On the Model Order in Parameter Estimation
using Virtual Compensators

Hansen, T.N.!, Jensen, M.S.!, Ulriksen, M.D.!, and Bernal, D.?

! Department of Civil Engineering, Aalborg University, 6700 Esbjerg, Denmark.

E-mail:tnha14@student.aau.dk'g, mj13@student.aau.dk, mdu@civil.aau.dk

2 Center for Digital Signal Processing, Northeastern University, MA 02115, USA
E-mail: D.Bernal@northeastern.edu

Abstract. Processing signals from open-loop system realizations can
replace real-time operation using actuators in the design of closed-loop
eigenstructures. One merit of the signal processing-based implementa-
tion is that it, in principle, allows virtual compensators of user-defined
model order since the closed-loop systems are not to be realized during
physical testing. The present paper explores the implication of the vir-
tual compensator order in terms of the Fisher information on unknown
parameters to be estimated in a model updating context. A numerical
example with a structural system of engineering interest is presented that
demonstrates the basic points outlined in the paper.
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1 Introduction

Calibrated numerical models are used extensively within structural and me-
chanical engineering for design, analysis, health monitoring, and control [1]. The
calibrated models are often obtained through conventional updating schemes, in
which the discrepancy between poles from a model, .#, and target poles esti-
mated from the physical system, &2, is minimized [2]. An issue in this context—
which will typically prevail when using poles as targets in structural and me-
chanical engineering applications—is that the system of equations to be solved
in the minimization problem is ill-conditioned [3,4]. Proposals to increase the
target space and, in this way, resolve the condition issue by testing the system
under known perturbations have been made [5,6], but practicality is often lim-
ited. Another way to address the target space issue is to interrogate the structure
in closed loop with different gains and, as such, increase the number of poles that
can be identified. However, the closed-loop interrogation scheme has not yet had
an important impact in applications, which, presumably, is due to the practical
overhead associated with real-time operation.

Recently, it has been shown that the noted overhead can be eliminated by use
of a virtual approach, in which multiple closed-loop systems can be computed
based on a single open-loop realization [7-10]. The virtual implementation also
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removes stability and actuator design constraints [11], enables the use of complex
gains because the control forces do not have to be physically delivered [10], and
allows for a user-defined model order of the closed-loop system. In the present
paper, focus will be on the last item, namely, to examine the feasibility of increas-
ing the closed-loop system model order as an alternative approach to increase the
target space. The theoretical outset in the examination is the Fisher information
on the parameters to be updated; in particular, how the information increases
as function of the model order and how this is reflected in the accuracy of the
model updating.

The paper is organized as follows: section 2 outlines the fundamental theory
of dynamic output feedback, followed by a description of the virtual implemen-
tation in section 3. Section 4 describes the concept of Fisher information, and
subsequently, in section 5, a model updating scheme based on minimizing the
discrepancy between closed-loop target poles and model-based poles is outlined.
In section 6, a numerical example is presented to demonstrate the points made,
and in section 7 some concluding remarks are given to close the paper.

2 Output feedback

Let a structural domain, &, be described as a linear, time-invariant system in
discrete time as

z(k+1) = Agz(k) + Bau(k) (1a)
y(k) = Cx(k). (1b)

Here, z(k) € R™ is the state, u(k) € R" the control input, y(k) € R™ the output,
and Ay € R™™" B; € R™™", and C € R™*™ the system matrices. It should
be noted that when measurements are displacements, velocities, non-collocated
accelerations or collocated accelerations where the direct transmission term has
been subtracted, Eq. (1b) holds directly. Tt is assumed throughout this paper
that one of the mentioned conditions is met.

In case of dynamic output feedback, u is the output of a discrete-time, finite-
dimensional linear time-invariant system driven by y, thus

z5(k+1) = Asxs(k) + Bry(k) (2a)
u(k) = Cras(k) + Dyy(k) +v(k) (2b)
for some excitation v and coefficient matrices Ay € C9*9, By € C™*™ Cy €

C™49, and Dy € C™™. Augmenting Eq. (2a) with Eq. (1a), using Egs. (1b) and
(2b), yields

() -[reraee 2e)[w] e o

which is referred to as the compensator. Defining #(k) = {z(k)T x(k)"}7,
Eq. (3) can, as shown in [7,11], be rewritten as

i(k+1) = Az(k) + Bau(k) (4)
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with the output

and
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As shown in Eq. (4), using the feedback law in Eq. (5), the compensator
can be viewed as a static output feedback system of order n + ¢ and with the
system matrices A € RO x(nta) B ¢ Rnta)x(r+a) & ¢ Rm+a)x(nta) apd
G € Clrta)x(m+q)

