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Abstract. A recently proposed virtual implementation of output feed-
back based on signal processing eliminates the practical overhead associ-
ated with physical operation in closed loop. Additionally, the virtual im-
plementation facilitates realization of multiple closed-loop systems from
a single test in open loop, allows for complex gains, and removes the con-
straint of closed-loop stability. Care must, however, be exercised in the
design of the closed-loop systems, as the errors in these are governed by
the intrinsic approximations in the open-loop identification. The present
paper offers an examination of this item when the closed-loop systems
are designed for parameter estimation in updating of numerical models of
structural systems. The differences between physical realization and the
proposed virtual implementation are discussed, and the pivotal points
outlined are demonstrated in the context of a numerical examination
with a structural system.
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1 Introduction

Model updating through parameter estimation is a well-known discipline used
in many different application areas [1]. Within structural and mechanical engi-
neering, model updating is commonly used to calibrate a numerical model of a
physical structure for use in structural design, control, health monitoring, re-
sponse prediction, and so forth [2]. In this context, a typical updating approach
is to minimize the discrepancy between the poles from the numerical model, .,
and target poles estimated from the physical system, 2. Here, an obvious issue
is that no unique solution exists for the inverse problem when the dimensionality
of # is larger than the number of identifiable poles from &7 [3,4]. This will often
be the case, at least when using poles as targets, in structural and mechanical
engineering applications, where a limited amount of poles can be identified.
Several approaches have been discussed to increase the pole target space.
Examples include (1) testing the structure in different configurations by adding
known perturbations [5,6] and (2) using output feedback to design and test



2 Jensen, M.S., Hansen, T.N., Ulriksen, M.D., and Bernal, D.

multiple closed-loop systems [3,4,7]. With reference to the second option, it
has recently been shown that the practical overhead associated with closed-loop
testing can be eliminated by use of a virtual approach, in which multiple closed-
loop systems can be computed based on a single open-loop realization [8-11].
The virtual approach also removes the restrictive stability constraint [7], enables
the use of complex gains because the control forces do not have to be physically
delivered [11], and allows an increase in the target space based on a single closed-
loop system [12]. The scope of the present paper is to examine, in terms of model
updating, the basic applicability of the virtual approach by comparing it to the
physical counterpart, where it is noted that the latter refers to real-time closed-
loop testing.

The remainder of this paper is organized as follows: the fundamentals of out-
put feedback and the virtual approach are briefly described in section 2. The im-
plementation of output feedback—including gain computation and selection—for
model updating is outlined in section 3. In section 4, numerical examples are pre-
sented to demonstrate the performance of the virtual and physical approaches,
and lastly, in section 5, some concluding remarks close the paper.

2 Output feedback

Let & be described as a linear, time-invariant system in discrete time with the
direct transmission term being zero or subtracted from the measurements, then

z(k+1) = Agw(k) + Bau(k) (1a)
y(k) = Ca(k), (1b)

where z(k) € R™*! is the state, u(k) € R"*! the control input, y(k) € R™*! the
output while A4 € R"*" By € R"*" and C' € R™*™ are the system matrices. In
this paper, it is assumed that {A4, B4} is controllable and {44, C'} is observable.

Considering dynamic output feedback, the control input, u(k), is the output
of a discrete-time, finite-dimensional linear time-invariant system driven by y(k),
which is formulated as

zp(k+1) = Aszs(k) + Bry(k) (2a)
u(k) = Cra(k) + Dyy(k) + v(k) (2b)

for some excitation v and coeflicient matrices Ay € C?*9, By € C*™, (Cy €
C"*4, and Dy € C"*™. Augmenting Eq (2a) with Eq. (1a), using Egs. (1b) and
(2b), yield

e S e v Pt R GO

which is referred to as the compensator. As seen in Eq. (3), letting Ay, By
and Cf equal 0 yields static output feedback, and the compensator can thus be
adapted for both static and dynamic output feedback.
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Let #(k) = {z(k)T z;(k)T}T, then Eq. (3) can, as shown in [9], be rewritten
as

Bk + 1) = Aa(k) + Bi(k) )
with the output

(k) = GOE(k) + {U(Ok)} (5)
and

O R T R P A

As shown, the compensator can be viewed as a static output feedback system
with the control law in Eq. (5) and the system matrices A € Rta)x(nta)
B € Rntax(r+a) ¢ ¢ Rm+Ta)x(n+a) gnd G € Crra)x(m+q),

