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ABSTRACT

In this paper, a novel neural network based iterative
learning controller for a hybrid exoskeleton is presented. The
control allocation between functional electrical stimulation and
knee electric motors uses a model predictive control strategy.
Further to address modeling uncertainties, the controller
identifies the system dynamics and input gain matrix with neural
networks in an iterative fashion. Virtual constraints are
employed so that the system can use a time invariant manifold to
determine desired joint angles. Simulation results show that the
controller stabilizes the hybrid system for sitting to standing and
standing to sitting scenarios.

Keywords: Iterative learning controller, Functional
electrical stimulation, Model predictive control, Neural network,
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1. INTRODUCTION

A hybrid exoskeleton (HES) is a potential rehabilitation
technology that can be used to restore a person's lost walking
ability. It provides benefits of both functional electrical
stimulation (FES) and a powered exoskeleton. For example
additional therapeutic benefits of FES such as muscle growth and
increased bone density can be gained through the use of an HES.
Additionally, the size and weight of bulky motors and batteries
that are deployed in sole powered exoskeletons can be reduced
[1]. The powered exoskeleton can also be used to compensate for
the effects of FES-induced muscle fatigue. However controlling
this type of devices faces several challenges. Firstly, to control
the HES, an allocation strategy is needed to coordinate FES and
the powered exoskeleton based on the onset of FES-induced
muscle fatigue. Our previous paper [2] extended a fatigue based
switching control design in [3] for allocating FES and
exoskeleton a multi degrees of freedom (DOF) walking. In an
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alternative approach, inspiration from the muscle synergy
principle was used in [4] to address the FES and exoskeleton
allocation problem. The method uses a low dimensional
controller which controls multiple effectors: FES of multiple
muscles and electric motors.

Nonlinearity and uncertainty in the dynamic model of HES
are another set of challenges that may impede its day-to-day
implementation in a clinical setting. Nonlinear robust control
methods like robust integral of the sign of the error [5] and
sliding mode control [6] have been designed and analyzed for
robust FES control. However these methods rely on high control
gains or high frequency to compensate for modeling
uncertainties. [7] uses a robust Lyapunov-based MPC that
incorporates a contractive constraint. It achieves the system
stability despite unknown constants for muscle activation
however it suffers from high control gains. Iterative learning
control (ILC) [2] and neural-network (NN) based controllers [8]
are the approaches that can be utilized to overcome the
drawbacks of traditional controller methods, especially for
achieving a desired transient response when the system of
interest has a repetitive operation. In [8], for controlling
neuromuscular electrical stimulation, an NN based controller
was proposed. However none of these methods were designed
for an HES. Even in our previous work on HES control [2], the
controller used feedback linearization and a second-order sliding
mode control for both FES and electric motors, but the controller
still needed a nominal model for feedback linearization.

In this paper, for addressing the actuation coordination and
redundancy problems, a model predictive control (MPC)
strategy for optimal allocation of control inputs from motor and
FES is used. A virtual constraint [9] that generates desired
movements for joints based on a time-invariant manifold is used.
For overcoming the problem of uncertain HES dynamics, a novel
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NN based ILC method is used so that the controller can learn the
HES dynamics during its operation. This method addresses the
limitation in our previous research in [2] where exact model
knowledge (EMK) is required for implementing that controller.
In our another previous work [10] a sole ILC method was used
to learn a linearly parameterizable part of the system dynamics.
Therefore, in this paper a unified (virtual constraint + robust NN
based ILC + MPC based allocation) is designed to estimate both
linearly parameterizable and non-parameterizable parts of the
system dynamics of a generalized HES. The controller tracking
stability is proven using an energy based method. Simulations
are done for standing to sitting and siting to standing scenarios
using this control method.