3 Virtual implementation

As seen in section 2, implementation of the compensator to close the loop changes
the model order of the system from n to n+¢, and the inputs and outputs increase
by g. The virtual implementation of the compensator model is achieved using the
relation between the open- and closed-loop transfer matrices, H(z) and 52(z),
which in a system controlled with positive static output feedback with the gain
G is defined by [12]

H(z) = (I - H(2)G) *H(z), (7)
from which it follows that the closed-loop system can be identified from an open-

loop realization. The open-loop transfer matrix can, in order to comply with the
compensator model, be defined as [8]

ir o0
so by substituting Eq. (8) into Eq. (7), we get the compensator transfer matrix
~ I—1a; 1By 17[E1 0
H(z) = : 9)
—H(z)Cy I —H(%)Dy 0 H(z)

Worth of explicit note is that when the identification of the open-loop system
is conducted in the frequency domain, the implementation of the virtual com-
pensator follows directly. If, however, the system is identified in the time-domain,
one must transform to z-domain in order to calculate Eq. (9). An approach for
this is provided in [8], and it is based on mapping observer Markov parameters
to H(z). Furthermore, it should be noted that the inverse z-transformation fil-
ters unstable poles, hence removing the system stability constraint required in
physical testing.



4 Hansen, T.N., Jensen, M.S., Ulriksen, M.D., and Bernal, D.

4 Fisher Information on the Parameters

The amount of information that the closed-loop system carries on the system
parameters to be updated, gathered in 6 € R®, can be assessed, qualitatively, by
use of the Fisher information matrix, Z € C***,

Let Y be an observable variable, carrying information on 6, then the Fisher
information matrix can be expressed in terms of the likelihood function, f, with

the entries PInf(¥:6)
n ) .

where E is the expectation operator. Assuming Y ~ 4 (u(8),~), the Fisher
information matrix can be expressed as [13]

T=Jgx"17, (11)

where superscript H indicates the conjugate transpose, X € C**¢ is the co-
variance matrix of Y, and J € C4t™X¢ is the Jacobian matrix containing the
first-order derivatives of Y with respect to 8. If Y contains ¢ + m poles of the
closed-loop system, which will be the case in this study, the Jacobian is given
as

[ an.  on oA ]
90, 00, - 00.
50 99, " 00,
F N B (12)
8)‘q+m 8/\q+m 8)‘€1+m
| ~20, 86, - 26, J

when \; denotes the ith pole.

One gathers that the Fisher information can be used to assess the qualitative
implication of the model order, ¢, as it is contented that an increase in Fisher
information on the parameters will improve the estimation of these in model
updating schemes. Another way to appreciate this is from the Cramér-Rao lower
bound, C € C**%, which is defined as

c=1"" (13)

and composes a measure of the minimum covariance that any unbiased estimator
of # can achieve. In other words, C provides a lower bound on the variance
by which we can estimate each component in #, and one anticipates that this
variance will decrease asymptotically as ¢ increases.

5 Model Updating using Virtual Compensator

The estimation of the parameters in # € R?® is formulated as the constrained
optimization problem

subject to Vi € [1,s] : oy < 6; < 3,

argmin [|A.#(0) — Ao
OeRs (14)
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where Agp € CIT™ is a subset of poles estimated from the physical system,
A4 (0) € CTT™ the corresponding model-predicted poles, and «;, 3; € R lower
and upper bounds on 6;. The idea is to ensure that ¢ + m > s, such that the
system to be solved in the optimization scheme is (over)determined, which can
be achieved by stacking identified poles from multiple closed-loop systems into
a target vector [14], or by increasing the compensator order. In this paper, we
opt for the latter and use the least square method described in [11] to design
a single gain configuration to place ¢ + m > s poles, hence yielding the target
vector

Agz={/\91,...,)\gzq+m}TE(C(H—m. (15)

Since the least square procedure uses arbitrary complex constants to collapse
the eigenvector basis, different gain configurations yielding the same pole subset
placement are achievable. One approach to investigate the error in the realization
of the closed-loop poles, using the virtual dynamic approach with the gain G,
is through the poles’ sensitivity with respect to some parameter, g, of the gain,
that is,

0G -

ON\; 0 -
2 = ¢; = w?%;% (16)

T
a9~ "oy
where 1); and ¢; are the jth left and right eigenvectors of the compensator state
matrix, 7., presented in Eq. (3). In order to omit gains that cause undue error,
we use the heuristic gain selection procedure proposed in [10], which circum-
vents calculation of the gain derivative, to select from a pool of candidates. In
particular, we use the initial model of the closed-loop system to define the metric

% = 1.0, Bll|CP.c,

; (17)

where ¥ 4, and @ 4, are the left and right eigenvectors of the closed-loop system
model with gain G;.

