (A8a)

∑

q,n

n−1∑

d=0

(n− d)h(q, n, d)π(q, n, d) ≤ 0 (A8b)

∑

d

π(q, n, d) = Φ(q, n) (A8c)

π(q, n, d) ≥ 0, for all q, n, d (A8d)

B.3 Example of public signaling suboptimality with homogeneous

customers

Consider a two-customer setting with equally likely states Q ∈ {0, 1}. Suppose customer

utility is given by Figure B.1, and revenue is given by I(Q = D) when the state is Q and

there are D customers buying. The optimal private signaling mechanism always instructs

Q customers to buy (and chooses each with probability 1
2

when Q = 1) using the signals

“buy” and “wait” and achieves expected revenue 1. Note that it is incentive compatible for a
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customer to follow their signal: if a customer is told to buy, they know Q = 1 and thus want

to buy. If a customer is told to wait, the probability of Q = 0 is

P (Q = 0|wait) =
P (Q = 0,wait)

P (wait)
=

1
2
3
4

=
2

3
,

and thus the optimal action is to wait.

We now calculate the optimal public signaling mechanism. Let σ be the revenue optimal

public signaling mechanism with set of signals S, and a specific signal s ∈ S such that

the customer’s posterior is given by q = P (Q = 1|s). Suppose it is incentive compatible

for a customer to buy with probability p ∈ (0, 1). We see buying leads to expected utility

(1 − q)(−1) + q(1) and not buying leads to utility 0. Hence, q = 1
2
, and when q = 1

2
, any

p ∈ [0, 1] is an equilibrium.

We see the firm’s revenue, given p, is

u(p) = (1 − q)(1 − p)2 + q2p(1 − p).

We see

u′(p) = 2 (−(1 − q) + q + p((1 − q) − 2q)) .

Since q = 1
2
, u′(0) = 0 and u′(1) = −2q < 0. Since u′(p) is a linear function, this implies

u′(p) < 0 for all p ∈ (0, 1]. Hence, the revenue optimal choice of p given signal a is p = 0.

This contradicts this being the revenue optimal public signaling mechanism.

Hence, in the revenue optimal public signaling mechanism, customers will always play a

pure strategy. The revenue of such a mechanism can be no more than 1
2
, since when Q = 1,

either all or no customers will buy, leading to revenue 0. The firm can then achieve the

optimal public revenue by always instructing the customers to wait.

Thus, in this problem, private signaling achieves twice the revenue of any public signaling

mechanism, even though the customers are homogeneous.
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Buy Wait
Buy (−1,−1) (−1, 0)

Wait (0,−1) (0, 0)

(a) Q = 0.

Buy Wait
Buy (1, 1) (1, 0)

Wait (0, 1) (0, 0)

(b) Q = 1.

Figure B.1: Private signaling example.

B.4 Extensions to public signaling

In this section, we consider two extensions introduced in Section 3.6. First, we prove

Theorem 3.3, which states that Theorem 3.1 holds when N2 = 0 and the time 2 price is

a function of remaining supply satisfying certain conditions. Next, we prove Theorem 3.4,

which statesTheorem 3.1 holds when the initial inventory, Q, is a decision variable of the

firm.

Proof of Theorem 3.3. To show this, we will show that Lemmas 3.3 and 3.4 apply. Then, the

proof of Theorem 3.1 follows.

First, we show Lemma 3.3 applies in this setting: if q < n, we see that h(q, n, n− 1) =

(v − p1)
q
n

+ c > 0. If instead q ≥ n, then

h(q, n, d− 1) = (v − p1) + c− min

{
(q − d+ 1)

n− d+ 1
, 1

}
(v − p2(q − d+ 1))

≤ (v − p1) + c− min

{
(q − d)

n− d
, 1

}
(v − p2(q − d)) = h(q, n, d)

and thus h(q, n, d− 1) ≥ 0 implies h(q, n, n− 1) ≥ 0, as desired.