The virtual implementation of the compensator is achieved by using the
relation between the open- and closed-loop transfer matrices, H(z) and J(z),
which in a system governed by positive static output feedback with the gain G
is defined by [13]

H(2) = (I - H(z)G) ™ H(z), (7)

from which it follows that the closed-loop system can be identified from the open-
loop realization. In order to incorporate the compensator, allowing for dynamic
feedback, an open-loop transfer matrix is defined as [9]

Ho) = |5 (] ®)

which complies with the dimensions of the compensator model. The compensator
transfer matrix is found by substituting Eq. (8) into Eq. (7), yielding

T oo .
[o H(z)]‘ ®

By use of different gains, it is, in principle, possible to generate as many
compensators as required from just a single open-loop realization. Worth of ex-
plicit note is that when the identification of the open-loop system is conducted
in the frequency domain, the implementation of the virtual compensator fol-
lows directly. If, however, the system is identified in the time domain, one must
transform to the z-domain in order to calculate Eq. (9). An approach for this
is provided in [8], and it is based on mapping observer Markov parameters to
H(z). Furthermore, it should be noted that the inverse z-transformation filters
unstable poles, hence eliminating the stability constraint.

) 1-14; -1p;
s o . .
—H(Z)Cf I— H(Z)Df
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3 Model updating using closed-loop systems

The parameters to be estimated are gathered in § € R® and the updating is
formulated as the following constrained optimization problem:

argmin [|A.2(0) — Asm||
OcRs (10)
subject to Vi € [1,8]:a; < 0; < B,

where «;, 5; € R are lower and upper bounds on 6; and

Ap =[Ap, - Ayp] e Ccvxr (11)
Aa(0) = [Ag,(0) -+ Agp(0)] € CP (12)

are, respectively, v target poles and the corresponding model-predicted poles for
cach of the p gains. The idea is to ensure that the system to be solved in the
optimization scheme is (over)determined, which is done by stacking the columns
of Ay and A_4(0) into vectors with vp > s rows.

There are several ways to design the required gains, such as optimizing a cost
function with specific goals [7,14] or, as is currently being explored [10,11], by
generating random matrices. Here, we choose to simply generate gains as random
real matrices using scheme 1 [11]. The real scalars @ and b should be selected
such that reasonable pole shifts occur while still, since the physical approach is
included for comparison, retaining system stability.

One approach to investigate the error in the realization of the closed-loop
poles, using the virtual dynamic approach with the gain G, is through the poles’
sensitivity with respect to some parameter, g, of the gain, that is,

0N O 750G -
Sa = g0 =l B Cos (13)

Here, 1; and ¢; are the jth left and right eigenvectors of the compensator state
matrix, <, presented in Eq (3). In order to omit gains that cause undue error,

Scheme 1 Generation of § gains with @,b € R

fori=1:pdo

Define A} = aR' where R’ € R"*7 with R (R l) ~ N (0,1)

Define B = aP’ where P’ € R™™ with R (P l) ~ 4 (0,1)

Define C's = bQ’ where Q' € R"*¢ with R (Q l) ~ (0,1)

Define D = bD* where D* € R”*™ with R (D l) ~ A4(0,1)
A} B}

Define G; =

Cy Dj
end for
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we use the heuristic gain selection procedure proposed in [11], which circumvents
calculation of the gain derivative. In particular, we use the initial model of the
closed-loop system to define the metric

% = 2., BIICP.a |, (14)

where ¥ 4, and @ 4, are the left and right eigenvectors associated with the
model-based poles using gain i, A _4,. Using this metric, the gain configurations
yielding the lowest values are selected for use in the updating. Worth of explicit
note is that since we base the metric on the initial models, pole path linearity is
implicitly assumed.

4 Numerical examples

We consider a 10-DOF shear building model and a square plate model consisting
of 16 elements in the context of model updating for damage characterization. For
both examples, it is assumed that there is no pre-existing knowledge regarding
the location of the damage, thus 6 contains, respectively, all the inter-story
stiffness values in the shear building example and all the moduli of elasticity in
the plate example.

In the examples, we will use the terms simulation model and virtual and
physical nominal models in order to refer to the model used for simulations and
the numerical models to be updated. In both examples, the simulation model is
drawn from the manifold containing the virtual and physical nominal models,
which implies that in the absence of noise there is a set of parameters for which
the models to be updated coincide with the simulation model. This will, of
course, not be realizable in practice. The virtual and physical nominal models are
updated using the “fmincon” algorithm in MATLAB® to solve the optimization
problem in Eq. (10). The required system identification is carried out using the
Eigensystem Realization Algorithm [15], where the output in both examples are
contaminated with 2% white Gaussian noise.