2. GENERAL HYBRID EXOSKELETON DYNAMIC
MODEL
An N-DOF hybrid exoskeleton generalized dynamic model
can be represented as

Xx=f)+g (u, +g, (u, (D
where x = [O,QT ,0 eRY is represented as 0=[6,,0,.....0,].
0.(i=1,2,..,N) is the angular position of the i" linkage.
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where B, eR"" is the control gain matrix of FES and
B, eRY" is the control gain matrix of motors, respectively.
J(0) eR" is the inertia matrix, G(0) eR" is the gravitational
vector and C(0,0) eR"" is the Centripetal-Coriolis matrix.
u, eR*" is the normalized FES input, u,, eR" is the motors
current amplitude and 7, eR" s the passive moment of

muscles.
3. CONTROL DEVELOPMENT

3.1 Virtual Constraint Design and Optimization
The output of that N-DOF HES y eR" can be defined as

y=h(0)—h,(p(0)) (%)
where #4,(0) is an independent joint angles function and
h,(p(0)) is a desired virtual constraint function and using the

Bezier polynomials, it can be described as

b(w0)
nip@)-| 20 ©)
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Where
MM=§&Eé€BWm—MMk ™

In (7), o, is the optimization search variable and is chosen

optimally by an optimization process for a minimum control
effort criteria. M is an integer, showing the number of Bezier
polynomial terms and w is derived using the following equation

wo)=PO=P ®)

where p(0)=¢0,+¢,0,+..+{ 0,.4, €R is designed in a way
that p(0) is monotonically increasing. Minimum value and

maximum value of p(6) are p~ and p*, respectively.

3.2 Controller Design
The output y can be written asy=Ah(0)=h(0)—h,(p(0)).

Therefore
2

dy 2
L/h(Q) + Lgl‘_L/h(Q)uF + LgVL/;h(Q)uM 9

ar

where L L h and LgML ,h are the decoupling matrices. The

uniqueness and existence of zero dynamics in the neighborhood
of a point is guaranteed by the matrices invertibility at the point

[11]. yli:y,.,)_/%:yi,ul:u” and u are defined where

subscription of i means i” row of a vector. Therefore, the
following equations can be derived

v, = 7,
. , (10)
V, = ov, +v, +Qu+vu +v,
where o’v_ +v_ isequalto i” row of I>h(60,0),v and Q are
5TV 18Cq 1 ¢

equal to " row of L, L h(0) and L, L h(0), respectively.

c'v ;s i" row of the linearly parameterizable (LP) part of

L h(0,0) and v, is i" row of the non LP part of L’ (6,0).

T

v, is the system disturbance term and is bounded by b,, o

and v, are unknown functions which will be learned by an

iterative learning method, and Q will be learned by a recurrent
NN (RNN) which is trained by back propagation. v, and Q can

be described by two NN as follows
v, =WOF X)+5,(X) (11)
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Q=R'$(X)+z,(X) (12)
where both NNs augmented input, X eR*"*" is defined as

T
X =[ I x ] . The dimensions of ideal weight matrices for

first NN are W eR™" and V GR(M“)XNZ , and the dimension of

ideal weight matrix for the second NN is R eR" . 2N+1
neurons compose the input layer. The hidden layers of the NNs

are made of N, e/" and N, €I" neurons. O:R"™ 5> R™ is
the activation function of first NN in (11) and it maps the input
layer to the hidden layers. ¢:R*'"' —R" is the activation

function in (12) and it maps the input layer to the output layer.
g €R and ¢, eR are the unknown functional reconstruction

errors for the two NNs and are bounded as ‘51| <g¢ {l} and
‘82‘ <&, where £,&, eR". The ideal NN’s, v, and Q can be

estimated by v, ) and Q . » which can be described as

v, = w'ew!x,) (13)
O, =Rl¢(X,) (14)
where W eRM"! I} eREPYY: and f?k eR™ are the

estimates of ideal weights in k" iteration. For stabilizing the
generalized HES, based on the motor virtual input #, and FES

virtual input u, , the following virtual input is defined

w=y; (a9, ~6Iv,) (15)
where y, is represented as
wk:fzk+(g(ﬁk)+ﬂ). (16)

In (15) and (16), Qk and \?m are the estimates of Q and Vi
respectively. &, is an estimate for o . The spectral radius of Q,
g(f)) eR", and a control gain 8 eR" are added to w [12] to
avoid the singularity when Q is equal to zero. i, eR is added

as an additional feedback input. Based on the subsequent
stability analysis, weight matrices update law are designed as

