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ABSTRACT
Thermal comfort (TC) – how comfortable or satisfied a per-
son is with the temperature of her/his surroundings – is
one of the key factors influencing the indoor environmental
quality of schools, libraries, and offices. We conducted an
experiment to explore how TC can impact students’ learn-
ing. University students (n = 25) were randomly assigned
to different temperature conditions in an office environment
(25◦C → 30◦C, or 30◦C → 25◦C) that were implemented
using a combination of heaters and air conditioners over a
1.25 hour session. The task of the participants was to learn
from tutorial videos on three different topics, and a test
was given after each tutorial. The results suggest that (1)
changing the room temperature by a few degrees Celsius
can stat. sig. impact students’ self-reported TC; (2) the re-
lationship between TC and learning exhibited an inverted
U-curve, i.e., should be neither too uncomfortable nor too
comfortable. We also explored different computer vision and
sensor-based approaches to measure students’ thermal com-
fort automatically. We found that (3) TC can be predicted
automatically either from the room temperature or from an
infra-red (IR) camera of the face; however, (4) TC prediction
from a normal (visible-light) web camera is highly challeng-
ing, and only limited predictive power was found in the facial
expression features to predict thermal comfort.
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1. INTRODUCTION
Most of the time that people learn takes place indoors. Pri-
mary and secondary school students are typically in school
buildings for most of the day and do homework in their
houses and apartments in the evenings. Adult learners may
learn as part of their job in an office or pursue lifelong-
learning opportunities at home. The indoor environment

quality (IEQ) of where people learn, study, and work can
have a significant impact on their physical well-being as well
as their cognitive performance [1, 2].

The impact of IEQ on learning in particular has a special
importance and has begun to interest architects, civil en-
gineers, and educational psychologists in recent years [13]:
Young learners in particular might be more sensitive to the
influence of the environment due to their age or other phys-
iological characteristics than adults. Students spend many
hours each day in schools; however, since students typically
have little control over their schools’ physical environment,
learners may feel great concern about their thermal comfort
[8]. Thermal comfort (TC), which is a key component of
IEQ, has been defined as “that condition of mind that ex-
presses satisfaction with the thermal environment and is as-
sessed by subjective evaluation” [3]. Prior work (see section
below) has shown that suboptimal thermal comfort condi-
tions can negatively affect students’ learning. However, to
our knowledge, no study to-date has explored the relation-
ship between the impact of TC on learning and time. Is
it possible that the effect of suboptimal TC could be mild
during brief periods of learning but become more severe as
the learning session continues? This is one of the questions
we explore in this paper.

Measuring thermal comfort: Different people can ex-
perience the same temperature and environment differently,
and just because one person has a high degree of thermal
comfort does not mean her/his friend or peer will. Since
thermal comfort is about a person’s satisfaction with the
thermal comfort, it depends not only on the environment it-
self, but also on the person’s physiological and psychological
adaptability [9, 7] to her/his environment. How adaptive a
person is depends, in turn, on how and where a person grew
up, e.g., her/his country of origin and its associated climate.

Due to the partially subjective nature of TC, most studies
that sought to measure TC used questionnaires [12, 11, 9,
7]. While these are useful, they suffer from drawbacks such
as (1) lack of temporal specificity, (2) recency/primacy ef-
fects, (3) disruption to regular activities. These can all lead
to inaccurate measurements. Therefore, many researchers
have explored alternative approaches based on various sen-
sors (e.g., skin-based temperature sensors, cameras) to mea-
sure TC automatically [34, 23, 25, 22, 15, 17].



Automatic facial expression recognition: One of the
new forms of human observation that has been enabled by
advances in machine learning and computer vision is based
on automatic facial expression recognition. With technol-
ogy, it is possible to automatically detect pain in the human
body [18], student engagement [36], driver fatigue [33], and
many other affective and cognitive states. Inspired by these
studies, we explore in this paper whether automatic analysis
of facial expression can help to detect a person’s degree of
thermal comfort.