Finally, we show Lemma 3.4 applies: We first assume h(q, n, n−1) ≥ 0. If h(q, n, d−1) ≤ 0,

then Lemma (3.4.1) holds. If not, suppose h(q, n, d − 1) ≥ 0. We would like to show that

dh(q, n, d− 1) ≤ (d+ 1)h(q, n, d) holds for all d where h(q, n, d− 1) ≥ 0. This would imply

that dh(q, n, d− 1) ≤ nh(q, n, n− 1), as desired.
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Now, suppose q > d. Then,

h(q, n, d− 1) = (v − p1) + c− min

{
(q − d+ 1)

n− d+ 1
, 1

}
(v − p2(q − d+ 1))

≤ (v − p1) + c− min

{
(q − d)

n− d
, 1

}
(v − p2(q − d)) = h(q, n, d)

Hence, dh(q, n, d− 1) ≤ (d+ 1)h(q, n, d). If d ≥ q, then

dh(q, n, d− 1) = d
(

(v − p1)
q

d
+ c

)
≤ (d+ 1)

(
(v − p1)

q

d+ 1
+ c

)
= (d+ 1)h(q, n, d),

Thus dh(q, n, d− 1) ≤ (d+ 1)h(q, n, d) and dh(q, n, d− 1) ≤ nh(q, n, n− 1), as desired.

Now suppose h(q, n, n− 1) < 0. If q < n, we see that h(q, n, n− 1) = (v − p1)
q
n

+ c > 0,

which is a contradiction. Thus, q ≥ n, and h(q, n, d− 1) = p2(q− d+ 1) − p1 ≤ 0. We require

d

n
· h(q, n, d− 1) ≤

(
r(q, n, d) − r(q, n, 0)

r(q, n, n) − r(q, n, 0)

)
· h(q, n, n− 1).

Since r(q, n, d) − r(q, n, 0) = p1d + p2(q − d)(n − d) − p2(q)n, we can rewrite the above

condition as

n(p2(q− n+ 1) − p1)(p1d+ p2(q− d)(n− d) − p2(q)n) ≥ d(p2(q− d+ 1) − p1)(p1n− p2(q)n).

This can be further simplified to

0 ≤ p1((n− d)(p2(q) − p2(q − d)) + d(p2(q − n+ 1) − p2(q − d+ 1)))

+ p2(q)(dp2(q − d+ 1) − np2(q − n+ 1)) + p2(q − d)p2(q − n+ 1)(n− d).

Let A be the coefficient in front of p1 and B be the remaining terms in the above. We

will now show that both A and B are non-negative. Since p2(·) is a convex function,

q − d = n−d−1
n−1

q + d
n−1

(q − n+ 1), and q − d+ 1 = n−d
n−1

q + d−1
n−1

(q − n+ 1), we have

p2(q − d) ≤n− d− 1

n− 1
p2(q) +

d

n− 1
p2(q − n+ 1),

p2(q − d+ 1) ≤n− d

n− 1
p2(q) +

d− 1

n− 1
p2(q − n+ 1).
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Thus, with replacing p2(q − d) and p2(q − d+ 1), we have

A = (n− d)(p2(q) − p2(q − d)) + d(p2(q − n+ 1) − p2(q − d+ 1))

≥ 1

n− 1
(p2(q)(n− d) [(n− 1) − (n− d+ 1) − d] + p2(q − n+ 1)d [(n− 1) − (d− 1) − (n− d)])

≥ 0.

We see that

B = p2(q)p2(q − n+ 1)

(
d
p2(q − d+ 1)

p2(q − n+ 1)
+ (n− d)

p2(q − d)

p2(q)
− n

)

= p2(q)p2(q − n+ 1)d(n− d)

( 1
n−d

(p2(q − d+ 1) − p2(q − n+ 1))

p2(q − n+ 1)
+

1
d
(p2(q − d) − p2(q))

p2(q)

)
.

Since p2 is convex, we see 1
n−d

(p2(q − d + 1) − p2(q − n + 1)) ≥ ∆p2(q − n + 1) and

1
d
(p2(q)−p2(q−d)) ≤ ∆p2(q) (and thus 1

d
(p2(q−d)−p2(q)) = −1

d
(p2(q)−p2(q−d)) ≥ −∆p2(q)).

Using these, we get

B

p2(q)p2(q − n+ 1)d(n− d)
=

1
n−d

(p2(q − d+ 1) − p2(q − n+ 1))

p2(q − n+ 1)
+

1
d
(p2(q − d) − p2(q))

p2(q)

≥ ∆p2(q − n+ 1)

p2(q − n+ 1)
− ∆p2(q)

p2(q)
≥ 0.