Scheme 1 is used to generate 100 gains for dynamic output feedback with
q = 2, where the metric described in section 3 is used to choose the 10 gains
yielding the lowest value. Furthermore, the scheme is used to generate 10 gains
that provide system stability for static output feedback. Four poles are selected
from each gain configuration to form the target vector Ay € C*°, where the
corresponding poles from the nominal models, A 4(0) € C%, are taken as the
ones yielding the lowest discrepancy to the identified target poles.

4.1 10-DOF shear building

The shear building illustrated in Fig. 1 is equipped with 3 displacement sensors
and 1 actuator, and a 20% stiffness perturbation is introduced in the 6th floor.
In the simulation, the structure is excited with white noise in the first floor, and
the resulting displacements are measured with a sampling frequency of 100 Hz
at the 1st, 5th and 9th floor for a duration of 5 minutes.
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floor masses = {2,1,2,...,1}
inter-story stiffness = 5000-{1,1,1,1,1,0.8,1,1,1,1}
displacement sensing @ {1,5,9}

10
9

% % 2% modal damping
2
1

T actuator

Fig. 1. Shear building simulation model with stiffness perturbation in the 6th floor,
where the inter-story stiffness and the floor masses are in any consistent set of units.

The model updating scheme provides the results illustrated in Fig. 2, where
the converged stiffness estimates, k;, of the updated model are normalized with
respect to the true value of the stiffness components. The results show, qualita-
tively, that the performance of the virtual implementation is comparable to that
of the physical. The parameters are estimated with a maximum absolute error
of 0.42% and 0.49% using the virtual approach with static and dynamic feed-
back, respectively, and 0.48% using the physical approach. The mean absolute
percentage error is 0.25% for the physical approach and, respectively, 0.19% and
0.24% for virtual static and dynamic feedback.

1.2 T T T T T T T
[ Physical Static [ Virtual Static [ Virtual Dynamic

| I | | | I I | |
2 3 4 5 6 7 8 9 10
Element number

Fig. 2. Model updating results for the 10-DOF shear building with k and k being the
converged estimate and true value of the stiffness components.
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Fig. 3. Finite element plate simulation model with modulus of elasticity F; = E Vi €
[2,16] and E; = 0.8E. Out-of-plane input is applied at node 12 (#) and out-of-plane
displacements are measured at node 3, 10, and 23 (H).

4.2 Plate model

We consider the square finite element plate model, depicted in Fig. 3, which
consists of 16 four-noded plate elements, where each node has 1 translational
and 2 rotational degrees of freedom. The plate is assigned a material model
corresponding to typical structural steel, and classical damping is assumed such
that each mode is assigned a damping ratio of ; = 2% in open loop. The elements

T T T T
-Physical Static [ Virtual Static [___]Virtual Dynamic
1.1+ -

2 4 6 8 10 12 14 16
Element number

Fig. 4. Model updating results for the plate model with £ and E being the converged
estimate and true value of the moduli of elasticity of the elements.
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have a side length of 0.4m and thickness of 0.003m and are all assigned an initial
modulus of elasticity of 200 GPa in the nominal models, while the elements of
the simulation model is assigned a modulus of elasticity of £; = 200 GPa, except
for element 1 where F; = 160 GPa. The system is excited with white noise in
node 12, and the resulting displacements are measured at node 3, 10, and 23
with a sampling frequency of 100 Hz for a duration of 5 minutes.

The model updating scheme converges to the results illustrated in Fig. 4.
As in the previous example, the results from the virtual approach show to be
comparable to the results obtained using the physical approach. The parameters
are estimated with a maximum absolute error of 6.0% and 3.3% using the vir-
tual approach with static and dynamic feedback, respectively, and 5.9% using
the physical approach. The mean absolute percentage error is 3% for the phys-
ical approach and, respectively, 2.2% and 1.3% for virtual static and dynamic
feedback.

5 Conclusion

The paper addresses model updating by use of closed-loop system formula-
tions. In particular, we explore the applicability of a recently proposed vir-
tual approach—based on processing of open-loop signals to form closed-loop
systems—Dby comparison with physical operation in closed loop.

Numerical examination of a shear building and a finite element plate show
the performance of the physical and virtual approaches to be comparable. As
such, the two examples suggest the virtual approach to be a viable alternative to
physical closed-loop testing; an alternative that eliminates the practical overhead
associated with the latter.
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