Contributions: In our study, we (1) conduct a random-
ized experiment to explore the relationship between thermal
comfort, the time-on-task, and learning. We also (2) explore
different sensors and algorithmic approaches to estimating a
person’s thermal comfort automatically.

2. RELATED WORK
During the past 10 years there has been substantial interest
(see [13, 26] for literature surveys) in measuring the impact
of the IEQ on students’ learning. In Table 1 we categorize
the prior work on this subject in terms of IEQ factor (light,
air, etc.) as well as the method of measuring learning (sub-
jective impression (SI), test (T) performance, school scores
(SS), and randomized experiment (RE)). In addition to stud-
ies specifically about thermal comfort (TC) [38], other fac-
tors of the IEQ such as lighting, air quality, and noise have
been considered. Within this research domain, an important
dimension of variability is how learning was measured – by
asking participants their subjective impressions, from their
school scores, or from a test conducted within the experi-
ment itself. Another dimension of variability is whether the
study was observational (i.e., compute a correlation between
historical data of the IEQ and historical data of learning) or
experimental (i.e., randomly assign participants to condi-
tions). The latter is a generally considered to be the more
powerful approach since it avoids many potential confounds
(e.g., student engagement) and is the approach we pursue in
our study.

2.1 Impact of TC on learning
[20, 8] used subjective impression as the learning perfor-
mance. They both analyzed the relationships between the
IEQ (light, air quality, thermal comfort and noise) and learn-
ing. [20] found that the learning performance was negatively
correlated with the number of student complaints about
IEQ. [8] also explored the students’ satisfaction with IEQ,
as well as the TC in particular, from survey data gathered
from 631 university students. The results showed that satis-
faction of IEQ of the classroom was related to the perceived
effect of IEQ on learning. [27] conducted a 1-month test
during May-June 2012 at a university in Romania. 18 stu-
dents’ test results of concentrated attention tests (Kraeplin
test) and distributive attention test (Prague test)[31, 30]
were recorded. The conductors used room temperature, rel-
ative humidity and CO2 concentration to predict test scores.
Their results suggested that these indoor environment fac-
tors could strongly impact students’ learning performance.
[35] conducted an experiment to explore the impact of air
temperature on students’ performance. The results indi-
cated that with the same accuracy, students would increase
their speed when performing the language-based and nu-
merical performance tasks if the room temperature was re-

duced from 25◦C to 20◦C in late summer. [24] randomly as-
signed the participants into different conditions to perform a
computer-based reading and learning task. They found that
TC had a low and non-significant relationship with the per-
formance; the participants in the extreme condition believed
that the temperature had a larger negative impact on their
performance than the participants in a normal condition.
In [16], the researchers conducted an experiment to explore
the impact of TC in 1-on-1 cognitive tasks when students
are with a tutor. All the participants experienced all tem-
perature conditions (10◦C, 14◦C, 15◦C, 16◦C, 18◦C, 20◦C).
Their experiment indicated that there was an inverted-U re-
lationship between thermal sensation and pupils’ learning
performance. A seven point scale of thermal sensation, ac-
cording to [3], was used. The meaning of the number from
-3 to 3 was “cold”, “cool”, “slightly cool”, “neutral”, “slightly
warm”, “warm” and “hot” successfully. The results showed
that students’ performance was better in the cool or slightly
cool conditions compared to the hot condition.

2.2 Measuring thermal comfort
How to measure thermal comfort has been explored for many
years. While questionnaires from each person about her/his
own TC is useful, they can be inconvenient and tedious.
Researchers have thus sought to devise alternative measures
that can be measured automatically from various sensors.

Environmental sensors: For instance, the PMV-PPD model,
proposed by [12, 11], uses air temperature, mean radiant
temperature, air velocity, humidity, and human variables to
calculate the Predicted Mean Vote (PMV) of a group of
people’s averaged thermal sensation according to [3]. The
Predicted Percentage of Dissatisfied (PPD) utilizes PMV
to calculate the percentage of people who might complain
about their thermal environment.