Thus

dh(q, n, d− 1) ≤
(
r(q, n, d) − r(q, n, 0)

r(q, n, n) − r(q, n, 0)

)
nh(q, n, n− 1)

and hence Lemma (3.4.2) holds. �

Proof of Theorem 3.4. We begin by proving Theorem (3.4.1), where the firm chooses a

distribution, ρ, over Q before observing N . Let φ(·) denote the distribution of N . Given any

choice of ρ, Theorem 3.1 holds for distribution π(q, n) = ρ(q)φ(n). Hence, for any choice of

ρ, the optimal signaling mechanism is public.

The proof of Theorem (3.4.2) is similar. Let ρ(q|n) denote the probability of having q

items when there are n customers in the first period. Once more, given any choice of ρ,
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Theorem 3.1 holds for distribution π(q, n) = φ(n)ρ(q|n). Hence, for any choice of ρ, the

optimal signaling mechanism is public. �
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APPENDIX C

APPENDIX TO CHAPTER 4

C.1 Omitted Proofs

C.1.1 Proof of Lemma 4.3

To prove Lemma 4.3, we reference Lemma C.1, which proves the property for a simpler case.

Lemma C.1. For any ω̂ ∈ K0, Conv(K1 ∪K01 ∪ {ω̂}) ⊂ Conv(K1 ∪K01) ∪ Conv(K01 ∪ {ω̂}).

Proof. Let ω̂ ∈ K0 and consider any µ ∈ Conv(K1 ∪K01 ∪ {ω̂}). Suppose any decomposition

of µ to members of K1 ∪K01 ∪ {ω̂} necessarily assigns some weight to ω̂ and some weight to

members of K1. Consider the decomposition that assigns weight to the fewest members of

K1. Letting L ⊂ K1 denote the set of elements assigned positive weight, we can then write

µ = αω̂ω̂ +
∑

ω∈L

αωω +
∑

φ∈K01

αφφ.

Let ω′ ∈ L be chosen arbitrarily, and let ψ = αω̂ω̂+αω′ω′

αω̂+αω′

∈ ∆(Ω). Recall that χ(ω̂, ω′) is

the distribution over ω̂ and ω′ in K01. Since ψ is a convex combination of ω̂ and ω′, it is also

either a convex combination of (1) ω′ and χ(ω̂, ω′) or (2) χ(ω̂, ω′) and ω̂. In the first case,

ψ ∈ Conv(K1 ∪K01) and we can write

µ = (αω̂ + αω′)ψ +
∑

ω∈L
ω,ω′

αωω +
∑

φ∈K01

αφφ ∈ Conv(K1 ∪K01).

In the second case, we can write ψ = γω̂ + (1 − γ)φ′, for some γ ∈ [0, 1]. Then, we can

express µ as a convex combination over fewer members of K1 (since we have removed the

weight on ω′) which is a contradiction. Thus, µ ∈ Conv(K1 ∪ K01) ∪ Conv(K01 ∪ {ω̂}) and

Conv(K1 ∪K01 ∪ {ω̂}) = Conv(K1 ∪K01) ∪ Conv(K01 ∪ {ω̂}). �
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With Lemma C.1, we can prove Lemma 4.3.

Proof of Lemma 4.3. Consider any µ ∈ ∆(Ω). We can write µ as a convex combination

of the elements of K0 ∪ K1 = Ω. Thus, we can also write µ as a convex combination of

K0 ∪K1 ∪K01. Similar to before, let this be the decomposition that places positive weight

on the fewest number of elements of K0:

µ =
∑

ω∈K0

αωω +
∑

ω∈K1∪K01

αωω.

Let ω̂ denote any element of K0 such that αω > 0. We see we can write

µ =
∑

ω∈K0

ω,ω̂

αωω + αω̂ω̂ +
∑

ω∈K1∪K01

αωω

=
∑

ω∈K0

ω,ω̂

αωω + A


αω̂
A
ω̂ +

∑

ω∈K1∪K01

αω
A
ω




where A =
(∑

ω∈K1∪K01∪{ω̂} αω
)
. Let ψ = αω̂

A
ω̂ +

∑
ω∈K1∪K01

αω

A
ω. ψ is an element of

Conv(K1 ∪ K01 ∪ {ω̂}), and by Lemma C.1, ψ ∈ Conv(K1 ∪ K01) ∪ Conv(K01 ∪ {ω̂}). If

ψ ∈ Conv(K01 ∪ {ω̂}), then we have expressed µ as an element of Conv(K0 ∪K01), as desired.

