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ABSTRACT 
In this paper, a novel neural network based iterative 

learning controller for a hybrid exoskeleton is presented. The 
control allocation between functional electrical stimulation and 
knee electric motors uses a model predictive control strategy. 
Further to address modeling uncertainties, the controller 
identifies the system dynamics and input gain matrix with neural 
networks in an iterative fashion. Virtual constraints are 
employed so that the system can use a time invariant manifold to 
determine desired joint angles. Simulation results show that the 
controller stabilizes the hybrid system for sitting to standing and 
standing to sitting scenarios. 

Keywords: Iterative learning controller, Functional 
electrical stimulation, Model predictive control, Neural network, 
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1. INTRODUCTION 
 A hybrid exoskeleton (HES) is a potential rehabilitation 
technology that can be used to restore a person's lost walking 
ability. It provides benefits of both functional electrical 
stimulation (FES) and a powered exoskeleton. For example 
additional therapeutic benefits of FES such as muscle growth and 
increased bone density can be gained through the use of an HES. 
Additionally, the size and weight of bulky motors and batteries 
that are deployed in sole powered exoskeletons can be reduced 
[1]. The powered exoskeleton can also be used to compensate for 
the effects of FES-induced muscle fatigue. However controlling 
this type of devices faces several challenges. Firstly, to control 
the HES, an allocation strategy is needed to coordinate FES and 
the powered exoskeleton based on the onset of FES-induced 
muscle fatigue. Our previous paper [2] extended a fatigue based 
switching control design in [3] for allocating FES and 
exoskeleton a multi degrees of freedom (DOF) walking. In an 
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alternative approach, inspiration from the muscle synergy 
principle was used in [4] to address the FES and exoskeleton 
allocation problem. The method uses a low dimensional 
controller which controls multiple effectors: FES of multiple 
muscles and electric motors.  
 Nonlinearity and uncertainty in the dynamic model of HES 
are another set of challenges that may impede its day-to-day 
implementation in a clinical setting. Nonlinear robust control 
methods like robust integral of the sign of the error [5] and 
sliding mode control [6] have been designed and analyzed for 
robust FES control. However these methods rely on high control 
gains or high frequency to compensate for modeling 
uncertainties. [7] uses a robust Lyapunov-based MPC that 
incorporates a contractive constraint. It achieves the system 
stability despite unknown constants for muscle activation 
however it suffers from high control gains. Iterative learning 
control (ILC) [2] and neural-network (NN) based controllers [8] 
are the approaches that can be utilized to overcome the 
drawbacks of traditional controller methods, especially for 
achieving a desired transient response when the system of 
interest has a repetitive operation. In [8], for controlling 
neuromuscular electrical stimulation, an NN based controller 
was proposed. However none of these methods were designed 
for an HES. Even in our previous work on HES control [2], the 
controller used feedback linearization and a second-order sliding 
mode control for both FES and electric motors, but the controller 
still needed a nominal model for feedback linearization. 
 In this paper, for addressing the actuation coordination and 
redundancy problems, a model predictive control (MPC) 
strategy for optimal allocation of control inputs from motor and 
FES is used. A virtual constraint [9] that generates desired 
movements for joints based on a time-invariant manifold is used. 
For overcoming the problem of uncertain HES dynamics, a novel 
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NN based ILC method is used so that the controller can learn the 
HES dynamics during its operation. This method addresses the 
limitation in our previous research in [2] where exact model 
knowledge (EMK) is required for implementing that controller. 
In our another previous work [10] a sole ILC method was used 
to learn a linearly parameterizable part of the system dynamics. 
Therefore, in this paper a unified (virtual constraint + robust NN 
based ILC + MPC based allocation) is designed to estimate both 
linearly parameterizable and non-parameterizable parts of the 
system dynamics of a generalized HES. The controller tracking 
stability is proven using an energy based method. Simulations 
are done for standing to sitting and siting to standing scenarios 
using this control method. 