Body sensors: [34] used skin temperature sensors to collect
upper extremity (finger, hand, forearm) skin temperatures
and explored how these temperatures related to thermal sen-
sation. [23] explored different configurations of where to
place the temperature sensors on the body and identified
particular configurations that were most effective.

Cameras: More recently, with the development of machine
vision, researchers also explored predicting thermal comfort
through cameras. [25] showed that the averaged forehead
temperature from infrared (IR) images was correlated with
people’s thermal sensation and thermal comfort. [15, 17]
leveraged the human thermoregulation process and then ap-
plied Eulerian Video Magnification algorithm[37] to filter the
visible-light RGB images to predict thermoregulation states,
which is one indicator of thermal comfort.

3. EXPERIMENT
In order to assess the impact of thermal comfort on learn-
ing and how this effect could change over time, we con-
ducted a laboratory-based learning experiment (approved by
WPI’s IRB #18-0372) in which university students (n = 25)
watched three lecture videos, answered surveys on their ther-
mal comfort, and completed a quiz on what they learned.
During the experiment, the indoor environment conditions
were monitored and controlled according to a schedule de-
fined by each participant’s randomly assigned experimental



Table 1: Related Work about the impact of indoor environment factors on learning. SI: subjective impression;
T: test; SS: school scores; RE: randomized experiment

Light Air Thermal comfort Noise Other
Lee, et al.[20] Kameda, et al.[19] Lee, et al.[20] Lee, et al.[20]

SI Choi, et al.[8] Lee, et al.[20] Choi, et al.[8] Choi, et al.[8]
Marchand, et al.[24] Choi, et al.[8] Marchand, et al.[24] Marchand, et al.[24]

Dorizas, et al.[10] Kameda, et al.[19] Dorizas, et al.[10] Dorizas, et al.[10]
T Dorizas, et al.[10]

Sarbu & Cristian.[27]
Haverinen-Shaughnessy, Barrett, et al.[6]

SS et al.[14] Barrett, et al.[5]
Marchand, et al.[24] Wargocki & David.[35] Wargocki & David.[35] Marchand, et al.[24]

RE Marchand, et al.[24]
Jiang, et al.[16]

condition. We also deployed a variety of sensors – camera,
environmental, and body – to measure the temperature of
the environment and of each participant. These sensor mea-
surements, along with participants’ survey responses, allow
us also to explore different automated approaches to esti-
mating a person’s thermal comfort.

3.1 Recruitment of participants
We recruited participants for the experiment through an
email list at our university. In the end, 25 students (of whom
9 were female) participated in our experiment. All of them
were either undergraduate or graduate students. Each par-
ticipant was paid for $20 gift card for his/her participation.

3.2 Procedure
This experiment was conducted on each participant individ-
ually and was divided into four sessions. Each session was
21 minutes. Therefore, every participant would sit at a desk
around 84 minutes in total. In the first session (adaptation
session), each participant gave informed consent, placed the
skin-based temperature sensors on her/his body, and lis-
tened to the experimenter’s instructions. The purpose of
the adaptation session was to neutralize the potential im-
pact of the outside weather conditions or physical activity
(e.g., running to class) before the experiment. In each of
the remaining three sessions, the participant watched a tu-
torial video (10 minutes), answered a quiz about it (<5 min-
utes), completed a thermal comfort survey (<5 minutes),
and then took a break. The length of the break (21 min −
VideoLength − QuizTime − SurveyTime) depended on how
long the participant took to complete the quiz and survey.
The order of the tutorial videos was randomized, as was the
order of the temperature conditions (warm to neutral, or
neutral to warm); see Conditions subsection below. Sensor
measurements, including video of the face, were recorded
throughout all three tutorial sessions.