6 Numerical Examination

We consider the 10-DOF shear building depicted in Fig 1 in the context of model
updating for damage characterization. The example explores what influence the
compensator order, ¢, has on the Fisher information and how this relates to the
performance of the model updating when using a single closed-loop system.
The terms simulation model and nominal model are used to refer to, respec-
tively, the model used for simulating the output for system identification and
the numerical model to be updated. In this example, the simulation model is
drawn from the manifold containing the virtual nominal model, which implies
that in the absence of noise there is a set of parameters for which the model
to be updated coincides with the simulation model. This will, of course, not be
realizable in practice. The simulation model, which is assigned a 20% stiffness
perturbation in the 6th floor, is excited by white Gaussian noise in the first floor,
and the resulting displacements are measured in the 1st, 5th, and 9th floor for a
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floor masses = {2,1,2,...,1}

inter-story stiffness = 5000-{1,1,1,1,1,0.8,1,1,1,1}
displacement sensing @ {1,5,9}

10
9

% % 2% modal damping
2
1

i/

actuator

Fig. 1. 10-DOF shear building, where the inter-story stiffness and floor masses are in
any consistent set of units, used for numerical illustrations.

duration of 5 minutes with a sampling frequency of 100 Hz. The displacements
are contaminated with 2% white Gaussian noise, and the open-loop system iden-
tification is performed using the Eigensystem Realization Algorithm [15].

We consider compensator orders of 7, 11, and 15, which result in target
vectors with 10, 14, and 18 poles, hence making the optimization problem de-
termined for ¢ = 7 and overdetermined for ¢ = 11 and ¢ = 15. The gain is
designed such that a subset of the closed-loop nominal model poles is assigned
as {1, %)\1, %)\1, el q+7;+1)\1}, with A; being the first pole of the open-loop
nominal model. To compute the Fisher information for each configuration of the
compensator order, we estimate the covariance matrix in a Monte Carlo setting
with 100 simulations and, subsequently, calculate the Fisher information using
Eq. 11. Fig. 2 presents the condition number of each Fisher information matrix,

1010 = T T E

Condition number, x(Z)

I |
7 11 15
Compensator order, ¢

Fig. 2. Condition number of the Fisher information matrix for different configurations
of the compensator order, q.
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Fig. 3. Model updating results for the shear building for three configurations of ¢, with
k; and k; being the converged estimate and true value of the stiffness components.

T T T
[6—q=7 —%—q=11 —B—q=15 N

1 2 3 4 5 6 7 8 9 10
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Fig. 4. Cramér-Rao lower bound on the individual parameters to be estimated for
three compensator order configurations.

which decreases as ¢ increases. Further numerical examination has confirmed
that the decrease is asymptotic.

For the model updating, the target vectors are formed as Ag € C4T" where
the corresponding poles from the nominal models, A _4(0) € CIT™ are taken
as the ones yielding the lowest discrepancy to the identified poles. The nomi-
nal models are updated for each realization of the target vectors by use of the
“fmincon” algorithm in MATLAB® to solve the optimization problem in Eq.
(14). It is assumed that no prior knowledge of the perturbation location exists,
thus 6 contains all the inter-story stiffness values in the shear building model.

The mean and variance of the converged estimates, which are normalized
with respect to the true stiffness, are visualized in Fig. 3. The parameters are
estimated with a mean absolute percentage error of 3.16%, 2.06%, and 0.37%
for a compensator order of 7, 11, and 15, thus the Fisher information increase
is reflected in the estimation accuracy. One gathers from Fig. 3 that the vari-
ance decreases as ¢ increases, which is in agreement with the tendency of the
Cramér-Rao lower bounds depicted in Fig. 4. For each model order, we also find
reasonable correlation between which parameters that have the lowest Cramér-
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Rao lower bounds and what is observed in terms of relative estimation variance
for the parameters in the model updating.

7 Conclusion

The paper addresses model updating by use of a recently proposed virtual ap-
proach based on processing open-loop signals to form closed-loop compensators.
In particular, we explore the feasibility of resolving the issue of ill-conditioned
model updating by (over)determining the system of equations to be solved
through an increase of the compensator order.

Model updating of a shear building in a Monte Carlo setting shows the mean
of the estimated parameters to approach (asymptotically) the true values when
increasing the compensator order. Furthermore, the variance of the estimated
parameters and the condition number of the Fisher information matrix decrease
asymptotically as the compensator order increases.
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