N . OE
VVA'/:VV/%_KIW (17

A oA OE
V.=V, —Kk,—=> 18
/ k/fl 26[//{7 ( )

where k, eR" and x, eR" are constants that have direct effect

on the convergence speed. E, is defined as

1 il A T
Ei= E(sz,k Ve T 57%)

(%k Vi 5“/«)

The  sliding L ER s
s, =Ae, (t)+/’tzék(t), where e, :()71[# —fll) . A and A, are

(19)

surface K defined as

positive constants, y, is the actual output of the system, y, , is

the desired output of the system. £ eR* and ¥ eR" are positive
constants. Additionally, update laws for the ideal weight
estimation IAQk and the system LP part estimation &, are

described by the following equations based on the stability
analysis in the next section

R =—¢(X, Ju,,s" (20)
G :Gk_l—bqvﬂ(}/sk) (1)

k
where b, eR"™ is a positive constant. By subtracting and adding
v . and substituting (15) to (10), the following result is obtained

y =E, +‘{’:vfl+Qu —U VUV, (22)

where Eb =V, —v

be also represented as the following equation based on (16) and

(12)

Q Ql//kand‘P—aaQ can

Q,=Rp(X,)+B, (23)
where S = SZ(X)—(Q(Q)+/5’) and it is bounded by Bg eR",
and R=R-R.Hence (22) can be written as

V=B Yy +(R] T6(X, )+ B,

—u, + Vgl/t2 + v,

24

In the following part, a NN based ILC with MPC allocation
stability analysis is provided.
In (24), the following inputs are defined

1 L _
_ A_n[—zlﬂ,jyl_“d + 113’2,.
2\ =

(25)
-2, (a3sk + %azsgn(sk)] + lzvkj
=GV, [(a s +— oc ,5gn(s,)—v J
(20)
1 (&, -
r[;w ")
1, +g, =1 27
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where a, R, a, eR*, 1, and ¢ are allocation coefficients. v,
is an integrator term that is described as
Vv, ==Bs, = B,v, (28)

where B, eR" and B, eR". 5§, =1¢, (t)+12ék (t) and based on
(24)-(27), it can be expanded as

. 4

§, = Az(—a3sk —gazsgn(sk)+vk -, 29
ivf - ﬂaul,k - R/Z-q)(Xk)ul,k - Es,k)

where 1, and ¢, are allocated by a MPC allocation strategy.
3.3 Stability Analysis and the Finite Time Convergence

The following energy function is designed for stability
analysis of the proposed controller as

V=V 4V D 4y Oy 4y (30)
T
) VY rs
where v = k2 5 , v = /1— ,
1 1 ¢
S r w__ 1 r
e P el 10 ()8 (e

q lox

ok is the start time of k™ iteration and

1 (enw
and Vk(s) = Etr{RkTRk} .t
7.b,.¢ eR". At the start of each iteration, it is considered that

the exoskeleton user starts from the same siting position.
Therefore, the difference between first Lyapunov function in two
iterations can be expressed as

AVO =0 _p 0, (31)
AVY can also be expressed as

AVY = LA
2 2 o
By substituting (28) to equation (32), it can be simplified as

= vkvkdz' Vi Ve (32)

t t r
AV ==, [¥is,de=p, [ viv et 3

17

0.k L

0.k
The difference of the second energy function in two
executive iterations is obtained by

NS =lsfsk _lsl{—lsk—l v SkSde r Si1Si
A2 AL 2 Ay A 2
(34

Similarly, (34) can be simplified by substituting (29)

AV(Z) 7Sk1A1
T2

2

—VI A v, dt— 2y_[s sgn(s,)dt

lﬂ,k

t

—yszvddr—yJ‘szRZq&(

lok Lok

Xk)ulvk dr (35)

t

t
-ya, I skTsk dt—y I N ﬂgulk dt

1,

0.k K

0.k

+;/jskadr—7/ j s E , dt

1, 1,

0.k 0.k

where b, and [_35 are upper bounds of v, and f3_, respectively.
Accordingly,

Y S8k

A2

2

AV <

+bdyj.‘sk‘dr+yj.3,kadr

17

Lok 0.k

—}/I T‘PTV dT+ azy”s‘dr (36)

tO.k

—y j s,E  dt—y ‘[ SZR:¢(Xk)ul,k dr

17 f,

0.k 0.k

t t _
—ya, j sps, dT+y '”sk‘ﬂg dr

7

tﬂ.k 0.k

The difference of the third energy function can be written as

1 k
AVO = [ \P,{\Pkdr j YWY, dr (37)
q ok q lo

where the following equation can be derived based on [13]
1

m (‘I’T\P —v W, )

(38)

2}) (6,-6,.) (6,-6,.)