After the participant finished putting on the body sensors,
the experimenter started the videorecording from the laptop-
based web camera, typed the participant’s ID into the web-
page, turned the time controller on, and then asked the par-
ticipant to press the “Start” button whenever she/he was
ready. The experimenter then left the room and stayed
in the room next-door throughout the rest of the experi-
ment. Using remote access software, the experimenter took
an IR image of the participant at the beginning of each tu-

Figure 1: Experimental setup of the desk, laptop,
and cameras.

Video:
10 mins

Quiz:
max 5 
mins

Survey:
max 5 
mins

Break:
21 mins - 

video - 
quiz - 

survey

Tutorial Session: 21 mins

Figure 2: Tutorial session procedure

torial video during the tutorial sessions. See Figure 2 for a
schematic of the procedure.

3.3 Environmental controls
We used 4 heaters (to increase the room temperature) and
1 air conditioner (to decrease temperature). In order to
maintain the temperature at a constant level, we also de-
ployed 3 thermal controllers. Moreover, in order to change
the room temperature (from either warm to neutral, or neu-
tral to warm), we also used 4 timers. To maintain the room
temperature to be at least 25◦C, 1 heater was always turned
on. 3 thermal controllers and 3 timers were connected to the
other heaters. The thermal controllers were used to keep the
room temperature around 30◦C. Timers were used to con-
trol when the heaters and air conditioners were turned on
and off. The heaters and air conditioner were oriented so
that the air did not blow directly onto the participant.

3.4 Sensors
All sensors were adjusted carefully before we started our
experiment. They are listed as follows:



Figure 3: Positions of skin-based temperature sen-
sors on the body.

1. 4 skin temperature sensors. We followed the positions
in [23] (see Figure 3). These sensors were used to mea-
sure the participant’s body temperatures at four differ-
ent body locations and record the temperature every
1 minute. Sensors were attached using medical tape.

2. Room temperature sensors. These sensors were used to
measure the room air temperature at different heights
(0.1m, 0.6m, 1.1m and 1.7m) and recorded every 1
minute.

3. 1 web camera on the laptop pointed at the partici-
pant’s face. Note that the video was lost for 1 out of
25 participants; hence, for our experiments on using
the web camera to predict thermal comfort, n = 24.

4. 1 infrared (IR) camera pointed at the participant’s
face. The camera recorded only images, not video.
Using the camera’s temperature calibration software,
the IR images can be used to estimate the participant’s
face temperature directly.

3.5 Materials
Tutorial videos: We used three 10 min-long tutorial videos
and quizzes that were used in a prior study by [32]. The
order in which the tutorial videos were presented to each
participant was randomized; this was necessary to remove
the potential confound that the subject matter, rather than
the thermal comfort or time during the learning session, in-
fluenced the learning gains. All videos were about social,
philosophical, and ethical issues: (1) honesty, (2) language
and thought, and (3) empathy.

Thermal comfort survey: We used the same thermal
comfort questionnaire survey as in [22, 21]. The survey asks
questions such as, “Rate your whole body thermal sensa-
tion”, “Rate your thermal body comfort”, “How sleep/alert
do you feel?”, and “How easy/difficult is it to concentrate?”
The scale was from -3 to +3 with a resolution of 0.1.

3.6m

PC

AC

1.5m

0.8m

2.8m

Desk

S1 0.1m

S2 0.6m

S3 1.1m

S4 1.7m

Heater 
IR Camera
Participant
Temperature sensors

Figure 4: Top: Experiment lab Photo; Bottom Left:
Top view of Lab and sensors’ position. The partic-
ipant was facing the direction with the arrow; Bot-
tom Right: Room temperature sensors in different
heights

3.6 Conditions
Each participant was randomly assigned to one of two tem-
perature conditions: neutral to warm (25°C to 30°C), and
warm to neutral (30°C to 25°C). By randomizing the thermal
conditions, we avoid the potential confound that students’
performance changed in different sessions not due to ther-
mal comfort but due to other factors related to time, e.g.,
fatigue. If the participant was in the neutral to warm con-
dition, the room temperature in the adaptation session was
maintained at 25°C until the end of the first tutorial session;
it was then increased to 30°C in the second tutorial session
and was maintained at this level until the end of the third
tutorial session. See Figure 5.