If not, ψ ∈ Conv(K1 ∪ K01) and we can express µ while putting positive weight on fewer

elements of K0. This is a contradiction. Thus, µ ∈ Conv(K0 ∪K10) ∪ Conv(K1 ∪K10), and

we conclude ∆(Ω) = Conv(K0 ∪K01) ∪ Conv(K1 ∪K01). �
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Lemma C.2. In a queue with finite K1, ∆(Ω) = Conv(K0 ∪K01) ∪ Conv(K1 ∪K01).

Proof of Lemma C.2. Note Lemma C.1 applies to our setting from the finiteness of K1: for

any ω̂ ∈ K0, Conv(K1 ∪K01 ∪ {ω̂}) ⊂ Conv(K1 ∪K01) ∪ Conv(K01 ∪ {ω̂}).

Consider any µ∗ =
∑
ω∈K0

αωω +
∑
ω∈K1

αωω ∈ ∆(Ω). Let µ0
0 =

∑
ω∈K0

αωω and µ1
0 =

∑
ω∈K1

αωω ∈ ∆(Ω). Note that µ0
0 ∈ Conv(K0 ∪ {0}), µ1

0 ∈ Conv(K1 ∪K01 ∪ {0}).

We now define sequences {µ0
n} and {µ1

n} with the properties: µ∗ = µ0
n + µ1

n and µ0
n =

∑
ω∈K1

βωωConv(K0 ∪ {0}).We choose the smallest ω̂ ∈ K1 such that βω > 0; if no such ω̂

exists, we let µ0
n+1 = µ0

n = 0 and µ1
n+1 = µ1

n. We then define

µ0
n+1 = µ0

n − βω̂ω̂

µ1
n+1 = µ1

n + βω̂ω̂.

Note that since these two properties hold for µ0
0 and µ1

0, they hold for all members of this

sequence. Next, suppose that µ1
n = γµ ∈ Conv(K1 ∪K01 ∪ {0}), where µ ∈ Conv(K1 ∪K01).

We see that, by Lemma C.1,

µ1
n+1

γ + βω̂
=
µ1
n + βω̂ω̂

γ + βω̂
∈ Conv(K1 ∪K01 ∪ {ω̂}) ⊂ Conv(K1 ∪K01) ∪ Conv(K01 ∪ {ω̂}).

If
µ1

n+1

γ+βω̂
∈ Conv(K01 ∪ {ω̂}), then µ1

n+1 ∈ Conv(K0 ∪ K01 ∪ {0}) and µ∗ = µ1
n+1 + µ0

n+1 ∈

Conv(K0 ∪ K01), as desired. If not, then
µ1

n+1

γ+βω̂
∈ Conv(K1 ∪ K01), and we can repeat this

process, again with the property that µ1
n+1 ∈ Conv(K1 ∪K01 ∪ {0}).

If ever this sequence has µ1
n+1 ∈ Conv(K0 ∪K01 ∪ {0}), then we have µ∗ = µ1

n+1 + µ0
n+1 ∈

Conv(K0 ∪K01), as desired. The only case that remains is if this does not occur for any value

of n.

In this case, µ1
n ∈ Conv(K1 ∪K01 ∪ {0}) for all values of n. Since Conv(K1 ∪K01 ∪ {0})

is a closed set, its limit point is in Conv(K1 ∪K01 ∪ {0}) as well. The only such limit point

is µ∗, which means µ∗ ∈ Conv(K1 ∪K01 ∪ {0}), and the lemma is proven. �
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With this, we can prove the Theorem.

Proof of Theorem C.1. The proof is identical to that of Theorem 4.3, but with Lemma C.2

referenced instead of Lemma 4.3. �

C.1.4 Proof of Theorem 4.4

We prove this theorem in two steps, like the comparable proof in Lingenbrink and Iyer

(2018a). First, we show that the optimal signaling scheme would signal a receiver to join the

queue if she would have joined under full-information. With this structure in place, we then

show that any feasible solution that does not have a threshold structure can be perturbed to

obtain another feasible solution corresponding to a threshold scheme with equal or higher

throughput.

Let M = max(K1) be the largest queue length where the receiver would join under full

information. Consider any feasible solution, t, to (A2), where t0(n
′) > 0 for some n′ ≤ M .