Considering (21), (38) can be written as
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%(T:\Pk - \Pi—l\l’k—l) =

q

j}P:S:Vﬁ . (39)
_%(&k - 6k—1 )T (&k - GAk—l)
q

Therefore, (37) is obtained as
|
AV,{O) = ~35 I (Gk —GH) (6 -0 )dr

9 lox

+y _[ (‘I’,{szvf)

(40)

The fourth energy function difference between two
executive iterations is

1 % 1}
AV = j ES,kTES’kdr—z— j E,E, di. (41)

I

0.k {

0.k
The following equation can be written similar to the
previous energy function

%(Es,kTEs,k - Es,k—lTEs,k—l ) = éEaTk (‘;fu _‘;fw )

1. R T, R
_E(V‘m _sz.k,.) (vfu _Vf“,.)
By substituting (19), it is concluded that

1 T
* _ s 5 55
V }/EY l‘sk 26 (sz,A V/.Z,kfl ) (sz,A vfzj‘f] )

(42)

(43)
Hence
1 r
“ _ 5 5 5 5
AV” = Tos .[ (sz,k - sz.k,.) (sz_k Ve )dT
" .44
+y j (skTES!k)dr
The fifth energy function difference is
1 o 1 ~
AVk(S):E”{ R:Rk}_ztr{ R R, 1} (45)

which can be rearranged as

AV;S):—U‘{J‘R,{Tﬁkdfdf}_%tr{Rlekkl} (46)

0.k

By substituting (20) in (46), AVk(5 ) can be expanded as

k=1""k-1

; . (47)
_tr{J ~kr(—¢§( ulksf)dr}

AV = ;tr{RTfi’}

By summing the difference of five energy terms between
two executive iterations and considering B, =y and

_=3(b,+B,)
B 4

, the following ultimate inequality is obtained

as
AV, = AV + AV + AV + AV} + AV

v,V Y S, S,
< ket S NP s dr
2, 2 3; '
1 | (A ’ )T(A v )
-—— (v, -V v, —v dr . (48)
25 tJ- Sak Jrx Jak Sra

—%tr{RkT] Nk 1} B, I vavk dt

lok

Therefore, —AV, is a class K function, hence ¥V, will be

decreased. Additionally, becauseV, () eR"

converges to zero. Accordingly, it can be concluded that the
sliding surface and ¥ which shows the estimation error of PL
part of the system will go to zero. Also, the errors of both NN,

, this ensures V,

»T . . .
E , and R, will also go to zero. Accordingly, the designed

controller in (10) is asymptotically stable. The sliding surface
dynamics is Hurwitz, hence, after the convergence of V, (t) , the

error of output converges to zero exponentially.

3.4 Model-based Predictive Allocation Strategy
In this part, ¢ and ¢ are allocated by an MPC allocation

strategy. The objective index of MPC allocation is designed as

4 +T,, W
minJ, ()= [ | & +——2 |dt
4,(0) H+U

I

st.i, +g, =1, z:m = Vgﬁz (49)
8=, (0.0.i0).0=, (i)
where the terms with a hat, e.g. 7, , show the nominal variables,

which are evaluated in the prediction horizon.
0] (/1,/1, ) ]RX[O 1:| [O 1]}—)R is the differential equation

that represents the FES-driven knee torque 7 based on the
stimulation input and the fatigue variable, 7, is the motor torque
input, [, and d)u(/.l, u,ul)zo is a differential equation that

specify fatigue level. ¢ eR* and w €R" are positive constants.
The FES control allocation ¢ () is the search variable along the

time horizon [tk o4+ Th] and has direct effect on objective index
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J, (t) . T, is the length of the prediction horizon and ¢, is the allocates the knee FES torque according to the Fig. 1. This
allocation causes a normalized fatigue trend which is shown in

