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Abstract—Precisely forecasting wind speed is essential for
wind power producers and grid operators. However, this task is
challenging due to the stochasticity of wind speed. To accurately
predict short-term wind speed under uncertainties, this paper
proposed a multi-variable stacked LSTMs model (MSLSTM).
The proposed method utilizes multiple historical meteorological
variables, such as wind speed, temperature, humidity, pressure,
dew point and solar radiation to accurately predict wind speeds.
The prediction performance is extensively assessed using real
data collected in West Texas, USA. The experimental results show
that the proposed MSLSTM can preferably capture and learn
uncertainties while output competitive performance.

Index Terms—Deep learning, Wind speed prediction, LSTM,
Stacked LSTMs.

I. INTRODUCTION

Wind energy, as one of the most promising renewable
energy, has gained increasing attention in recent years. By
the end of 2017, wind power capacity in operation accounts
for 5.6 percent of the total electricity generation in the world
according to [1]. However, the fluctuating and intermittent
nature of wind speed has posed many challenges to large-
scale integration of wind power into power grid [2], [3]. To
mitigate the uncertain effects brought by fluctuating wind
speeds, accurate short-term wind forecasting is essential for
power producers and grid operators [4].

a) Related work: Existing wind prediction methods can
be roughly classified into three categories: 1) Physical mod-
eling approach, which builds models based on computational
fluid dynamics utilizing detailed information such as physics
of lower atmospheric layer and terrain information at the
location of the wind farm. It is usually employed to predict
medium-term and long-term tasks. The main drawback is that
it requires physical data each time at different locations and a
large amount of computation is desired. It is usually executed
through a supercomputer [5]. 2) Statistical approach, which
predicts wind speed based on historical time series data. Auto-
Regressive Moving Average (ARMA) model and its evolving
models are among the most popular models for short-term
wind prediction [6]. However, the performance declines as
the prediction time steps increase. 3) Artificial intelligence
approach, such as Artificial Neural Networks (ANN) and
Recurrent Neural Networks (RNN) are used for wind and
wind power prediction [7]. It is good for predicting the
intermittent nature of wind due to its non-linearity. Historical

Fig. 1. West Texas Mesonet Sites distribution [10].

meteorological data is fed into neural networks to train the
parameters of the network and then predict the wind speed.
In recent years, deep learning has been growing rapidly.
Literature shows that compared to shallow neural network,
deep learning could explore more inherent hidden patterns
from data. Therefore, deep learning methods exhibit higher
accuracy for wind forecasting [8]. Recurrent neural network
(RNN) was proposed to deal with time series in [7], and
the authors proposed a deep learning method based on Long
Short-term Memory(LSTM) and Convolution Neural Network
(CNN) that captures spatio-temporal features in wind infor-
mation. RNN is designed to deal with time sequence due to
the memory units in the neurons, which can remember the
historical information. However, training RNN is difficult due
to the fact that RNN model may not converge. LSTM is one
of the improved variations of RNN, which is a much faster
RNN when dealing with time sequence data and is easier to
converge [9]. We employ LSTM model to develop our own
multi-variable learning model for wind speed forecasting.

b) Work in this paper : A deep learning neural net-
work was designed which takes historical wind speed, wind
direction, temperature, humidity, pressure, dew point and
solar radiation as inputs to predict future short-term wind



a) Meteorological Variables

b) The LSTM Structure

Output Gate

Dropout 7
64

i &

8
c¢) The Stacked LSTMs

Fig. 2. Visualization of the input data and used architectures. a) Meteorological variables used in this paper, including wind speed, wind direction, temperature,
humidity, pressure, dew point, wind speed at 2 m and solar radiation. b) The adopted LSTM structure. ¢) Stacked LSTMs structure.

speed. The reason for employing multiple meteorological
variables as inputs is they could improve the accuracy of
wind prediction [11]. Even more, for some situation the
prediction uncertainty depends on weather condition such
as pressure [12]. Considering this, we incorporate multiple
meteorological variables and propose a stacked long-short term
memory network to learn these complex interactions for short-
term wind speed forecasting. Extensive experiments were
implemented to verified the model using real data from West
Texas Mesonet Stations, as shown in Figure 1. Different from
previous work, this paper targets at wind speed forecasting at
every five minutes.