3.7 Data collection
Using the sensors, we collected several kinds of data from
each person: (1) Video from the web-camera (at 30 fps);
(2) Infrared images (1 every 21 minutes); (3) room tem-
perature, CO2, and relative humidity (1 measurement every
minute); (4) body temperature (1 every minute for each sen-
sor); (5) each participant’s start/end times of each tutorial
video, quiz, and survey; (6) each participant’s quiz scores.

4. ANALYSIS



Adaptation Tutorial 1 Tutorial 2 Tutorial 3
0 21 42 63 84 Time(min)

Room Temperature
      Condition1:
      From Neutral to Warm
      (25C to 30C) 

      Condition2:
      From Warm to Neutral
      (30C to 25C)

30C

25C

Figure 5: The change of room temperature in dif-
ferent conditions
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Figure 6: Histogram of thermal comfort in our ex-
periment

Our analysis was focused on two questions: (1) what is
the relationship between thermal comfort, temperature, and
learning? (2) How can we use the various sensors to estimate
participants’ self-reported thermal comfort automatically?

4.1 Impact of room temperature on thermal
comfort

In our experiment, the range of the room temperature was
from 25°C to 30°C. This was not a huge change in the tem-
perature. One of our goals was to assess whether this mag-
nitude of temperature change could influence body thermal
comfort. As defined in the thermal comfort survey that we
used [3], the range of thermal comfort was from -3 to 3,
where -3 means “very uncomfortable” and 3 means “very
comfortable”. Based on the histogram of body thermal com-
fort in our experiment in Figure 6, we see that the partici-
pants rarely (10 total votes) considered their thermal com-
fort to be highly uncomfortable (a rating of -3, -2). This
indicated that our setting of the experiment was relatively
comfortable for most of the participants. Did the modest
temperature changes induced during the experiment impact
participants’ thermal comfort? To investigate, we consid-
ered models including either linear or quadratic terms for
room temperature (computed as the average of the temper-
ature sensors at different heights). The quadratic model did
not give a stat. sig. better model fit, and hence we used a lin-
ear model; see Figure 7. The Pearson correlation between
the model’s predictions and self-reported thermal comfort
scores was r = −0.436, p < 0.001, i.e., within the temper-
ature range of our experiment, higher temperature resulted
in lower thermal comfort. Based on the estimated regression
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Figure 7: Thermal comfort VS Avg room tempera-
ture

coefficient, increasing the room temperature by one degree in
our temperature range results in a reduction of thermal com-
fort by 0.32. Note that we also tried modeling thermal com-
fort and temperature (linearly) with a participant-specific
offset as a random effect and obtained similar results.

4.2 Relationship between thermal comfort,
learning, and time

After showing the change of room temperature in our ex-
periment could influence the participants’ thermal comfort,
we assessed whether thermal comfort was related to partic-
ipants’ performance in the learning task. A scatter-plot of
the quiz scores versus self-reported thermal comfort scores is
shown in Figure 8. Neither the Pearson nor the Spearman
correlations between quiz score and thermal comfort were
significant. However, after visually examining the scatter-
plot, we noticed a slight ”inverted U” shape; this has also
been noted in prior work [29, 28]. This shape indicates that
when the participants felt too comfortable or too uncomfort-
able, their quiz score were lower; when the thermal comfort
state was in the middle, their quiz score was higher. We
found some support for this hypothesis in our data: the
Spearman correlation between the square of self-reported
thermal comfort and quiz score was negative (r = −0.235)
and statistically significant (p = 0.0042). Tthe quadratic
model of self-reported thermal comfort gives a stat. sig. bet-
ter fit than the linear model (likelihood ratio test, p =
0.002).