We will construct a feasible solution, t̂ to (A2) that has higher revenue than t and satisfies

t̂0(n) = 0 for all n ≤ M . We define

t̂1(n) =





1
Z

(t0(0) + t1(0))λn for n ≤ M

1
Z
t1(n) for n > M

,

t̂0(n) =





0 for n ≤ M

1
Z

(
(t0(0) + t1(0))λM+1 − t1(M + 1)

)
for n = M

1
Z
t0(n) for n > M + 1

,

where Z = (t0(0)+ t1(0))
∑M+1
n=0 λn+

∑k−1
n=M+1 t0(n)+ t1(n) is a normalizing constant to ensure

that t̂ is a proper probability distribution. Since (t0(0) + t1(0))λn ≥ t1(n) + t0(n), we see
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Z ≥ 1. Since t0(n
′) > 0, (t0(0) + t1(0))λn

′+1 > λt1(n
′) = t1(n

′ + 1) + t0(n
′ + 1), and thus

Z > 1.

We first show that t̂ is a feasible solution. We start by ensuring (A2a) holds: Note that

t1(k) ≤ (t0(0) + t1(0))λn for all n, and hence t̂1(n) ≥ t1(n)/Z for all n. More precisely,

t̂1(n) ≥ t1(n)/Z for n ∈ K1 and t̂1(n) = t1(n)/Z for n < K1. Let ν1 = Z−1
Z

(
t̂1 − t1/Z

)

denote the normalized difference between t̂1 and t1/Z. We see ν1 ∈ Conv(K1 ∪ {0}) ⊂

Conv(K1 ∪K01 ∪ {0}), and hence t̂1 = 1
Z
t1 + Z−1

Z
ν1 ∈ Conv(K1 ∪K01 ∪ {0}), as desired.

Next, notice that t̂0 ∈ Conv(K0 ∪ {0}) ⊂ Conv(K0 ∪ K01 ∪ {0}), by definition. Hence,

(A2b) is satisfied.

We see that (A2c) is satisfied: for n < M ,

λt̂1(n) =
1

Z
(t0(0) + t1(0))λn+1 = t̂1(n+ 1) + 0 = t̂1(n) + t̂0(n);

for n = M ,

λt̂1(M) =
1

Z
(t0(0)+t1(0))λM+1 =

1

Z

(
(t0(0) + t1(0))λM+1 − t1(n+ 1) + t1(n+ 1)

)
= t̂1(M+1)+t̂0(M+1);

and for n > M ,

λt̂1(n) =
1

Z
(λt1(n)) =

1

Z
(t1(n+ 1) + t0,n+1) = t̂1(n+ 1) + t̂0(n+ 1).

Since Z > 1, we see the difference in utility between t̂ and t is

1 − t̂0(0) − t̂1(t) − (1 − t0(0) − t1(1)) =
(

1 − 1

Z

)
(t0(0) + t1(1)) > 0.

Henceforth, we restrict to feasible solutions t that satisfy the property t0(n) = 0 for n ≤ M .

Note that any t that satisfies this condition, (A2a) and (A2c) naturally satisfies (A2b) because

t0(n) = 0 for n < K0. Hence, t0 ∈ Conv(K0{0}) ⊂ Conv(K0 ∪K01 ∪ {0}), and we can ignore

the constraint (A2b) in our analysis.
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Consider now a feasible solution t such that there exists an N > M such that t0(n) =

0, t1(n) = λnt1(0) for n < N , 0 < t1(N) < λt1(N − 1), t0(N) > 0 and t1(N + 1) > 0. We will

construct a perturbation and show it remains feasible and achieves the same objective value.

Let t̂ be defined as

t̂1(n) =





t1(n) for n < N

t1(N) + β
∑∞
i=N+1 t1(i) for n = N

(1 − β)t1(n) for n > N

,

t̂0(n) =





t0(n) for n < N

t0(N) − β
∑∞
i=N+1 t1(i) for n = N

t0(N + 1) + βt1(N + 1) + λβ
∑∞
i=N+1 t1(i) for n = N + 1

(1 − β)t0(n) for n > N

,

for some β ∈ (0, 1] to be defined later. This is chosen so it mimics the analysis in Chapter 2.

This ensures no change in utility. We begin by showing that t̂1 ∈ Conv(P1 ∪ {0}).

Recall that each element of K01 can be written as χ(m,n) = γ(m,n)m+ (1 − γ(m,n))n

for 0 ≤ n ≤ M and m > M .