2. GENERAL HYBRID EXOSKELETON DYNAMIC 
MODEL 
An N-DOF hybrid exoskeleton generalized dynamic model 

can be represented as 
                (1)                   

where  is represented as . 

 is the angular position of the  linkage. 

            (2) 

                    (3) 

                   (4) 

where  is the control gain matrix of FES and 

 is the control gain matrix of motors, respectively. 

 is the inertia matrix,  is the gravitational 

vector and  is the Centripetal-Coriolis matrix. 

 is the normalized FES input,  is the motors 

current amplitude and   is the passive moment of 
muscles. 

3. CONTROL DEVELOPMENT 

3.1 Virtual Constraint Design and Optimization 
The output of that N-DOF HES  can be defined as 

                          (5) 

where  is an independent joint angles function and 

 is a desired virtual constraint function and using the 
Bezier polynomials, it can be described as 

                           (6) 

Where 

              (7) 

In (7),  is the optimization search variable and is chosen 
optimally by an optimization process for a minimum control 
effort criteria. M is an integer, showing the number of Bezier 
polynomial terms and w is derived using the following equation 

                             (8) 

where  is designed in a way 
that  is monotonically increasing. Minimum value and 

maximum value of  are  and , respectively. 

3.2 Controller Design 
The output y can be written as . 
Therefore 

        (9) 

where  and  are the decoupling matrices. The 

uniqueness and existence of zero dynamics in the neighborhood 
of a point is guaranteed by the matrices invertibility at the point 
[11].  and  are defined where 

subscription of i means  row of a vector. Therefore, the 
following equations can be derived 

       (10) 

where  is equal to  row of  and  are 

equal to  row of  and , respectively. 

 is  row of the linearly parameterizable (LP) part of 

 and  is  row of the non LP part of . 

 is the system disturbance term and is bounded by ,  

and  are unknown functions which will be learned by an 

iterative learning method, and  will be learned by a recurrent 
NN (RNN) which is trained by back propagation.  and  can 

be described by two NNs as follows 
                   (11) 
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where both NNs augmented input,  is defined as 

. The dimensions of ideal weight matrices for 

first NN are  and , and the dimension of 
ideal weight matrix for the second NN is . 2N+1 
neurons compose the input layer. The hidden layers of the NNs 
are made of  and  neurons.  is 
the activation function of first NN in (11) and it maps the input 
layer to the hidden layers.  is the activation 
function in (12) and it maps the input layer to the output layer. 

 and  are the unknown functional reconstruction 

errors for the two NNs and are bounded as  _{1} and 

  where . The ideal NN’s,  and  can be 

estimated by  and , which can be described as 

                         (13) 

                           (14) 

where  and  are the 

estimates of ideal weights in  iteration. For stabilizing the 
generalized HES, based on the motor virtual input  and FES 

virtual input , the following virtual input is defined 

                  (15) 

where  is represented as 

.                   (16) 

In (15) and (16),  and  are the estimates of  and , 

respectively.  is an estimate for . The spectral radius of , 

, and a control gain  are added to  [12] to 

avoid the singularity when  is equal to zero.  is added 
as an additional feedback input. Based on the subsequent 
stability analysis, weight matrices update law are designed as 

                    (17) 

                     (18)  

where  and  are constants that have direct effect 

on the convergence speed.  is defined as 

.                   (19) 

The sliding surface  is defined as

, where .  and  are 

positive constants,  is the actual output of the system,  is 

the desired output of the system.  and  are positive 
constants. Additionally, update laws for the ideal weight 
estimation  and the system LP part estimation  are 
described by the following equations based on the stability 
analysis in the next section 

                             (20) 

                          (21) 

where  is a positive constant. By subtracting and adding 

 and substituting (15) to (10), the following result is obtained 

          (22) 

where  and  can 

be also represented as the following equation based on (16) and 
(12)  

                         (23) 

where  and it is bounded by , 

and . Hence (22) can be written as 

       (24) 

In the following part, a NN based ILC with MPC allocation 
stability analysis is provided. 