To explore this more rigorously by accounting for repeated
measures, we also used a mixed-effect model with a random
effect to model an offset for each unique participant. Due
to different tutorial videos having different difficulties, we
also considered the video id as the random effect. We stud-
ied the relationship between thermal comfort and quiz score
within each of the three tutorial session (1, 2, 3) separately.
To our surprise, in the first two tutorial session, the impact
of the square of the body thermal comfort (i.e., TC2) was
not significant (p > 0.05). However, in the last (third) ses-
sion, the impact was negative and stat. sig. (p = 0.013).
The estimated magnitude was that a change in 1 level of
thermal comfort decreases the quiz score by 0.2 points (the
maximum score was 6 points). A possible interpretation is
that, as time went on, the participants might feel more tired
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Table 2: Effect size (Cohen’s f2) of TC2 in each
tutorial session

Session No. Effect size
1 0.007
2 0.044
3 0.308

or bored. At first, they could force themselves to focus on
the tutorial videos and answer questions. However, when
they became fatigued or bored, an uncomfortable thermal
comfort might start to show its influence. See Table 2 for
the effect size(calculated based on the marginal R2) in each
tutorial session.

4.3 Relationship between thermal comfort and
sleepiness

The survey that each participant completed after every tu-
torial session contained questions not just about thermal
comfort, but also about how sleepy they felt. The values
ranged from -3 (very sleepy) to +3 (very alert). The corre-
lation between thermal comfort and sleepiness was positive
(0.32) and stat. sig. (p = 0.0084).

4.4 Relationship between engagement and
learning

1. 2.

3. 4.

Figure 9: Participants in different engagement lev-
els.

Figure 10: Manually cropped face for infrared im-
ages. Top: face when thermal comfort is -0.6. Bot-
tom: face when thermal comfort is 2.7.

To explore whether the perceived level of student engage-
ment, as judged by an external observer, was related to stu-
dents’ learning, we manually labeled video frames from each
participant’s face video. We extracted 1 frame every 20 sec-
onds for each of the 3 tutorial sessions of all the participants.
These pictures were labeled for the appearance of ’engage-
ment’ following the definitions in [36]. Level 1 is “not en-
gaged”, level 2 is “nominally engaged”, level 3 is “engaged”,
and level 4 is “very engaged”; see Figure 9 for a representa-
tive image of each label. During labeling, the images were
randomized over time and also over participants; hence, the
engagement scores were unbiased w.r.t. participants’ self-
reported thermal comfort. We averaged the engagement for
each participant per each of the three tutorial sessions, and
then used a mixed effect model to analyze the relationship
between quiz score and engagement. The participant id was
still the random effect. Since we had a prior hypothesis
that engagement was positively correlated with learning, we
used a 1-tailed t-test. The result showed that this positive
correlation was significant (p = 0.032).

5. AUTOMATIC DETECTION OF
THERMAL COMFORT

The primary method of estimating thermal comfort is via
self-report on a survey. Might there be an automated way
of obtaining this information that is less intrusive and gives
higher temporal resolution? This could be useful to advance
research on the IEQ and learning. Moreover, it could also set
the stage for smart learning environments in which localized
ventilation, heating, and cooling systems can optimize the
thermal comfort for each learner. With these goals in mind,
we explored several approaches to automatically estimating
thermal comfort using the different sensors we deployed in
our experiment.

5.1 Infrared camera
Per participant, 3 IR images were collected (one per tuto-
rial session). From each IR image, we manually cropped the
face for infrared images from IR camera and calculated the
average face temperature for each tutorial session. For each
IR image, we cropped the face between two ears for width,
and from forehead to chin for length; see Figure 10. We then
calculated the mean temperature within the face region and
used it to predict thermal comfort. Using a mixed-effect
model (with participant id as a random effect), we found
that the correlation between the face temperature, as com-



Table 3: Skin Temp. VS Thermal comfort
Sensor Pearson Correlation p-value

D -0.273 0.018
K -0.174 0.136
O -0.186 0.11
Q -0.28 0.015

puted from the calibrated IR image, and thermal comfort
was −.34 (p = 0.0029). In other words, a hotter face was
associated with lower thermal comfort.

