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Abstract

Water plays a critical role in our living and manufacturing activities. The continuously growing exploitation of water over the

aquifer poses a risk for over-extraction and pollution, leading to many negative effects on land irrigation. Therefore, predicting

aquifer water level accurately is urgently important, which can help us prepare water demands ahead of time. In this study,

we employ the Long-Short Term Memory (LSTM) model to predict the saturated thickness of an aquifer in the Southern High

Plains Aquifer System in Texas, and exploit TensorBoard as a guide for model configurations. The Root Mean Squared Error

of this study shows that the LSTM model can provide a good prediction capability using multiple data sources, and provides a

good visualization tool to help us understand and evaluate the model configuration.
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1. Introduction

Water is the basic element that human relies on for all living and
manufacturing activities. As rainfalls are not equally distributed in
the world, surface water does not meet the demand to sustain many
areas. In this case, it is necessary to turn to groundwater found in
aquifers to support daily activities. The Ogallala Aquifer [GH70] is
underground water surrounded by sand, silt, clay and gravel, under-
lying approximately 175,000 square miles from South Dakotas to
the Texas in United States. The Ogallala Aquifer of Texas provides
96 percent of underground water for irrigation and 36 percent for
municipal demands and thus plays a critical role to the economical
development of this region. Wells drilled in these areas must reach
to a certain point to pump up water and this point must be in the
saturated thickness, which is the distance between the water table
and base of the aquifer. Due to the excessive use of water, the sat-
urated thickness has declined consistently through time [GMP11]
although there are numerous recommendations of using the Ogal-
lala Aquifer, including drilling new wells, over-drafting, reallocat-
ing supplies or developing well fields [GMP11]. From this point
of view, there is a need to have good water management strategies
for proper water management strategies for a sustainable use of the
aquifer system. One necessary requirement is to continuously mon-
itor groundwater levels [DNKU17].

There are number of studies conducted to address the chal-
lenges of the Ogallala Aquifer Systems and provide some projec-
tions [BM71,BM79,DRM01,McA84,SBY∗13]. However, most of
these studies focus on economy impacts, specific to other regions
or indicators that are not relevant to current time due to the chang-
ing of economical growth or expansion of non-agriculture areas.
As the saturated thickness being depleted, the purpose of our study

is to predict the saturated thickness as the first step for water man-
agement. In addition, this study also provides an indicator for non-
experts in machine learning to select suitable configurations for the
LSTM model.

The key contributions of this paper thus are:

• It employs the Long-Short Term Memory (LSTM) model to
predict the saturated thickness of eight counties in Texas. This
model can be extended to any other counties given sufficient
data.

• It integrates the TensorBoard visualization which enables users
to analyze and optimize model configurations

• It reports the performance of the trained model on eight data-
sets.

The rest of this paper is organized as follows: In Section 2, a
summary of existing work is presented. Section 3 describes the
data-sets along with model development based on the TensorFlow
framework. Performance and result are discussed in Section 4. Fi-
nally, the conclusion and future work are represented in Section 5.

2. Related Work

There are plenty of water forecasting studied and reported in the
literature. In this section, we have no intention to exhaustively re-
view all of them. Instead, we discuss the most relevant work to our
study.

Currently, there are only a few studies conducted to predict the
saturated thickness of the Ogallala Systems in Texas. A complete
study made by Dutton et al. [DRM01] in 2001, they created a con-
ceptual model that was capable of predicting underground water
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levels of 18 counties in Texas by 2050. However, this study was
based on the assumptions that pumping remains constant until a
well is depleted and projected pumping rates were based on the
continuation of agriculture and economic development. These indi-
cators are unstable since a reported by RN Wilkins et al. [WSF∗09]
in 2009 indicated that approximately 100,000 acres of Texas work-
ing lands were converted to non-agricultural uses from 2007 to
2012.