current time instant in k™ iteration. Initially, suppose the Fig. 2.
o

ul* (t‘ it e[tk o+ Th]) =argmin{J ()} is found, and then ‘ ‘
-5
u = ul* (t‘ =t >t + 8) is considered for the next iteration, 10
where ¢ is the time step that makes ¢,,, =¢, +& [14]. The model 5
predictive algorithm is detailed in Table 1. 5_20
TABLE 1. DETAILS OF MODEL PREDICTIVE CONTROL %.’-_25 ,
ALLOCATION STRATEGY R w0l |
1 Initialization: j=0 350 ,
(la)  The tolerance of convergence is set to ¢, . 40 - :
_ 45 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
(1b) g(tk )’g(tk) are measured. 0 10 20 30 40 o ':2 o 80 70 80 90 100
(10) Virtual constraint and feedback controller are used to FIGURE 1: FES TORQUE ALLOCATION ON THE KNEE JOINT
get h, (1), (1), and T,(t), where ¢ e[t,.t, +T,]. BY USING MPC
(1d) (1) e, , .1, is chosen as the initial optimal
v 095+ il
control guess, where ¢ €[z,,t, +T,].
(ley 1©,(t) and JU(t) are obtained using #,(¢) and /() g oo 1
[
£
where ¢ €[t,,¢, +T,]. 2.0357 i
2 Searching for an Optimal Solution: %
® 08f ,
(2a) The costate, /'(¢) is solved using an integration -
backward in time, H is defined as H=J +1 Tq)ﬂ , 078y 1
hence an optimal solution is obtained as 07 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
. OH(x.Li A O 10 20 30 4 5 60 70 8 9 100
I(T)=—7(;A ul) , Where )QZ[x,‘u] . FIGURE 2: NO Time [s]
X : NORMALIZED FATIGUE OVER TIME
(2b) Using the Hamiltonian, the search direction a'” ()

The desired and actual trajectories of hip and knee joints are

. . ; OH(x,l,i o . . e
is obtained as @' () = —%. demonstrated in Fig. 3. In this figure, 0, is the knee joint angle
Z'tl
. . . . is the hip joi .
(20) By using the adaptive setting in [15], the optimal and 6, is the hip joint angle
step size, ' is computed. 100 - ‘ ‘
(2d)  The control is updated. W) =< +oa"), g’ sol
where { represents the constraints. <
AUHD s G+D) of
u is utilized to get J t). ‘
(2¢) ! get J,7(0,) 0 20 40 60 80 100
uit conditions are checked Timels]
(ar) it oncitions e o ® ‘ ‘
@) if |J, () =T, (tk)‘ <eg, is satisfied, quit.
' = 40 Actual
(ii) if j exceeds the max iteration number N, , quit. s 20 —— Desired
(iii) otherwise j=j+1 and from (1a) reiterate gradient © ol
step. ‘ ‘ ‘ ‘
0 20 40 60 80 100

Time [s]

4. SIMULATION RESULTS FIGURE 3: JOINT ANGLES OVER TIME

After implementing the controller on the system for siting to
standing and standing to sitting scenarios, the MPC algorithm
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According to Fig. 4, compared to the first iteration, the 10”
iteration of the algorithm could reduce 86% of root mean square
(RMS) error of the knee joint angle tracking performance and
57% of RMS error of the hip joint angle tracking performance.

ES
z 1292 ¢¢9¢sq
0 2 4 6 8 10
Iteration
E6
SRRRNAREER
0 2 4 6 8 10

Iteration

FIGURE 4: ROOT MEAN SQUARE OF THE JOINT ANGLES
ERROR VS ITERATIONS

5. CONCLUSION

A cooperative control strategy for a hybrid exoskeleton was
designed. An MPC allocation was used to optimally allocate FES
and knee motor torques based on the muscle fatigue dynamics.
Its ability to balance the stimulation and robotic actuation was
shown in siting to standing and standing to sitting scenarios. The
NN based ILC makes the system robust to system uncertainties
and day-to-day parametric variations. The results show decline
in the system RMS error after each iteration for the targeted
scenario. Thus the simulations showed the effectiveness of the
controller to improve the tracking performance.
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