5.2 Skin sensors of body temperature
We averaged the skin temperature from 4 skin sensors for
each tutorial session. The correlations between thermal com-
fort and averaged skin temperature are shown in Table 3.

With statistical significance, the correlations of the skin tem-
perature at position D and Q indicated that they had a
negative correlation with body thermal comfort. These two
correlations also remained significant when we applied the
mixed-effect model and set participant id as random effect.

5.3 Web camera
Even though the results of skin sensors and infrared cameras
showed that we could use them to detect thermal comfort,
we were still interested in whether an ordinary (visible light)
web camera can be used to detect thermal comfort. In con-
trast to skin sensors, web cameras are less intrusive – they
require no skin contact or medical tape. In contrast to IR
cameras, they are less expensive and more widely available.

While one could consider a “black box” approach such as
a CNN-LSTM in which all the pixels of an entire video
segment is used to predict thermal comfort, the relatively
small size of our dataset (n = 24) makes this approach dif-
ficult. Instead, we investigated whether the much lower-
dimensional feature representation of facial expressions can
reveal a person’s thermal comfort. For example, we reported
above that sleepiness is associated with thermal comfort,
and this might be revealed in a person’s facial expression;
this approach was used in [33] to detect drowsiness when
driving a car.

After watching the videos, our subjective impression was
that predicting thermal comfort from the face was very dif-
ficult. In the temperature range of our experiment setting,
the facial expressions in different temperature condition did
not vary greatly. Nevertheless, we tried three approaches:
(1) estimate thermal comfort directly from the average facial
features values extracted from OpenFace [4] over the time
series of face images; (2) estimate thermal comfort from a
Gabor-filtered time series of facial features; and (3) train a
recurrent neural network to analyze the raw time series.

5.3.1 Individual face movements
From each frame in each 10-minute video sequence just prior
to the self-reported thermal comfort survey of each tutorial
session of each participant, we used OpenFace to extract
the facial action units (AUs 1, 2, 4, 5, 6, 7, 9, 10, 12, 14,
15, 17, 20, 23, 25, 26, 45). In addition, we also calculated

Figure 11: Landmarks from OpenFace

the size of the face – this could be useful for determining
if the participant leaned toward or away from the camera.
Next, we extracted the head pose. Finally, we computed the
distance between the eye-lids – this could give some measure
of drowsiness.

For the left eye, we first calculated the central point of land-
mark 37 and 38, the central point of landmark 41 and 40, and
then, calculated the distance between the these two central
points. For the right eye, we calculated the distance used
landmark 43, 44, 47 and 46 as the same approach as the
left eye. The eye-lid distance was the mean of the left dis-
tance and the right distance. We also estimated the size of
the face box as an indication of whether a person was lean-
ing towards or away from the camera: we first calculated
the central of landmark 19 and 24, and then calculated the
distance between the central and landmark 8, and also the
distance between the landmark 0 and 16. The final face size
was the product of the two distance. See Figure 11.

Using the above feature set, we examined the Pearson corre-
lation between each mean feature value (averaged over each
10-minute time series) and self-reported thermal comfort.
Only two features were stat. sig. correlated: AU 6 (Pear-
son r = 0.244, p = 0.038; see Figure 12) – cheek raiser –
and the eye-lid distance, calculated by the landmarks on the
eyes, was also correlated to thermal comfort with significant
(Spearman r = −0.27, p = 0.02). The latter correlation
suggests that smaller eye opening is associated with larger
thermal comfort; this is consistent with the notion that ther-
mal comfort that is “too high” may cause people to become
sleepy.