Steward et al. [SBY∗13] proposed an integrated method for fore-
casting groundwater depletion by 2110. The study found that nearly
70 percent of underwater will be depleted in the next 50 years
given the current trends in Kansas. A logistic function was devel-
oped based on the dimensionless saturated thickness to approxi-
mate groundwater level over time.

This paper tries to solve the same problem but with a different
approach, it provides a guideline for hydrologists to look into the
blackbox of model training and choose choose an optimal configu-
ration.

3. Methods

The data set in this study is a time series data, that is, the saturated
thickness is observed, recorded and indexed in time order. Time
series prediction is to have a model to predict the future values
based on the previously observed values. The most popular model
for time series prediction is the Autoregressive Integrated Mov-
ing Average (ARIMA) model. However, this model has two main
drawbacks because of its assumptions, that is, there is a linear rela-
tionships between independent and dependent variables and a con-
stant standard deviation in errors in the model over time [KPSR14].
Real world data often does not often satisfy these assumptions as
shown in our study data set in Figure 3. The Generalized AutoRe-
gressive Conditional Heteroskedasticity (GARCH) model [Bol86]
can be employed to elaborated these assumptions, however opti-
mizing the GARCH model parameters is a challenging task. In re-
cent years, deep learning has gained its popularity to address the
existing challenges of time series prediction, particularly the Long
Short Term Memory (LSTM) model proposed by Sepp Hochreiter
and Jurgen Schmidhuber [HS97]. The LSTM model is basically a
Recurrent Neural Network, it is capable of predicting future val-
ues based on not only previous values but also long past values in
sequence. Cell state is the key to LSTM which is the horizontal
line running through the top of the diagram as depicted in Figure 1.
Information in the cell state can be added or removed by three op-
erational gates.

• Forget gate (Figure 1–A): This sigmoid layer decides what
information will be thrown away through a function: ft =

σ

(

W f

[

ht−1,xt

]

+ b f

)

. This function gives output between 0

and 1. Value of 0 means completely get rid of this while value of
1 indicates completely keep this information

• Input gate (Figure 1–B): The previous output and the new input
are taken by this gate and passed through another sigmoid layer.
This gate also returns an output between 0 and 1 by a function

it = σ

(

Wi

[

ht−1,xt

]

+b f

)

. A vector of new candidate values is

Figure 1: Long Short-Term Neural Network architecture

created C̃ = tanh

(

Wc

[

ht−1,xt

]

+ bc

)

, then combined with the

value of the input gate (it ∗C̃) and old state (Ct−1 ∗ ft ) to decide
how much to update each state value. Ct =Ct−1 ∗ ft + it ∗C̃

• Output gate (Figure 1–C): This gate decides how much of the
internal state will be passed to the output. First, for deciding
what parts of the cell state will be output we run a sigmoid

layer: ot = σ

(

Wo

[

ht−1,xt

]

+ bo

)

. Then, the cell state is put

through tanh and multiplied with the output of the sigmoid gate
ht = ot ∗ tanh(Ct)

3.1. TensorFlow Architecture

In 2011, The Google Brain [Bra11] project was started to explore
the use of very large scale deep neural networks. As a result of
this project, TensorFlow [AAB∗16] is the second–generation ma-
chine learning system, which uses data flow graphs (Figure 2) to
build models. Compared to its predecessor DistBelief [DCM∗12],
this system is more flexible, scalable, and better performed, espe-
cially it supports a wide range of models for training on a variety
of heterogeneous hardware platforms. In Figure 2, the instantiation
of an operation is represented by a node which has zero or more in-
puts/output. The edges (or paths) of the graph allow the data to flow
from node to node. Value that flows along the edges is called ten-

sor, which is a multidimensional array. Because of the dynamically
sized data arrays, it is possible to create almost any type of data
flow graph.TensorBoard has special features to view the machine
learning model and its ability to evaluate the performance of the
models with desired metrics. This paper employs the TensorBoard
framework to analyze the neural network model.

3.2. Data-set and data pre-processing

Data Description: The data for this study was retrieved from two
different sources (Water Resources Center [Uni17] and Water Data
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