In (24), the following inputs are defined 

             (25) 

          (26) 

  
                                   (27) 
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where  and  are allocation coefficients.  
is an integrator term that is described as 

                              (28) 

where  and .  and based on 
(24)-(27), it can be expanded as  

             (29) 

where  and  are allocated by a MPC allocation strategy. 

3.3 Stability Analysis and the Finite Time Convergence 
The following energy function is designed for stability 

analysis of the proposed controller as 
                  (30) 

where  ,  , 

 ,  ,  

and .  is the start time of  iteration and 

. At the start of each iteration, it is considered that 
the exoskeleton user starts from the same siting position. 
Therefore, the difference between first Lyapunov function in two 
iterations can be expressed as 

                            (31) 

 can also be expressed as 

                    (32) 

By substituting (28) to equation (32), it can be simplified as 
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Similarly, (34) can be simplified by substituting (29) 
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The difference of the third energy function can be written as 

                (37) 

where the following equation can be derived based on [13] 
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                  (39) 

Therefore, (37) is obtained as 

       (40) 

The fourth energy function difference between two 
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previous energy function 
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 .  is the length of the prediction horizon and  is the 

current time instant in  iteration. Initially, suppose 
 is found, and then 

 is considered for the next iteration, 

where  is the time step that makes  [14]. The model 
predictive algorithm is detailed in Table 1.  

TABLE 1. DETAILS OF MODEL PREDICTIVE CONTROL 
ALLOCATION STRATEGY 

1 Initialization: j=0 

(1a) The tolerance of convergence is set to . 

(1b)  are measured. 

(1c) Virtual constraint and feedback controller are used to 
get  and , where . 

(1d)  is chosen as the initial optimal 

control guess, where . 

(1e)  and  are obtained using  and 

where . 

2 Searching for an Optimal Solution:  

(2a) The costate,  is solved using an integration 

backward in time, H is defined as , 
hence an optimal solution is obtained as 

, where . 

(2b) Using the Hamiltonian, the search direction  

is obtained as   

(2c) By using the adaptive setting in [15], the optimal 
step size,  is computed.  

(2d) The control is updated.  
where ζ represents the constraints. 

(2e)  is utilized to get . 

(2f) Quit conditions are checked 
(i) if  is satisfied, quit. 

(ii) if j exceeds the max iteration number  , quit. 
(iii) otherwise j=j+1 and from (1a) reiterate gradient 
step. 

4. SIMULATION RESULTS 
After implementing the controller on the system for siting to 

standing and standing to sitting scenarios, the MPC algorithm 

allocates the knee FES torque according to the Fig. 1. This 
allocation causes a normalized fatigue trend which is shown in 
the Fig. 2.  

 
FIGURE 1: FES TORQUE ALLOCATION ON THE KNEE JOINT 
BY USING MPC 

 
FIGURE 2: NORMALIZED FATIGUE OVER TIME 

 
The desired and actual trajectories of hip and knee joints are 

demonstrated in Fig. 3. In this figure,  is the knee joint angle 

and  is the hip joint angle. 

 
FIGURE 3: JOINT ANGLES OVER TIME 
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According to Fig. 4, compared to the first iteration, the  
iteration of the algorithm could reduce 86% of root mean square 
(RMS) error of the knee joint angle tracking performance and 
57% of RMS error of the hip joint angle tracking performance. 

 
FIGURE 4: ROOT MEAN SQUARE OF THE JOINT ANGLES 
ERROR VS ITERATIONS 

5. CONCLUSION 
A cooperative control strategy for a hybrid exoskeleton was 

designed. An MPC allocation was used to optimally allocate FES 
and knee motor torques based on the muscle fatigue dynamics. 
Its ability to balance the stimulation and robotic actuation was 
shown in siting to standing and standing to sitting scenarios. The 
NN based ILC makes the system robust to system uncertainties 
and day-to-day parametric variations. The results show decline 
in the system RMS error after each iteration for the targeted 
scenario. Thus the simulations showed the effectiveness of the 
controller to improve the tracking performance. 
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