5.3.2 Gabor filtered time series
A 1-D (temporal) Gabor filter is a complex-valued band-
pass filter, with a specifiable center frequency and band-
width, whose impulse response is local in both time and
frequency; an example of the real component of one filter is



Figure 12: Example of AU 6 (https://www.cs.cmu.
edu/~face/facs.htm
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Figure 13: One example of real gabor filter. Fre-
quency: 3.0; bandwidth: 0.9492

shown in Figure 13. Gabor filters have been applied to var-
ious facial expression recognition tasks [33] and can capture
certain patterns of a raw time series. For instance, they can
capture wave-like patterns such as repeated blinking or eye
closure. Here, we explored whether they could be helpful for
predicting thermal comfort.

We applied Gabor filter to the AUs, face size, head pose,
and eye-lid distance features. The frequency was selected
from {8.0, 7.0, 6.0,5.0, 4.0, 3.0, 2.25, 1.6875, 1.2656, 0.9492,
0.7119, 0.5339, 0.4005, 0.3003, 0.2253, 0.1689, 0.01, 0.} and
the bandwidth was selected from the same set without 0.
Thus, 918 filters (the combination of 18 frequencies, 17 band-
widths and real, imaginary and energy Gabor filters) were
applied to each AU and head features, which was the same
filter bank as [33]. We used forward feature selection to pick
the top 5 filtered features and then used linear regression on
these top 5 features to predict thermal comfort. However,
even the best Pearson correlation was very low (r = 0.02),
suggesting that this approach had limited predictive power.

5.3.3 Recurrent neural networks
Recurrent neural networks such as LSTM and GRU, are
powerful models for dealing with time series. We explored
whether a GRU (Gated Recurrent Unit) network can ana-
lyze the facial expression series to estimate thermal comfort.
We trained a GRU model from the feaures extracted using
OpenFace described above using leave-one-person-out cross-
validation to measure accuracy of the approach. Hyper-
parameters were selected from the sets {learning rate: {0.0001,
0.0005, 0.001}, hidden units: {8, 16, 32}, epoch: 50, opti-
mizer: {Adam, SGD}. For each fold, we randomly selected
5 participants as the validation set (for hyperparameter val-
idation), and the remaining 18 participants as the training
set. Training every 5 epochs, the model would be applied to

validation set and test set.

After tuning the hyper-parameters on the validation set, the
best combination was {learning rate: 0.0005, hidden units:
32, epoch: 15, optimizer: Adam}. The average (over all
24 folds) correlation between predicted and actual thermal
comfort scores was 0.248; the result was statistically signif-
icant (p = 0.0425, Wilcoxon signed-rank test). We note,
however, that this result is no larger than the magnitude
of the correlation between the eye-lid distance and thermal
comfort reported above.

6. DISCUSSION AND CONCLUSION
We conducted an experiment in to investigate the relation-
ship between thermal comfort and students’ performance in
a computer-based learning task in the classroom. We also
explored different sensors and predictive models to measure
thermal comfort automatically.

Key results: 1) Changing the room temperature by a few
degrees Celsius could stat. sig. impact students’ self-reported
TC; (2) Our experimental data provide evidence that learn-
ing is optimal when thermal comfort is neither too high nor
too low (inverted U relationship), corroborating prior work.
However, we also found a more nuanced relationship than
had been identified in prior literature: the impact of thermal
comfort on learning was stronger during the third tutorial
session (later in time) compared to the first two sessions. (3)
Engagement, as labeled by an external observer, was corre-
lated with learning. (4) Thermal comfort can be predicted
from the face temperature using an IR camera. (5) Facial
expression, at least in the ways we analyzed it, carries only
limited information about thermal comfort.

Future work: Given a larger video dataset of face im-
ages and associated self-reported thermal comfort scores, we
could explore more powerful prediction models that directly
predict thermal comfort from the face pixels. This might
offer more powerful information than the facial expression
estimates from OpenFace.
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