II. WIND SPEED FORECASTING MODEL

The most challenging part of wind speed forecasting lies
in its real-time dynamics, therefore, in this paper we decide
to utilize LSTM model for wind speed forecasting due to
its well-handling of long and short term time dependency
[9]. LSTM shows its superiority over the traditional recurrent
neural network method. Therefore, we choose deep learning
neural networks with LSTM in the hidden layer in this paper
to predict wind speed. Figure 2(b) shows the basic structure
of LSTM. It has an input gate i;, output gate o, forget gate f;
and memory cell C;. Equations (1) to (5) shows how to update
the output values each step [13]. z; is the input vector and g is
the activation function such as ReLU or Sigmoid function. W
is the weight vector. We used ReLU in this paper because it
will not have the problem of Vanishing Gradient and converge
quickly.

ft = g(Wf.xt +Us.heq1 + bf) (D)
it = g(Wix; + Uphe—1 + b;) 2)
¢t = freo1 +ike (3)

or = g(Wo.zy + Us.hy—1 + bo) 4)
he = og.tanh(cy). (35)

Figure 2(c) presents the framework of the proposed
MSLSTM model. After the input layer, there are two LSTM

layers stacked together before forwarding to a Dropout and a
Dense layer at the final output. The first LSTM layer produces
sequence vectors which will be used as the input of the
subsequent LSTM layer. In addition, the LSTM layer receives
feedback from its previous time step thus can capture certain
patterns. In other words, this hierarchy helps the network to
enable more complex representation of the wind speed time
series data, and captures information at different scales. The
Dropout layer excludes 5% of the neurons to avoid over-
fitting. The proposed MSLSTM model ingests multiple me-
teorological variables, including Wind speed, wind direction,
temperature, humidity, pressure, dew point, wind speed at two
meters high and solar radiation. The deep learning neural
networks could extract the hidden patterns from these variables
and predict wind speed.

ITII. EXPERIMENTAL RESULTS

A. Dataset

Multiple meteorological variables are used as inputs to
improve the accuracy of wind prediction because there exists
some correlations between different meteorological variables
[11], [12]. Table I lists the correlation between wind speed and
other variables. Wind direction, temperature, solar radiation,
wind speed at 2 meters shows strong correlation with wind
speed (wind speed at 10 m). Other factors such as humidity
and dew point also show relative high correlation with wind
speed.

The dataset used in this paper was collected by West Texas
Mesonet [10]. The whole dataset includes data collected in
2016 from 117 weather stations, spreading out in West Texas.
Figure 3 shows a data sample that are collected with 5-min
intervals from one weather station. As shown in the table,
every record in the dataset has eight weather attributes (wind
speed at 10 meters, wind direction, temperature, humidity,
pressure, dew point, wind speed at 2 meters, solar radiation ).
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Fig. 3. Real meteorological data from one station.

TABLE I
CORRELATION OF VARIABLES WITH WIND SPEED (* INDICATES
SIGNIFICANT CORRELATIONS WITH P-VALUE LESS THAN 2%).

|  Correlation | p-value
Wind Direction | -0.1173* | 0.0105
Temperature | -0.1079* | 0.0186
Humidity | -0.0524 | 0.2542
Pressure | -0.0050 | 0.9133
Dewpoint | -0.1021 | 0.0261
Wind speed at 2 meters | -0.2719% | 1.7064e-09
Solar Radiation | 0.2515% | 2.7462¢-08

B. Data Preprocessing

The data preprocessing part includes normalization and
handling missing data. If there are some missing values, the
corresponding records were simply deleted. The normalization
is to make the input meteorological variables share the same
structures and time scales. Normalized data is computed as:
Uni = (Vi — Umin)/ (Vmaz — Vmin), Where vy,; is normalized
value for time 7. v,,4, 1S the maximum value of all the
data for one feature. v; is real value at time 4. v,,;, 1s the
minimum value of all the data for one feature. Wind speed,
wind direction, temperature, humidity, pressure, dew point,
solar radiation are all normalized to 0-1 by the above equation.