Since t1 ∈ Conv(K1 ∪K01 ∪ {0}), we can write the decomposition

t1 =
M∑

n=0

αnn+
M∑

n=0

∞∑

m=M+1

αm,nχ(m,n).

Consider

t̃1 =
M∑

n=0

α̃nn+
M∑

n=0

∞∑

m=M+1

α̃m,nχ(m,n),

where, for any n ≤ M ,

α̃n = αn + β
∞∑

m=N+1

αm,n

(
1 − γ(m,n)

γ(N, n)

)
,
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and

α̃m,n =





αm,n for m < N

αN,n + β
∑∞
ℓ=N+1

γ(ℓ,n)
γ(N,n)

αℓ,n for m = N

(1 − β)αm,n for m > N

.

Note that γ(ℓ, n) ≤ γ(N, n) for all ℓ > N and for any β ∈ (0, 1], these coefficients are

non-negative. Next, notice that the sum of the coefficients is

S =
M∑

n=0


α̃n +

∞∑

m=M+1

α̃m,n




=
M∑

n=0


αn + β

∞∑

m=N+1

αm,n

(
1 − γ(m,n)

γN,n

)
+

N−1∑

m=M+1

αm,n +
N−1∑

m=N+1

β
γ(m,n)

γ(N, n)
αm,n +

N−1∑

m=N+1

(1 − β)αm,n




≤1.

Hence, t̃1 ∈ Conv(K1 ∪K01 ∪ {0}). It remains to show that t̂1 = t̃1. We see that, for n ≤ M ,

t̃1(n) − t̂1(n) = α̂n +
∞∑

m=M+1

(1 − γ(m,n))α̂m,n −

αn +

∞∑

m=M+1

(1 − γ(m,n))αm,n




= β
∞∑

m=N+1

αm,n

(
1 − γ(m,n)

γ(N, n)

)
+

1 − γ(N, n)

γ(N, n)
β

∞∑

m=N+1

γ(m,n)αm,n − β
∞∑

m=N+1

(1 − γ(m,n))αm,n

= 0.

Next, for M + 1 ≤ m < N ,

t̃1(m) − t̂1(m) =
M∑

i=0

γ(m,n)α̃m,n −
M∑

i=0

γ(m,n)αm,n = 0.

For m = N , we see

t̃1(N) − t̂1(N) =
M∑

i=0

γ(N, n)α̃N,n − t1(N) − β
∞∑

m=N+1

t1(m)

= β
M∑

i=0

γ(N, n)
∞∑

m=N+1

γ(m,n)

γ(N, n)
αm,n − β

∞∑

m=N+1

M∑

n=0

γ(m,n)αm,n

= 0.

Finally, for m > N , we see

t̃1(m) − t̂1(m) = (1 − β)
M∑

i=0

γ(m,n)αm,n − (1 − β)
M∑

i=0

γ(m,n)αm,n = 0.
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Thus, t̂1 = t̃1 ∈ Conv(K1 ∪K01 ∪ {0}). Further, assuming β ≤ t0(N)∑
∞

i=N+1
t1(i)

, t̂ satisfies (A2c),

by construction. Thus, we have constructed a solution with a equal objective value.

If t0(N)∑
∞

i=N+1
t1(i)

≥ 1, then choosing β = 1 yields t1(n) = 0 for all n > N . If t0(N)∑
∞

i=N+1
t1(i)

< 1,

then choosing β = t0(N)∑
∞

i=N+1
t1(i)

≥ 1 yields t0(N) = 0. We then obtain that any t such that there

exists an N > M such that t0(n) = 0, t1(n) = λnt1(0) for n < N , 0 < t1(N) < λt1(N − 1),

t0(N) > 0 and t1(N + 1) > 0 can be perturbed to obtain a solution t̂ satisfying either (1)

t0(n) = 0, t1(n) = λnt1(0) for n < N , 0 < t1(N) ≤ λt1(N − 1) and t1(n) = 0 for n > N or

(2) t0(n) = 0, t1(n) = λnt1(0) for n ≤ N . By induction, this implies that if the optimum is

attained, it is attained by a feasible solution for which there exists an N ≥ M such that

t0(n) = 0, t1(n) = λnt1(0) for all n < N , 0 < t1(N) ≤ λt1(N − 1), and t1(n) = 0 for all

n > N .