C. Implementation

The model is implemented in python with keras package
which utilized Tensorflow as backend. The code is executed
in a desktop with Nvidia GTX970 graphics card and 17-6700
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Fig. 4. Lose during training and test process.

CPU. The batch size is 40 and training epochs are 50. MSE
was defined as the loss function. The loss changes of training
and test process was plotted in Figure 4. The loss of testing
process is close to the loss of training process.

D. Evaluation Matrix

Mean square error (MSE), root mean square error (RMSE)
and mean absolute error (MAE) are employed to evaluate
the performance of the models. x; denotes the real value
at time t and Z; is the predicted value at time t. N is
the total number of sample cycle. The MSE, RMSE and
MAE values are calculated base on the following equations:

MSE = £ YN (2 — )2, RMSE = \/ £ Y (2 — &)
and MAE = L SN |z, — 5.
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Fig. 5. Comparison of experimental results on sample data.

TABLE 1T
MODEL PERFORMANCE FOR 5-MIN LEADING PREDICTION. THE RESULTS
ARE AVERAGED FROM FEBRUARY 1 TO FEBRUARY 29, 2016.

MSE | RMSE | MAE | R?
0.22227 | 0.47146 | 0.37485 | 0.93750

Multi. Linear Reg.

Lasso 0.20887 | 0.45703 | 0.36460 | 0.94127
Ridge 0.88995 | 0.94337 | 0.73796 | 0.74979
LSTM 0.01107 | 0.10522 | 0.07988 | 0.99689

Stacked LSTMs 0.00297 | 0.05448 | 0.04275 | 0.99917

E. Numeric Results

To verify the effectiveness of the proposed MSLSTM
model, we compare the forecasting performance with multiple
competing methods, including Multiple Linear Regression,
LASSO, Ridge and LSTM model. The performance assess-
ment and results shown in this paper are based on one-month
data collected at Andrew in February 2016. It contains one-
month data which sampled at 5-min intervals and has a total
length of 8353 points. For training dataset, we randomly took
90 percent from the whole dataset, and the rest was used for
testing.

Figure 5 depicts a small piece of wind speed prediction
results on sample data, where we can see conventional pre-
diction models are far away from true data, and both LSTM
and MSLSTM stick to the ground truths. Multiple Linear
Regression and Lasso regression have similar results which
predict higher wind speed, while Ridge regression tends to
have a lower wind speed. Table II illustrates the performance
of different models under MSE, RSME and MAE matrix. We
also compute R? statistics on each model, where MSLSTM
has the highest value of 0.99917 that confirms its superiority
over all the baselines. As shown in Table II, the evaluation
results of MSE, RMSE and MAE demonstrate the stacked
LSTM consistently outperforms the rest models.

IV. CONCLUSION

This paper proposed a multi-variable stacked LSTMs model
to predict short-term wind speed. This model allows multiple
meteorological parameters ingestion for real-time wind fore-
casting. The proposed MSLSTM model helps the network to
enable a more complex representation of the wind speed time
series data, and captures information at different scales from
historical parameters, at the same time prevents over-fitting.
All in all, the deep MSLSTM model could extract features
from all the input variables which improved the precision
of the prediction. MSE, RMSE, MAE and R? evaluation
results indicate that MSLSTM outperformed other compet-
ing methods consistently. This paper uses modern machine
learning techniques for short-term wind speed forecasting with
extracting patterns from so many meteorological variables,
and successfully learn many effective features than traditional
methods, which could inspire new applications in meteorology.
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