C.1.5 Proof of Lemma 4.5

Consider two distributions µ, ν ∈ ∆(Ω). Let κ = γµ+ (1 − γ)ν for some γ ∈ [0, 1]. Let µ̂ be

a random variable that is µ with probability γ and ν with probability (1 − γ). Then, by the

law of total variance,

Varκ[X] = Eµ̂[Var(X)] + Varµ̂(E[X]) ≥ γ Varµ[X] + (1 − γ) Varν [X],

and thus Varµ[X] is concave in µ. Further,
√· is a concave, non-decreasing function, so their

composition is concave. Since expectation is linear, ρ̄(µ) = τ −
(
Eµ[X] + β

√
Varµ[X]

)
is

convex.
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C.1.6 Statement and Proof of Proposition C.1

Proposition C.1. If 1 + β > τ , then under any signaling mechanism, throughput is 0. If

1 + β ≤ τ , then let ω∗ be the largest integer such that ω + 1 + β
√
ω + 1 ≤ τ . Under the

fully-revealing mechanism, throughput is 1 − (λ− 1)/(λω
∗+2 − 1) if λ , 1 and 1 − 1/(ω∗ + 2)

if λ = 1. Under the no-information mechanism, throughput is min{λ, 1 − 1+β
τ

}.

Proof. If 1 + β > τ , then under any signaling scheme, no customer joins the queue because

even if the queue is empty and the customer is serviced immediately, customer utility is

τ − (1 +β
√

1) < 0. Therefore, throughput is 0. Henceforth, we assume that 1 +β ≤ τ . Then,

ω∗ ≥ 0 as defined in the proposition exists.

When the queue length is ω, Xµ is a sum of ω + 1 independent random variables, each

exponentially distributed with rate 1 (the waiting times for ω people in the queue plus the

customer’s own service time). Therefore, E[Xµ|ω] = ω + 1 and Var(Xµ|ω) = ω + 1.

Under the fully-revealing scheme, the customer knows the queue length ω and joins if and

only if τ− (E[Xµ|ω]+β Var(Xµ|ω)) = τ− (ω+1+β
√
ω + 1) ≥ 0. That is, the customer joins

the queue if and only if ω ≤ ω∗. Therefore, the queue is an M/M/1 queue with maximum

queue length ω∗ + 1 such that customers arrive according to a Poisson process with rate λ

and customers are turned away if the queue is full. Standard result in queuing theory gives

the throughput 1 − 1/(1 + λ + · · · + λω
∗+1), which is 1 − (λ − 1)/(λω

∗+2 − 1) if λ , 1 and

1 − 1/(ω∗ + 2) if λ = 1.

Under the no-information scheme, the customer strategy is to join the queue with

probability q ∈ [0, 1]. q = 0 is an equilibrium if and only if 1 + β > τ , which we rule out.

We can view the queue as a thinned M/M/1 queue with arrival rate qλ ∈ (0, 1). Now we

compute the customer utility for joining the queue. Standard results on the M/M/1 queue

give the queue throughput qλ, and Pr(ω) = (1 − qλ)(qλ)ω, so ω has a geometric distribution,
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and E[ω] = qλ
1−qλ

and Var(ω) = qλ
(1−qλ)2 . (The expectation and variance of ω can also be

computed directly from the probability mass density of ω.) Therefore, by the law of iterated

expectations and the law of total variance,

E[Xµ] = E[E[Xµ|ω]] = E[ω + 1] = 1
1−qλ

Var(Xµ) = E[Var(Xµ|ω)] + Var(E[Xµ|ω]) = E[ω + 1] + Var(ω + 1) = 1
1−qλ

+ qλ
(1−qλ)2 = 1

(1−qλ)2

Therefore, the customer utility for joining the queue is τ − (E[Xµ] + β Var(Xµ)) = τ − 1+β
qλ

.

q = 1 is an equilibrium if and only if the customer utility for joining the queue is

weakly higher than the customer utility for not joining the queue, that is, τ − 1+β
λ

≥ 0 or

1
λ
(1 − 1+β

τ
) ≥ 1. q ∈ (0, 1) is an equilibrium if and only if the customer utility for joining the

queue is equal to the customer utility for not joining the queue, so q = 1
λ
(1 − 1+β

τ
). Therefore,

if 1 + β ≤ τ , then the no-information equilibrium is q = min{1, 1
λ
(1 − 1+β

τ
)} and the queue

throughput is qλ = min{λ, 1 − 1+β
τ

}.

�
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